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Type III effector proteins are injected into host cells through type III secretion systems. Some effectors 
are similar to host proteins to promote pathogenicity, while others lead to the activation of disease 
resistance. We used partial least squares alignment-free bioinformatics methods to identify proteins 
similar to AvrE proteins from Arabidopsidis thaliana genome and identified 61 protein candidates. 
Using information from Genevestigator, Arabidopsidis GEB, KEGG, (GEO: accession number 
GSE22274), and AraCyc databases, we highlighted 16 protein candidates from Arabidopsidis genome 
for further investigation.  
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INTRODUCTION 
 
Plant pathogens deliver small molecules referred to as 
effectors, by type III secreting systems (T3SS) directly 
into plants (Abramovitch et al., 2006; Block et al., 2008; 
Zhou and Chai, 2008). The injected effectors target differ-
ent cellular compartments and subvert numerous signa-
ling pathways for the benefit of the bacteria. Through the 
resistance (R) proteins, plants evolved to gain the ability 
to recognize directly or indirectly effectors. Several T3SS 
effectors contribute to virulence by sup-pressing Patho-
gen-Associated Molecular Patterns (PAMPs) (Hauck et 
al., 2003), and other effectors suppress hypersensitive 
cell death elicited by various Avr proteins (Abramovitch et 
al., 2003). Some effectors mimic plant proteins (Bender 
et al., 1999; Weiler et al., 1994), while others mimic plant 
molecules (Janjusevic et al., 2006; Rosebrock et al., 
2007). AvrE are type III effectors proteins with very low 
sequence identity (Ham et al., 2009).  

Plant genomics and many agriculturally important crops 
are resulting in a rapidly increasing database of genomic 

and sequences. These databases have proved to be rich 
resources for several genes of importance agronomic 
traits, such as, virus and insect resistance, bacterial 
resistance, abiotic stress tolerance, and novel genetic 
markers for crop improvements.  Silverstein et al. (2005) 
searched Arabidopsidis genome using profile hidden 
Markov model (HMM) (Durbin et al., 1998) and Basic 
Alignment Search Tools (BLAST) (Altschul et al., 1990) to 
identify defensin-like sequences (DEFLs) in Arabidopsidis 
genome. They identified 317 DEFLs in Arabidopsidis 
including 15 known defensins. Thus, bioinformatics has 
become an integral aspect of plant and crop science 
research.  The objective of the study was to identify pro-
teins that are similar to AvrE-family effector proteins from 
Arabidopsidis genome with partial least squares (PLS) 
alignment-free methods (Opiyo and Moriyama, 2007). 

Alignment-based methods have limitations because 
alignments are known to become unreliable when 
sequence similarity drops below 40% (Petsko and Ringe,
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2003). Some proteins such as AvrE are highly divergent 
and have low sequence identity (WtsE and AvrE have 
27.1% amino acid identity) even though they still share 
similar structures, biochemical properties, and functions. 
In such cases, obtaining reliable alignments among these 
protein sequences is extremely difficult, and alignment-
based methods such as BLAST, position specific iterative 
BLAST (PSI-BLAST) (Altschul et al., 1997), and profile 
HMMs would fail to identify these proteins from data-
bases.  Using PLS alignment-free methods, we predicted 
61 protein candidates from Arabidopsidis genome as 
similar to AvrE effectors. Using information from Gene-
vestigator v3 (Hruz et al., 2008), Arabidopsidis Gene 
Expression Browser (GEB) (Zhang et al., 2010), KEGG: 
Kyoto Encyclopedia of Genes and Genomes (Kanehisa 
and Goto, 2000), (GEO: Gene Expression Omnibus (Edgar 
et al., 2002); accession number GSE22274 (Wang et al., 
2011), and AraCyc (Mueller et al., 2003), we highlighted 
16 protein candidates for further investigation.  
 
 
MATERIALS AND METHODS 
 
Dataset sources 
 
Training dataset 
 
Twelve (12) AvrE proteins (positives) from study by Ham and 
associates (Ham et al., 2009) and non-AvrE proteins (negatives) 
were downloaded from National Center for Biotechnology Informa-
tion (NCBI) websites (http://www.ncbi.nlm.nih.gov/), and were used 
for training the PLS methods.  
 
Databases 
 
Arabidopsidis thaliana: 35 386 proteins from the release 10 
(November, 2010) of The Arabidopsidis Information Resource 
(TAIR) database (http://www.arabidopsidis.org/). 
 
Sequence descriptors used for PLS alignment-free methods 
 
Amino acid composition: From each protein sequence, frequen-
cies of 20 amino acids were calculated.  In this study, amino acid 
composition was used as descriptors for a PLS classifier (PLS-AA). 

 
Dipeptide composition: Dipeptide composition represents all 400 
frequencies of consecutive amino acid pairs in a protein sequence 
and corresponds to a 400 (20 × 20) feature vector. It can 
encapsulate information on composition of amino acids, as well as, 
their local order. We used dipeptide composition as descriptors for 
a PLS classifier (PLS-DIP).  

 
Physicochemical properties of amino acids: We developed five 
descriptors (PC1- PC5) using the principal component analysis 
(PCA) of 12 physicochemical properties of amino acids (mass, 
volume, surface area, hydrophilicity, hydrophobicity, isoelectric 
point, transfer of energy solvent to water, refractivity, non-polar 
surface area, and frequencies of alpha-helix, beta-sheet, and 
reverse turn) (Opiyo and Moriyama, 2007). The five descriptors 
were used in this study. 

 
Auto/cross covariance transformation: Auto/cross covariance 
(ACC) transformation method discussed in Opiyo and Moriyama 
(2007) was used to transform each amino acid sequence using the 
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five physicochemical property based descriptor set (PC1-PC5). 
ACC with the maximum lag of 30 residues yielded 775 descriptors 
for each sequence. The calculation of ACC was performed using 
the R implementation (version 2.12.0; http//www.R-project.org; 
2010). 
 
 

Partial least squares 
 

Partial least squares [PLS; (Geladi and Kowalski, 1986)] is a 
projection method similar to principal component analysis (PCA) 
where the independent variables, represented as the matrix X, are 
projected onto a low dimensional space. PLS uses both indepen-
dent variables X (sequence descriptors such as amino acid 
composition) and dependent variables Y (positive or negative 
label).  PLS using descriptors transformed by ACC (PLS-ACC) was 
used in (Opiyo and Moriyama, 2007).  PLS discriminate analysis is 
performed to separate groups of observations.  It consists of a 
classical PLS where the response variable is a categorical one 
(replaced by the set of dummy variables describing the categories, 
e.g., 0 and 1) expressing the class membership of the statistical 
units. In this study, each of a training sample, a response variable 
was a signed 1 for the positive sample (AvrE) and 0 for a negative 
sample (non-AvrE).  The group membership, AvrE or non-AvrE of a 
new sequence was predicted based on descriptors and y-value. 
Predicted y-value closer to 1 was considered to be AvrE candidate 
and closer to 0 WAS considered to be non-AvrE candidate.  PLS 
analysis was performed using an R implementation; the PLS 
package was developed by Wehrens and Mevik (version 1.2.1) 
(Wehrens and Mevik, 2007). 
 
 

Performance analysis 
 

Cross-validation analysis (leave-one-out) was performed for all the 
24 sequences used for training the methods. One sequence in the 
training dataset was left out and the learning algorithm was trained 
on the rest of the sequences.  The trained model was used to 
predict the class (AvrE or non-AvrE) of the earlier left out. For the 
24 sequences, the process was repeated 24 times leaving each of 
the 24 sequences out and creating a model from the remaining 23 
sequences.  

Predictions were grouped as follows: i) True Positives (TP): the 
number of actual AvrEs that were predicted as AvrEs; ii) False 
Positive (FP): the number of actual non-AvrEs that were predicted 
as AvrEs; iii) True Negative (TN): the number of actual non-AvrEs 
that were predicted as non-AvrEs and iv) False Negative (FN): the 
number of actual AvrEs that were predicted as non-AvrEs. 
 
 

Minimum error point 
 

The minimum error point
 

(Karchin et al., 2002) was used to 
determine threshold values of PLS methods. The sequences are 
ranked based on the values. The threshold value where the 
minimum number of errors (FN + FP) occurs is the minimum error 
point (MEP) and the number of false positives and false negatives 
are assessed at this point. The minimum error point tells us the best 
case accuracy of a method. The minimum error points for PLS-AA, 
PLS-DIP and PLS-ACC were 0.94, 0.96 and 0.94, respectively. The 
upper cut-off point for all methods was set at 1.00 to further reduce 
the number of false positives. To be selected as a candidate, a 
protein has to be identified by all the three methods (PLS-AA, PLS-
DIP and PLS-ACC) as positive. 
 
 

Goodness of Prediction of PLS methods 
 

The goodness of prediction, Q
2
 equation 2, describes how well the 
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Table 1. The number of PLS components and the 
predictive abilities of PLS-AA, PLS-DIP, and PLS-
ACC, respectively from the leave-one-out cross 
validation procedures. 

 

Method Number of PLS components Q
2
 

PLS-AA 4 0.72 

PLS-DIP 3 0.67 

PLS-ACC 4 0.78 

 
 
 
method can predict a data.  
 
Q

2
 = 1-PRESS/SSY     (2) 

 
Where SSY is the total sum of squares, PRESS is the predictive 
residual sum of squares, which is calculated from the difference 
between observed and predicted Y values. Q

2
 > 0.50 is considered 

good. In this study, the leave-one-out cross-validation procedure 
was used for the Q

2
 calculation. Detailed results of PLS analyses 

are given in Table 1 for PLS-AA, PLS-DIP, and PLS-ACC, 
respectively. 
 
 

RESULTS AND DISCUSSION 
 

Mining A. thaliana proteome using three PLS 
methods 
 

Our objective was to identify proteins similar to 
AvrEeffector proteins from Arabidopsidis genome. PLS 
methods trained using 12 AvrE-family effector proteins 
predicted 61 protein candidates from Arabidopsidis 
genome. Thirty-eight proteins (62%) were enzymes, and 
they included kinases, hydrolases, and proteases. Other 
proteins predicted were F-box family protein, unknown 
protein, transcription factor, auxin-responsive family 
protein, and other proteins.  In order to further study the 
predicted proteins, we used Genevestigator, 
Arabidopsidis GEB, KEGG, (GEO: accession number 
GSE22274), and AraCyc databases to analyze the 
proteins. 
 
 

Expression patterns of the predicted proteins in 
Genevestigator and Arabidopsidis Gene Expression 
Browser databases 
 

We utilized the server of Genevestigator and Arabidopsidis 
GEB databases to study expression patterns of the 
predicted proteins. Of the 61 proteins predicted, three 
(AT2G44280, AT3G59590, and ATMG00140) had no 
expression data in the Genevestigator database. In this 
study, only responses with expression levels altered by 
more than two-fold under the biotic stress are presented. 
Protease inhibitor/seed storage/lipid transfer protein 
(LTP) family protein (AT2G13820), unknown protein 
(AT2G17850), and receptor protein kinase-related 
(AT3G46270) were down-regulated by both 
Cryphonectria arabidopsidis, and Pseudomonas syringae. 

 
 
 
 
Mean while, phosphoglycerate kinase (AT1G79550), 
cyclin-dependent kinase B1; 2 (AT2G38620), and 
exopolygalacturonase / galacturan 1, 4-alpha-
galacturonidase / pectinase (AT3G07850) proteins were 
specifically down-regulated by P. syringae.  In addition, 
invertase/pectin methylesterase inhibitor family protein 
(AT2G47340) was mainly up-regulated by P. syringae.  
From Arabidopsidis GEB, glycosyl hydrolase family 17 
proteins / beta-1, 3-glucanase (AT3G55430), lipase class 
3 family protein (AT3G62590), Senescence-Associated 
Gene 101 (AT5G14930), and glutathione transferase 
(AT5G62480) were up-regulated by P. syringae, 
Golovinomyces orontii, and Botrytis cinerea. These data 
reveal that AvrE proteins might mimic Arabidopsidis 
proteins that are up-regulated or/and down-regulated by 
both fungi and bacteria. 
 
 

Metabolic pathways identified from KEGG and 
AraCyc databases 
 

Out of the 61 proteins predicted, 13 were linked to KEGG 
metabolic pathways. The KEGG pathways linked to the 
predicted proteins are Typtophan metabolism (ath00380), 
biosynthesis of secondary metabolites (ath01110), starch 
and sucrose metabolism (ath00500) and others. The 
AraCyc software (http:// 
www.arabidopsidis.org/tools/aracyc) provides a good 
starting point to paint expression data on metabolic 
pathways. AraCyc metabolic pathways linked to the 
predicted proteins were oxidative ethanol degradation 
and superoxide radicals degradation (AT1G20620), 
abscisic acid glucose ester biosynthesis (AT2G29740), 
gibberellin biosynthesis III (AT1G80330), choline and 
phosphatidylcholine biosynthesis (AT2G32260), treha-
lose biosynthesis (AT4G12430), and photorespiration 
(AT5G47760). AT2G29740 protein syringae as shown in 
Genevestigator involved in abscisic acid glucose ester 
biosynthesis was up-regulated by P. database. These 
results show that AvrE proteins might mimic proteins that 
involve metabolomics pathways related to biosynthesis of 
secondary metabolites, steroid and trahalose biosyn-
thesis, abscisic and gibberellin biosynthesis as shown 
from both KEGG and AraCyc databases.  Based on the 
information from Genevestigator, Arabidopsidis GEB, 
KEGG, and AraCyc, we highlighted 16 protein candidates 
as priorities for further investigation (Table 2). We pre-
dicted protein subcellular localizations by WoLF PSORT 
(Horton et al., 2007); and the predictions show that 50% 
(8 proteins) of the 16 proteins candidates are located in 
Cytosol. These protein candidates were identified by 
computational predictions; experiments are ultimately 
needed to determine if they are mimic by AvrE effector 
proteins. 
 
 

Conclusions 
 

In this study, we predicted 61 proteins from Arabidopsidis 
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Table 2. Sixteen protein sequences highlighted for further investigations. 
 

Accession number Length (aa) TAIR Description 

AT1G20620 485 
SEN2, CAT3  CAT3 (CATALASE 3); catalase  chr1:7143132-7146183 
FORWARD 

   

AT1G79550 401 
PGK  PGK (PHOSPHOGLYCERATE KINASE)  chr1:29929240-
29931188 REVERSE 

   

AT1G80330 355 
ATGA3OX4, GA3OX4 ATGA3OX4 (GIBBERELLIN 3-OXIDASE 4); 
gibberellin 3-beta-dioxygenase chr1:30202953-30204429 REVERSE 

   

AT2G13820 129 
protease inhibitor/seed storage/lipid transfer protein (LTP) family protein  
chr2:5782887-5783361 REVERSE 

   

AT2G29740 474 
UDP-glucoronosyl/UDP-glucosyl transferase family protein  
chr2:12713824-12715248 FORWARD 

   

AT3G07850 444 
exopolygalacturonase / galacturan 1,4-alpha-galacturonidase / pectinase  
chr3:2505819-2507444 REVERSE 

   

AT3G25070 211 
RIN4  RIN4 (RPM1 INTERACTING PROTEIN 4); protein binding  
chr3:9132465-9133754 FORWARD 

   

AT3G45640 370 
MPK3, ATMPK3  ATMPK3 (MITOGEN-ACTIVATED PROTEIN KINASE 
3); MAP kinase/ kinase/ protein kinase  chr3:16767903-16769461 
FORWARD 

   

AT3G53250 109 auxin-responsive family protein  chr3:19753946-19754275 FORWARD 

   

AT3G55430 449 
glycosyl hydrolase family 17 protein / beta-1,3-glucanase, putative  
chr3:20560783-20562981 REVERSE 

   

AT3G62590 649 lipase class 3 family protein  chr3:23158949-23161145 REVERSE 

   

AT4G04740 520 
CPK23  CPK23 (calcium-dependent protein kinase 23); calmodulin-
dependent protein kinase/ kinase  chr4:2405404-2408491 REVERSE 

   

AT4G12720 282 
NUDT7, GFG1, AtNUDT7  AtNUDT7 (ARABIDOPSIDIS THALIANA 
NUDIX HYDROLASE HOMOLOG 7); hydrolase/ nucleoside-
diphosphatase  chr4:7487713-7489554 FORWARD 

   

AT5G14930 239 
GENE101, SAG101  SAG101 (SENESCENCE-ASSOCIATED GENE 
101)  chr5:4828757-4830168 FORWARD 

   

AT5G48870 88 
SAD1  SAD1 (SUPERSENSITIVE TO ABA AND DROUGHT 1)  
chr5:19830633-19831588 FORWARD 

   

AT5G62480 240 
GST14, GST14B, ATGSTU9  ATGSTU9 (GLUTATHIONE S-
TRANSFERASE TAU 9); glutathione transferase  chr5:25106001-
25106792 REVERSE 

 
 
 
genome as proteins that are similar to AvrE proteins 
using PLS alignment-free bioinformatics method.  
Furthermore, we used information from gene expression 

data, and metabolomics pathways to highlight 16 proteins 
for further investigations. This study suggests that using 
different PLS alignment-free bioinformatics methods com- 
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bined with information from available databases offers a 
promising approach to predict proteins that are similar to 
AvrE proteins. Such approaches may address a 
challenging issue of effector target discovery. 
 
 
REFERENCES 
 
Abramovitch RB, Janjusevic R, Stebbins CE, Martin GB (2006). Type III 

effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to 
suppress plant cell death and immunity. Proc. Natl. Acad. Sci. USA 
103(8): 2851-2856. 

Abramovitch RB, Kim YJ, Chen S, Dickman MB, Martin GB (2003). 
Pseudomonas type III effector AvrPtoB induces plant disease 
susceptibility by inhibition of host programmed cell death. EMBO J. 
22(1): 60-69. 

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, 
Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new 
generation of protein database search programs. Nucleic Acids Res. 
25(17): 3389-3402. 

Altschul SF, Gish W, Webb Miller, Eugene W. Myers, David J. Lipman 
(1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. 

Bender CL , Alarcón-Chaidez F, Gross DC (1999). Pseudomonas 
syringae phytotoxins: mode of action, regulation, and biosynthesis by 
peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63(2): 
266-292. 

Block A, Li G, Fu ZQ, Alfano JR (2008). Phytopathogen type III effector 
weaponry and their plant targets. Curr. Opin. Plant Biol. 11(4): 396-
403. 

Durbin R, Eddy SR, Krogh A, Mitchison G (1998). Biological Sequence 
Analysis: Probabilistic Models of Proteins and Nucleic Acids. 
Cambridge, Cambridge University Press. 

Edgar R, Domrachev M, Lash AE (2002). Gene Expression Omnibus: 
NCBI gene expression and hybridization array data repository. 
Nucleic Acids Res. 30(1): 207-210. 

Geladi P, Kowalski BR (1986). Partial least squares regression: A 
tutorial. Anal. Chim. Acta. 185: 1-7. 

Ham JH, Majerczak DR, Nomura K, Mecey C, Uribe F, He SY, Mackey 
D, Coplin DL (2009). Multiple activities of the plant pathogen type III 
effector proteins WtsE and AvrE require WxxxE motifs. Mol. Plant 
Microbe Interact. 22(6): 703-712. 

Paula Hauck, Roger Thilmony, Sheng Yang He (2003). A 
Pseudomonas syringae type III effector suppresses cell wall-based 
extracellular defense in susceptible Arabidopsis plants. Proc. Natl. 
Acad. Sci. USA 100(14): 8577-8582. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, 

Nakai K (2007). WoLF PSORT: protein localization predictor. Nucleic 
Acids Res. 35(Web Server issue): W585-587. 

Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, 
Widmayer P, Gruissem W, Zimmermann P (2008). Genevestigator 
v3: a reference expression database for the meta-analysis of 
transcriptomes. Adv. Bioinformatics 2008: 420747. 

Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE (2006). A 
bacterial inhibitor of host programmed cell death defenses is an E3 
ubiquitin ligase. Science 311(5758): 222-226. 

Kanehisa M, Goto S (2000). KEGG: kyoto encyclopedia of genes and 
genomes. Nucleic Acids Res. 28(1): 27-30. 

Karchin R, Karplus K, Haussler D (2002). Classifying G-protein coupled 
receptors with support vector machines. Bioinformatics 18(1):147-
159. 

Mueller LA, Zhang P, Rhee SY (2003). AraCyc: a biochemical pathway 
database for Arabidopsis. Plant Physiol. 132(2): 453-460. 

Opiyo SO, Moriyama EN (2007). Protein family classification with partial 
least squares. J. Proteome Res. 6(2): 846-853. 

Petsko GA, Ringe D (2003). Protein Structure and Function. Primers in 
Biology. Sunderland (Massachusetts), Science Press; London, in 
association with Blackwell Publishing; Oxford, and Sinauer 
Associates. 

Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, Martin GB 
(2007). A bacterial E3 ubiquitin ligase targets a host protein kinase to 
disrupt plant immunity. Nature 448(7151): 370-374. 

Silverstein KA, Graham MA, Paape TD, VandenBosch KA (2005). 
"Genome organization of more than 300 defensin-like genes in 
Arabidopsis. Plant Physiol. 138(2): 600-610. 

Wang W , Barnaby JY, Tada Y, Li H, Tör M et al. (2011). Timing of plant 
immune responses by a central circadian regulator. Nature 
470(7332): 110-114. 

Wehrens R, Mevik B (2007). pls: Partial Least Squares 
Regression(PLSR) and Principal Component Regression (PCR). R 
package version 1.2-1. 

Weiler EW, Kutchan TM, Gorba T, Brodschelm W, Niesel U, Bublitz F 
(1994). The Pseudomonas phytotoxin coronatine mimics 
octadecanoid signalling molecules of higher plants. FEBS Lett. 
345(1): 9-13. 

Zhang M, Zhang Y, Liu L, Yu L, Tsang S, Tan J, Yao W, Kang MS, An 
Y, Fan X (2010). Gene Expression Browser: large-scale and cross-
experiment microarray data integration, management, search & 
visualization. BMC Bioinformatics 11: 433. 

Zhou JM, Chai J (2008). Plant pathogenic bacterial type III effectors 
subdue host responses. Curr. Opin. Microbiol. 11(2): 179-185. 

 
 
 


