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The acclimation of plants to moderately high temperature plays an important role in inducing plant 
tolerance to subsequent lethal temperatures. This study was performed to investigate the effects of heat 
acclimation and sudden heat stress on the antioxidant and metabolic profile of lablab bean (Dolichos 
lablab). Following separate pretreatments with heat acclimation (35°C) and NaCl (100 mM), seedlings of 
lablab bean were exposed to heat stress at 45°C for 5 h and then recovered at 25°C for five days. Pre-
treated seedlings performed better under heat stress than the control and it could be associated with 
the observed increased levels of sugars, proline, glutathione and ascorbate; and increased activities of 
Peroxidase (POX), glutathione reductase (GR) and ascorbate peroxidase (APX) than just heat shocked 
seedlings. Seedling growth was dramatically reduced under heat stress but heat acclimation and NaCl 
pre-treatment were effective in imparting thermoprotection against the lethal heat shock. 
 
Key words: Acclimation, antioxidants, catalase, Dolichos lablab, glutathione reductase, heat stress, peroxidase, 
proline, sugar. 

 
 
INTRODUCTION 
 
Dolichos lablab, a member of Fabaceae, is an ancient 
crop and has been documented by archaeo-botanical 
finds in India prior to 1500 BC at Hallur, India’s earliest 
Iron Age site in Karnataka (Fuller, 2003). Despite its label 
as ‘underutilized’, substantial cultivation of Lablab bean is 
seen in certain tropical regions, either as a sole crop or in 
mixed production systems. Remarkable morphological 
variations have also been reported throughout India 
(Sankaran et al., 2007). It also has considerable 
physiological diversity; a range of adaptation to acidity, 
low soil phosphorous and drought has been reported for 
the plant (Mugwira and Haque, 1993; Karachi, 1997). 
Transitory or constant high temperatures cause an array 
of morphoanatomical, physiological, and biochemical 
changes in plants, which affect plant growth and deve-

lopment and may lead to a drastic reduction in economic 
yield. Plants have evolved various mechanisms for 
thriving under higher prevailing temperatures. These 
include short term avoidance/acclimation mechanism or 
long term evolutionary adaptations. In case of sudden 
heat stress, short term response that is, leaf orientation, 
transpirational cooling and changes in membrane lipid 
composition are more important for survival (Wahid et al., 
2007). Different tissues in plants show variations in 
responses in terms of developmental complexity, 
exposure towards the prevailing or applied stress types 
(Queitsch et al., 2000). 

The stress responsive mechanisms established by an 
initial stress signal are in the form of ionic and osmotic 
effects or changes in the membrane fluidity. This helps
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to reestablish homeostasis and to protect and repair 
damaged proteins and membranes (Vinocur and Altman, 
2005). However, irreversible changes in cellular homeo-
stasis may occur due to inadequate response during 
signaling and gene activation processes that result in the 
destruction of structural and functional proteins and 
membranes, ultimately leading to cell death (Vinocur and 
Altman, 2005; Bohnert et al., 2006). Plants lacking the 
ability to display rapid heat acclimation responses may be 
more prone to thermo-damage. Here, acquired thermo-
tolerance may have significant role. Since plants have to 
face temperature fluctuations during day/night cycle, the 
acquisition of thermotolerance reflects a more general 
mechanism that contributes to homeostasis of metabo-
lism on a daily basis (Hong et al., 2003). Some major 
mechanisms, which make plants thermotolerant include 
ion transporters, free radical scavengers, late embryoge-
nesis abundant (LEA) proteins, osmoprotec-tants and 
factors involved in signaling cascades and transpirational 
control (Wang and Luthe, 2003). Heat stress effects are 
of greater concern at various levels including 
plasmalemma, biochemical pathways operative in the 
cytosol or organelles (Sung et al., 2003). 

Studies have revealed that the first target of heat stress 
is the plasmalemma that shows increased fluidity (Wahid 
et al., 2007). This leads to the induction of Ca

2+
 influx and 

reorganization of cytoskeleton and eventually the 
upregulation of calcium dependent protein kinase (CDPK) 
and mitogen activated protein kinase (MAPK). Nuclear 
signaling of such cascades shows the synthesis of 
cytosolutes and antioxidants. The cytosolutes help to 
maintain cellular water balance; while the antioxidants 
scavenge reactive oxygen species (ROS) and are 
correlated with acquisition of thermotolerance (Maestri et 
al., 2002). The accumulation of ROS can cause 
peroxidation of membrane lipids, denaturation of proteins 
and damage of nucleic acids, ultimately upsetting 
homeostasis (Mittler, 2002). It is known that plants resist 
stress-induced production of ROS by increasing the 
activity of their ROS induced scavenging system (Ali et 
al., 2008; Goyal and Asthir, 2010). The major ROS-
scavenging mechanisms include enzymatic system, 
which consists of superoxide dismutase (SOD), catalase 
(CAT), peroxidase (POX), ascorbate peroxidase (APX), 
glutathione reductase (GR) and non-enzymatic system, 
which consists of ascorbic acid (ASC) and glutathione 
(GSH). Previous studies have indicated that the changes 
in antioxidant enzymes and antioxidants contribute to the 
plants resistance to high temperature (Almeselmani et al., 
2006).  

Heat acclimation, during which the plants develop heat 
tolerance, is a genetically controlled process that is 
triggered by exposing plants to mild or sublethal 
temperatures or by the application of compounds or 
biomolecules to the growth medium (Charng et al., 2006). 
The processes involved in temperature acclimation are 
initiated  by  the perception  of  temperature  signals  and 

 
 
 
 
transduction of these signals into biochemical processes 
that finally lead to the development of heat tolerance (Xu 
et al., 2006). 

The proteins thus expressed facilitate growth and 
survival of plants not only at transient temperatures, but 
also under conditions of severe heat stress, whereby 
lethal temperature can be tolerated for short periods. The 
present work was initiated to study the effect of high 
temperature stress on antioxidants and antioxidant 
enzymes, as well as other parameters, and the role 
played by these factors in protecting the plant cell from 
damage occurring due to high temperature stress. 
 
 
MATERIALS AND METHODS 
 
Plant materials and growth conditions 
 
The seeds of D. lablab (cv. HA-4) were purchased from National 
Seed Project, University of Agricultural Science, GKVK, Bangalore, 
India. Seeds were surface sterilized with 0.1% (w/v) mercuric 
chloride for 30 s, rinsed immediately with large volume of distilled 
water and imbibed overnight in distilled water. The overnight-
soaked seeds were sown in plastic trays (3 seeds per pot) 
containing vermiculite and acid-washed sand (1:1 w/w) and 
irrigated daily with distilled water. The germination was carried out 
under natural greenhouse conditions; day/night temperature and 
relative humidity were 25/20°C and ~70%, respectively. The 
average photoperiod was 12 h light/12 h dark. 
 
 
Heat acclimation and heat stress treatments 
 
Five day old seedlings were subjected to heat treatments in 1X 
Hoagland medium (Allen, 1968). For heat acclimation (HA), plants 
were maintained at 35°C for 2 h and then exposed to heat stress 
(HS) at 45°C for 5 h. For sudden heat shock (HS), plants were 
exposed only to 45°C for 5 h. A combination of salt stress and heat 
stress (SS + HS) was carried out by subjecting salt-stressed plants 
(100 mM NaCl at 25°C for 24 h) to the heat shock treatment at 
45°C for 5 h. All plants, that is, HS, HA + HS, HS + SS were 
subjected to a recovery period at ~25°C for 3 days in 1X Hoagland 
media and then sampled. Seedlings kept entirely at 25°C without 
subjection to any treatment were taken as control (C). Ten 
seedlings were used in each experiment and each experiment was 
done in triplicate. 
 
 

Relative water content (RWC) 
 
The relative water content was estimated according to the method 
of Turner and Kramer (1980) using the equation: 
 
RWC = (FW-DW) × 100 / (TW-DW) 
 
Leaf discs of 10 mm diameter were weighed to determine the fresh 
weight (FW), soaked in distilled water at 25°C for 4 h to determine 
the turgid weight (TW), then oven dried at 80°C for 24 h to 
determine the dry weight (DW). Similarly, entire shoot and root was 
taken for analysis and RWC was computed as aforementioned. 
 

 

Assay of metabolite and antioxidant enzymes 
 

The  frozen  samples  were  homogenized  with  pre-chilled  50 Mm 



 
 
 
 
sodium phosphate buffer (pH 7.0) containing 5 mM β-
mercaptoethanol and 1 mM EDTA using pestle and mortar. L-
ascorbate was raised to a final concentration of 2 mM for extraction 
of APX. The homogenate was centrifuged at 12,000 g for 15 min at 
4°C. The supernatant was used as a source of enzymes. Soluble 
protein content was determined according to the method of Lowry 
et al. (1951) using bovine serum albumin as the standard. 
 
 

-Amylase (AMY, E.C. 3.2.1.1) 
 
Activity of β-amylase was measured using the DNS method 
(Bernfield, 1955). The reaction mixture consisted 0.5 ml of 2% 
starch solution in 50 mM phosphate buffer (pH 7.0) and 0.5 ml of 
enzyme extract. 
 
 
Invertase (INV, E.C. 3.2.1.26) 
 
Invertase activity was determined by the method of Sridhar and Ou 
(1972). 4.0 ml reaction mixture containing 0.025 M sodium acetate 
buffer (pH 5.0), 0.625% sucrose and appropriate volume of enzyme 
extract was incubated at 37°C for 24 h. The reaction was arrested 
by adding equal volume of DNS reagent. The reducing sugars 
present were estimated using the method of Miller (1959). 
 
 

Catalase (CAT, E.C. 1.11.1.6) 
 
Catalase activity was assayed by following the decline in 
absorbance of H2O2 at 240 nm (ε = 39.4 M

−1
 cm

−1
) according to the 

method of Aebi (1984). The reaction mixture consisted of 50 μl of 
enzyme extract in 50 mM sodium phosphate buffer (pH 7.0). The 
reaction was started by addition of H2O2 to a final concentration of 
10 mM, and its consumption was measured for 2 min. One unit

 
of 

activity is defined as the amount of enzyme that catalyzes
 
the 

oxidation of 1 µmol of H2O2 per min under the
 
assay conditions. 

 
 
Guaiacol peroxidase (POX, E.C. 1.11.1.7) 
 
Guaiacol peroxidase activity was measured in a reaction mixture of 
3.0 ml consisting of 50 mM phosphate buffer (pH 7.0) containing 20 
mM guaiacol, 10 mM H2O2 and 100 μl enzyme extract (Chance et 
al., 1955). The formation of tetraguaiacol was followed by an 
increase in A470

 
nm (ε = 26.6 mM

-1
 cm

-1
). One unit of peroxidase is 

defined as the amount of enzyme needed to convert 1 µmol of H2O2
 

min
-1

 at 25°C. 
 
 

Glutathione reducatase (GR, E.C. 1.6.4.2) 
 
GR activity was determined by monitoring the oxidation of NADPH 
at 340 nm (ε = 6220 M

−1
 cm

−1
) according to the method of Carlberg 

and Mannervik (1985). The reaction mixture contained 50 mM tris-
HCl buffer (pH 7.5), 3 mM MgCl2, 0.5 mM GSSG, 0.2 mM NADPH 
and 250 μl of enzyme extract in a total volume of 1.5 ml. One unit

 
of 

activity is defined as the amount of enzyme that catalyzes
 
the 

oxidation of 1 µmol of NADPH per min under the
 
assay conditions. 

 
 

Ascorbate peroxidase (APX, E.C. 1.11.1.11) 
 
The activity of APX was determined spectrophotometrically as 
described by Allen (1968). The assay mixture contained 50 mM 
HEPES buffer (pH 7.0), 1 mM EDTA, 1 mM H2O2, 0.5 mM sodium 
ascorbate and 50 μl of enzyme extract in a total volume of 2.0 ml. 
The  reaction  was initiated by addition of  H2O2. The oxidation  of  
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ascorbate was followed by a decrease in the A290 (ε = 2.8 mM

−1
 

cm
−1

). One unit of ascorbate peroxidase is defined
 
as the amount of 

enzyme necessary to oxidize 1 µmol of ascorbate
 
per min at 25°C. 

 
 
Determination of H2O2 and antioxidants 
 
Hydrogen peroxide content in control and stressed seedlings were 
determined according to the study of Velikova

 
et al. (2000). 

Ascorbic acid estimation was carried out according to the procedure 
of Sadasivam and Manickam (1997). Glutathione (GSH) was 
estimated according to the study of Beutler

 
(1963). Total phenols 

were estimated by the method of Slinkard and Singleton
 
(1977) 

using catechol as an authentic standard. 
 
 
Determination of stress response factors 
 
Proline content was estimated using ninhydrin reagent according to 
the study of Bates et al. (1973). The amount of total soluble sugars 
was estimated colorimetrically at 540 nm using anthrone reagent, 
according to Roe

 
(1955). The extent of lipid peroxidation was 

determined according to Heath and Packer (1968). The TBARS 
content was calculated

 
from the extinction coefficient of 155 mM

-1
 

cm
-1

. 
 
 
Statistical analysis 
 
The experiment was performed using a randomized design. All data 
are expressed as means of triplicate experiments unless mentioned 
otherwise. Comparisons of means were performed using 
PrismGraph version 3.02. Data were subjected to a one-way 
analysis of variance (ANOVA), and the mean differences were 
compared by least significant difference (LSD) test. Comparisons 
with P < 0.05 were considered significantly different. 

 
 
RESULTS AND DISCUSSION 
 
Effect of stress treatments on growth and RWC 
 
The efficacy of various pre-treatments like heat 
acclimation and use of salt was studied by inducing 
thermotolerance in Lablab bean. Growth is an irreversible 
increase in volume and structural biomass involving cell 
division, cell enlargement, maturation and specialization 
to form tissues and organs. A quantitative understanding 
of the plant growth dependence on temperature is 
essential for the selection of cultivars to optimize growth 
in different climates, to understand the physiological 
responses to climate change and to identify and quantify 
thermotolerant species. Direct analysis of plant growth 
rates involves the measurement of seedling length, fresh/ 
dry weights and RWC. Exposure to heat shock (HS) 
alone caused inhibition of shoot growth in terms of 
seedling length, fresh/ dry weights and RWC (Figure 1). 
HS severely limits water uptake causing a reduction in 
growth. Both pre-treatments that is, HA + HS and SS + 
HS helped seedlings to recover from heat stress wherein 
the best heat tolerance based on morphological analysis 
was conferred by the former. The fresh/dry weights of pre- 
treated seedlings increased when compared to control
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Figure 1. Seedling length (a), fresh weight (b), dry weight (c) and RWC (d) of Lablab 
bean after 3 days recovery following heat treatments. Data plotted are mean ± SE of 
duplicates of three separate replicates; mean values were compared by one way ANOVA 
(P≤ 0.05). 

 
 
 
 (Figure 1b and c). The increase in dry weight in these 
seedlings may have been due to accumulation of 
osmolytes, TSS and proline. Accumulation of osmolytes 
either active or passive is an important adaptation 
mechanism for stressed plants to protect cellular 
components form the injury caused by dehydration 
(Wahid and Close, 2007; Ashraf and Foolad, 2007). 
Several studies have reported biomass accumulation in 
heat acclimated Brassica (Kaur et al., 2009) and wheat 
(Asthir and Deep, 2011) under heat stress conditions. 

Plant RWC status is the most important variable under 
changing ambient temperatures (Mazorra et al., 2002). In 
general, plants tend to maintain stable RWC regardless 
of temperature when moisture is abundant; however, high 
temperatures results in limited availability of water 
(Simoes-Araujo et al., 2003). In Lablab bean, elevated 
temperatures caused reduction in RWC in all treated 
samples when compared to control, the decrease being 
greater in HS treated seedlings (Figure 1d). A decrease 
in RWC in relation to raised temperature was also 

reported in Lotus creticus (Anon et al., 2004) and tomato 
(Morales et al., 2003). Reduction in tissue water causes a 
decrease in water potential thereby leading to perturb-
bation of many physiological processes (Tsukaguchi et 
al., 2003) such as reduction in rate of transpiration, 
protein synthesis, enzymes and ion uptake and transport 
(Khalil et al., 2009). This explains the growth inhibition 
observed in HS treated seedlings even after the removal 
of the stressing conditions. 
 
 
Response of hydrolytic enzymes and soluble sugars 
 
Metabolites have a number of functions in addition to 
those of intermediary metabolism. They act as 
signaling/regulatory agents, compatible solutes, 
antioxidants or defense molecules against pathogens. 
The results obtained with Lablab bean provide an insight 
into the roles of two known signaling molecules and 
protectants, namely total soluble sugars (TSS) and proline.
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Figure 2. Total soluble sugars (a), invertase activity (b), amylase activity (c) and proline (d) of 
Lablab bean after 3 days recovery following heat treatments. Data plotted are mean ± SE of 
duplicates of three separate replicates; mean values were compared by one way ANOVA (P≤ 
0.05). 

 
 
 
Accumulation of total soluble sugars (TSS) under heat 
stress has been implicated in the establishment and 
maintenance of thermotolerance (Wahid and Close, 
2007; Rizhsky et al., 2004). Sugars serve as signalling 
molecules during abiotic stress in stress-tolerant 
phenotypes (Rosa et al., 2009). Sugar signaling 
pathways interact with stress pathways in a complex 
network to modulate the metabolic responses of plants 
(Gill et al., 2003; Tran et al., 2007). The effect of HS on 
carbohydrate metabolism in Lablab bean showed a small 
increase in the TSS while HA and SS + HS pre-
treatments resulted in a significant increase (Figure 2a) 
implying better signalling in place in pre-treated 
seedlings. Accumulation of TSS has also been reported 
in heat acclimated grape (Greer and Weston, 2010) and 
sugarcane (Wahid and Close, 2007) as a means of 

establishing thermotolerance. Invertase (INV) plays an 
important function in cell elongation and plant growth 
through carbon allocation (Gibeaut et al., 1990). 
Secondly, it also helps in sucrose metabolism, which in 
turn, has a crucial role in germination, seedling growth 
and in increasing the osmotic potential of the stressed 
cell (Ruan et al., 2010). 

Increased INV in HS and pre-treated seedlings (Figure 
2b) corroborates the higher level of TSS in these 
seedlings. An increase in INV was also reported in 
Brassica (Kaur et al., 2009) and potatoes (Lorenzen et 
al., 2002) where it was shown to contribute to 
theromtolerance of these plants. β-Amylase (β-AMY) is 
important in the transitory starch breakdown (Scheidig et 
al., 2002) needed to combat heat stress (Mansoor and 
Naqvi, 2012). The activity of β-AMY was reduced under HS; 
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however, HA treatment prior to HS (HA + HS) induced 
AMY (Figure 2c). Lethal temperatures retard seedling 
growth as well as β -AMY in winter wheat (Sultana et al., 
2000). Kaplan and Guy (2004) demonstrated the 
appearance of maltose after β-AMY induction and also 
highlighted the contribution of stress-induced maltose 
accumulation towards the protection of the photosynthetic 
electron transport chain, proteins and membranes inside 
the chloroplast during acute temperature shock. 
 
 
Response of the osmolyte, proline 
 
Proline accumulation is a widespread phenomenon in 
higher plants in response to various environmental 
stresses and is demonstrated to be protective for plants 
under adverse conditions. Proline so accumulated is 
proposed to act as a compatible osmolyte, free radical 
scavenger, cell redox balancer, potential inhibitor of 
programmed cell death (PCD), cytosolic pH buffer and 
stabilizer for subcellular structures during various 
stresses (Kavi Kishore et al., 2005; Trovato et al., 2008; 
Gill and Tuteja, 2010). Under supra optimal temperature, 
free proline is known to accumulate in different crops 
(Rasheed et al., 2011). It is therefore, considered to be a 
useful component for evaluating the degree of heat stress 
(Kou et al., 1986). Proline content in leaves was 
significantly higher in HS treated Lablab bean while its 
levels declined considerably in HA + HS (Figure 2d) after 
recovery. This suggests that the HS seedlings were still 
unable to recuperate from stress even after 3 days of 
recovery.  

The exact physiological function of proline is still 
controversial, and several researchers have attributed its 
beneficial function to the process of proline metabolism 
rather than to the proline molecule itself. The inter 
conversion of pro and pyrroline-5-carboxylate (P5C) in 
different cellular compartments might be involved in 
metabolic signaling, regulation of intracellular redox 
potential in higher plants and generation of ATP required 
for recovery from stress (Miller et al., 2009). Compared 
with other stresses; however, only a few reports 
demonstrated proline accumulation during heat stresses 
(Chakraborty and Tongden, 2005; Rasheed et al., 2011). 
 
 
Response of antioxidants and antioxidant enzymes 
 
In plants, ROS has been demonstrated to cause 
oxidative damage leading to cellular injury during various 
environmental stresses, including extreme temperature 
(Larkindale and Knight, 2002; Apel and Hirt, 2004). Even 
very short heat stress is able to bring about the increase 
in ROS, among which hydrogen peroxide (H2O2) and 
superoxide (O2

-
) are believed to be the most important 

components (Apel and Hirt, 2004). The scavenging of O2
-
 

by superoxide dismutase (SOD) results in the production  

 
 
 
 
of H2O2, which is then removed by POX or CAT. H2O2 is 
primarily associated with the stress-induced stomatal 
closure that, in turn, causes a decrease in the CO2/O2 
ratio in the chloroplasts (Cavalcanti et al., 2004). It has 
been demonstrated that this CO2/O2 ratio reduction in 
leaves inhibits CO2 fixation, increasing the rate of ROS 
formation by enhancing electron leakage to oxygen 
molecules, and also, therefore, increasing the 
photorespiration process (Foyer and Noctor, 2003). To 
explore whether increased heat tolerance in HA 
seedlings is related to ROS generation during the 
acclimation phase, seedlings were analyzed for H2O2 
levels upon recovery from heat stress. In Lablab bean, 
even after recovery, H2O2 levels were highest in HS 
treated seedlings than others (Figure 3a). Pre-treatment 
of seedling that is, HA + HS and SS + HS resulted in 
lower H2O2 content indicating that pre-treatments induced 
antioxidative components more efficiently than direct HS. 

The accumulation of free radicals in stressed plants 
cause oxidation of polyunsaturated fatty acids in the 
plasma membrane resulting in the formation of 
thiobarbituric reactive species (TBARS) (Garg and 
Manchanda, 2009). TBARS level is used as an index of 
lipid peroxidation of cell membranes (Gechev et al., 
2002). Temperature regulates membrane fluidity based 
on its composition and the degree of unsaturation (Los 
and Murata, 2004). Saturation of membrane lipids as a 
means of acclimation to high temperature is known to 
enhance thermal stability of PSII in thylakoid membranes 
(Sato et al., 1996). During the recovery stage after heat 
treatment, TBARS levels mimicked those of H2O2 (Figure 
3b). These results demonstrate that oxidative stress is an 
important component of heat stress injury in Lablab bean 
and that HS induced more severe oxidative damage than 
pre-treated seedlings which were better equipped to 
scavenge ROS upon removal of heat stress. The 
increase in the content of lipid peroxides commonly 
associated with high temperature stress could serve as 
an activation signal for the expression of heat-shock 
genes which code for proteins and enzymes needed for 
the cell to tolerate high temperature (Vigh et al., 1998). 
Plants have multiple strategies to prevent oxidative 
damage to cells, employing enzymatic and nonenzymatic 
antioxidants. Superoxide dismutase (SOD), peroxidase 
(POX), catalase (CAT), glutathione reductase (GR) and 
ascorbate peroxidase (APX) are among the enzymatic 
antioxidants. It is a well known fact that dismutation of O2

-
 

catalyzed by SOD produces H2O2 and O2 (Asada and 
Takahashi, 1987). CAT exterminates H2O2 and is thought 
to be one of the most important antioxidant enzymes.  

GR and APX act in the stress-regulated glutathione-
ascorbate cycle. The activities of these enzymes have 
been proved to be inducible by the rise in intracellular 
ROS levels (Apel and Hirt, 2004). In Lablab bean, POX 
was found to be higher in HA + HS followed by SS + HS 
(Figure 3d). The maintenance of higher POX activity may 
provide further oxidative protection by detoxifying H2O2.  
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Figure 3. H2O2 (a), TBARS (b), CAT activity (c) and POX (d) of Lablab bean after 3 days 
recovery following heat treatments. Data plotted are mean ± SE of duplicates of three 
separate replicates; mean values were compared by one way ANOVA (P≤ 0.05). 

 
 
 
These results are in consonance with POX activity 
reported in heat acclimated wheat (Asthir and Deep, 
2011) and turfgrass seedlings (Du and Wang, 2009). 

The reduction in CAT activity indicated that CAT may 
not be involved in antioxidant defence against heat stress 
in the Lablab bean (Figure 3c). A decrease in CAT 
activity was also reported in turfgrass (Du and Wang, 
2009). The protective action of CAT is limited because it 
has relatively poor affinity for its substrates and is 
sensitive to light-induced inactivation compared with 
other antioxidant enzymes (Engel et al., 2006). Peroxi-
somal CAT is known to be sensitive to high temperature 
stress (Foyer and Noctor, 2000) probably because of an 
imbalance that occurs between its synthesis and degra-
dation.  

Also, as CAT has a rapid turnover, conditions inhibiting 
its synthesis will lower the steady-state level of this 
enzyme (Scandalios et al., 1997). Thus, heat shock and 

oxidative stress will enhance inactivation of CAT by 
preventing synthesis of new enzyme (Feierabend and 
Dehne, 1996), resulting in a decline in CAT activity. On 
the other hand, the absolute absence of recovery in leaf 
CAT activity in the recovered plants, even after 3 days, 
suggests that the enzyme suffered irreversible damage to 
its structure and/or that very low rates of de novo 
synthesis occurred. Available data suggests that 
signaling molecules like H2O2 may cause an increase in 
the antioxidant capacity of cells (Gong et al., 2001) by 
raising levels of GSH and ASC (Xu et al., 2006). GSH 
plays an important role in physiological functions such as 
redox regulation, conjugation of metabolites, detoxify-
cation of xenobiotics, homeostasis and cellular signaling 
that trigger adaptive responses (Foyer and Noctor, 2005; 
Rouhier et al., 2008). Nieto-Sotelo and Ho (1986) were 
the first to show that elevated synthesis of GSH occurs 
during temperature stress in plant cells. 
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Figure 4. GSH (a), ASC (b), GR activity (c) and APX activity (d) of Lablab bean after 3 days 
recovery following heat treatments. Data plotted are mean ± SE of duplicates of three 
separate replicates; mean values were compared by one way ANOVA (P≤ 0.05). 

 
 
 

Studies with heat-stressed Lablab bean suggested that 
seedlings that were pre-treated with heat stress had 
lower H2O2 levels as a result of enhanced synthesis of 
GSH (Figure 4a) and ASC (Figure 4b). Several authors 
have shown that elevated GSH content is correlated with 
the ability of plants to recover from heat stress when 
acclimated using sub-lethal temperatures (Nieto-Sotelo 
and Ho, 1986; Chao et al., 2009). Chao et al. (2009) have 
also demonstrated that HS signals lead to an early 
accumulation of H2O2 which in turn prevented rice 
seedlings from oxidative damage by Cd. The ASC pool in 
the chloroplast is regulated by the ascorbate-glutathione 
cycle involving four enzymes; APX, GR, DHAR and 
MDHAR (Noctor and Foyer, 1998). Our results show that 
GR and APX activities were significantly elevated in HA + 
HS (Figure 4c and d) resulting in a higher ASC content in 
these seedlings. It has been reported that the over-
expression of GR leads to an increase in the ASC pool 

(Foyer et al., 1995) while overexpression of thylakoid 
membrane-bound APX functions to maintain the ASC 
content and the reduced status of ASC under stress 
conditions (Yabuta et al., 2002). In addition, enhanced 
choroplastic GR activity in transgenic plants have shown 
increased protection against oxidative stress (Melchiorre 
et al., 2009). 

The increase in activity of POX, GR and APX in the 
recovery period of Lablab bean was in keeping with the 
work of Almeselamni et al. (2006) who have proposed 
that this type of response is characteristic of heat tolerant 
wheat genotypes upon recovery from high temperatures. 
The enhanced activities of GR and APX, concomitant 
with the enhanced content of ASC and GSH observed in 
this study could help to quench ROS and prevent cellular 
damage. According to the results obtained, it can be 
opined that Lablab bean plants may develop tolerance 
against superoptimal temperature stress caused  at 45°C, 



 
 
 
 
a temperature well above the optimal growth temperature 
of ~30°C through exposure to sub-lethal temperature of 
35°C for 2 h. Thermotolerance acquired by plants through 
autonomous synthesis of pertinent compounds or 
induced through gradual exposure to sub-lethal 
temperatures (HA + HS), though cost intensive, is an 
important and potentially vital strategy. This phenomenon 
is principally related to display of heat shock response by 
antioxidants, antioxidant enzymes and compatible 
solutes; and accomplished by reprogramming of gene 
expression, allowing plants to cope with the heat stress. 
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