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Aflatoxins are carcinogenic secondary metabolites produced mainly by Aspergillus flavus during 
infection of susceptible crops, such as corn. A. flavus infection and subsequent aflatoxin 
contamination is a serious issue in the southern US, especially during a drought. Field studies 
demonstrate that reduction of drought stress by irrigation reduces aflatoxin contamination in corn and 
peanut. Drought tolerant corn varieties were also found to produce significantly less aflatoxins in the 
field under drought conditions compared to aflatoxin-resistant controls. Genetic studies to identify 
QTLs for low levels of aflatoxin accumulation observed significant environmental effects on the 
location and number of QTLs between studies conducted at different locations and during different 
years. Proteomic comparisons of kernel proteins between corn genotypes resistant or susceptible to 
A. flavus infection have identified stress-related proteins along with antifungal proteins as associated 
with kernel resistance. Gene expression studies of plants in response to biotic or abiotic stress also 
found that disease resistance-related genes could be upregulated by abiotic stresses and vise versa. 
Further examination of host plant and pathogen interactions revealed that plant responses to abiotic 
stresses and pathogen infections were mediated through several common regulatory genes or factors. 
The presence of “cross-talk” between responses to abiotic stress and biotic stress provides new 
approaches for enhancing host resistance to biotic stresses through the upregulation of key signal 
transduction factors. 
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INTRODUCTION 
 
Aflatoxins are toxic, highly carcinogenic secondary 
metabolites produced primarily by Aspergillus flavus and 
A. parasiticus, during infection of susceptible crops both 
in the field and after harvest (Brown et al., 1999). 
Aflatoxins are  found  to  contaminate  a  wide  variety  of  
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important agricultural products such as corn, peanuts, 
tree nuts and cottonseed especially under extreme heat 
and drought conditions (Payne, 1998) and cause 
hundreds of millions of dollars in losses in the US.  
Foodstuffs contaminated with aflatoxins have also been 
associated with increased incidence of liver cancer in 
humans (Hsieh, 1989). 

The discovery of natural resistance in corn in the past 
two decades (King and Scott, 1982; Scott and Zummo, 
1988; Widstrom et al., 1987; Campbell & White, 1995) 
has led to a renewed effort to eliminate aflatoxin 
contamination from food and feed through the 
enhancement of host resistance.  Due to the lack of 
understanding of host  resistance  mechanisms, and   the 
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lack of markers known to be consistently associated with 
resistance, the transfer of resistance traits into corn lines 
with good agronomic traits has been difficult. Recent 
efforts to identify molecular and genetic markers for corn 
kernel resistance as well as studies in host plant-
pathogen interactions have suggested a correlation 
between stress tolerance and plant disease resistance. 
This article reviews evidence for an association of stress 
tolerance and aflatoxin resistance in corn based on field, 
genetics, proteomics, microarray, and host-pathogen 
interaction studies, and summarizes the latest 
approaches to enhance plant resistance to a broad 
spectrum of biotic and abiotic stresses.   
 
 
THE EFFECT OF ABIOTIC STRESSES (DROUGHT 
AND HEAT) ON AFLATOXIN PRODUCTION IN CORN 
AND PEANUT 
 
High temperature and drought, which often occur 
together during the growing season and likely contribute 
to poor kernel development, have been reported to 
increase growth of the fungus and toxin production 
(Payne, 1998). Jones et al. (1981) found that irrigating 
corn fields to reduce drought stress also reduced fungal 
infection and aflatoxin contamination. Irrigation not only 
relieved drought stress, but also reduced soil 
temperature. Lower soil temperature was found to reduce 
aflatoxin contamination in peanut (Hill et al., 1983). 
Increased aflatoxin contamination was observed in 
drought-treated peanuts with increased soil temperatures 
(Cole et al., 1985).  Dorner et al. (1989) also concluded 
that a higher soil temperature favors A. flavus growth and 
aflatoxin production.  

A study on the effect of drought on peanut resistance 
to A. flavus by Wotton and Strange (1987) found that 
fungal colonization was inversely related to water supply, 
as was aflatoxin production. In a four-year study on the 
influence of irrigation and subsoiling on infection and 
aflatoxin production in corn, Payne et al. (1986) also 
concluded that water stress appears to be a major factor 
affecting aflatoxin contamination. Studies of aflatoxin and 
fumonisin contamination of corn grown under high or 
moderate heat stress (Abbas et al., 2002) demonstrate 
that heat stress also plays an important role in the 
susceptibility of corn to both aflatoxin and fumonisin 
contamination.  In an effort to determine if a relationship 
exists between drought-tolerance and aflatoxin 
resistance, Tubajika and Damann (2001) compared ear 
rot and aflatoxin production between nine drought-
tolerant and two aflatoxin-resistant corn lines under field 
and laboratory conditions. They found that drought-
tolerant lines all had significantly lower levels of ear rot 
and aflatoxin contamination compared to the aflatoxin-
resistant controls, when grown under drought conditions 
(Tubajika and Damann, 2001). This suggests a possible 
association  between  drought   tolerance   and   aflatoxin  

 
 
 
 
resistance in corn. 

Recent genetic studies also highlight a relationship 
between environmental factors and kernel resistance. In 
an effort to identify genetic markers or chromosome 
regions associated with kernel resistance, a quantitative 
trait loci (QTL) mapping approach has been used in the 
past several years. Paul et al. (2003) located QTLs for 
lower aflatoxins in five separated bins in their 1997 
mapping population (Tex6 x B73) x B73 BC1S1. 
However, it was found that the environment strongly 
influenced the detection of these QTLs, since there were 
very few chromosome regions consistently associated 
with QTLs from year to year (Paul et al., 2003).  A similar 
environmental effect on QTL was observed in another 
study (Davis et al., 1999), where 227 F2:F3 lines of 
Mp313E x Va35 were evaluated in 1997 and 1998. Here, 
six QTLs for reduced aflatoxin level were identified in 
1997 samples, four of which were contributed by 
Mp313E, the resistant parent, and two by Va35, the 
susceptible parent. However, only two of the QTLs 
identified in 1997 samples reappeared in 1998 samples. 
 
  
MOLECULAR EVIDENCE FOR AN ASSOCIATION 
BETWEEN STRESS TOLERANCE AND DISEASE 
RESISTANCE  
 
Proteomics studies reveal that aflatoxin-resistant 
corn genotypes contain high levels of stress-related 
proteins 
 
A proteomics approach was recently employed to identify 
proteins whose level of expression associated with kernel 
resistance against A. flavus infection and aflatoxin 
production (Chen et al., 2002).  Endosperm and embryo 
proteins from several resistant and susceptible genotypes 
have been compared using large format 2-D gel 
electrophoresis, and over a dozen protein spots, either 
unique or 5-fold upregulated in resistant lines, have been 
identified and sequenced (Chen et al., 2002).  These 
proteins can be grouped into three categories based on 
their peptide sequence homology: (1) storage proteins, 
such as globulin 1, globulin 2, and late embryogenesis 
abundant proteins (LEA3, LEA14); (2) stress-related 
proteins, such as an aldose reductase (ALD), a 
peroxredoxin antioxidant (PER1), a cold regulated 
protein, a water-stress inducible protein, an anionic 
peroxidase, a glyoxalase I protein (GLX I), and several 
small heat shock proteins (HSP), and (3) antifungal 
proteins, which include a trypsin inhibitor and a 
pathogenesis-related protein 10.  

Although the objective of the proteomics investigation 
was to identify antifungal proteins associated with host 
resistance, the majority of those identified were stress-
related proteins and highly hydrophilic storage proteins. 
These data suggest  that  kernel  resistance  may  require  
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FIGURE 1. A model of host resistance mechanisms in corn against Aspergillus flavus infection and 
aflatoxin production. The level of constitutive and inducible antifungal proteins, some hydrophilic 
storage proteins and stress related proteins, viable embryos, regulatory factors such as protein 
kinases and phytohormones involved in the signal transduction pathways, and physical barriers 
are believed to be important for host resistance. Different locations of these resistance factors 
indicate the existence of three possible layers of defense.  LEA-3, group 3 late embryogenesis 
abundant protein; PR, pathogenesis-related protein; RIP, ribosomal-inactivating protein; TI, trypsin 
inhibitor.   

 
 
 
not only the presence of high levels of antifungal proteins, 
but also that of high levels of stress-related proteins and 
highly hydrophilic storage proteins. Storage proteins have 
been reported to play an important role in stress 
tolerance. Members of the LEA genes family have been 
associated with plant responses to many different 
stresses including drought, salt, cold, heat, and wounding 
(Thomann et al., 1992). Transgenic expression of an LEA 
protein from barley demonstrated increased tolerance to 
water and salt stress in rice (Xu et al., 1996).  

Some stress-related proteins have been reported to 
not only confer stress-tolerance, but also enhance 
disease resistance. The expression of heat shock 
proteins, especially the small HSPs under stress, has 
been widely studied (Vierling, 1991) and shown to 
possess molecular chaperone activity (Jacob et al., 
1993). Aside from heat stress, HSPs are also induced by 
other stresses such as cold, drought, or salinity (Sabehat 
et al., 1998). The transgenic expression of an aldose 
reductase, which is involved in the synthesis of an 
osmolyte, sorbitol, and temporally correlated with its 
acquisition of desiccation tolerance in barley embryo 
(Roncarati et al., 1995), was found to protect transgenic 

tobacco plants against lipid peroxidation under chemical 
(paraquat and heavy metal) and drought stress 
(Oberschall et al., 2000). The role of glyoxalase in stress-
tolerance is also highlighted in a recent study using 
transgenic tobacco plants over-expressing a Brassica 
juncea glyoxalase I (Veena et al., 1999). Further 
investigation suggests a direct role for glyoxalase I in 
corn resistance against aflatoxin accumulation through 
the removal of its aflatoxin inducing substrate, 
methyglyoxal (Chen et al., 2004). Sugarbeets carrying a 
superoxide dismutase transgene from tomato exhibited 
increased tolerance to oxidative stress, as well as to leaf 
infection with the fungus Cercospora beticola 
(Tertivanidis et al., 2004). Studies by Park et al. (2001) 
and Shin et al. (2002) also found that transgenic 
expression of the tobacco stress-inducible gene 1 (Tsi1) 
induced expression of several pathogenesis-related 
genes under normal conditions, resulting in improved 
tolerance to salt and pathogens. Possession of unique or 
higher levels of these constitutively expressed, stress-
related proteins may put resistant lines in an 
advantageous position over susceptible ones in the ability 
to synthesize proteins and defend against pathogens  
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while under stress. The contribution of various factors 
from three different layers to resistance in corn kernels is 
summarized in Figure 1. 
 
 
Gene expression studies reveal that abiotic stress 
and infection induce similar plant responses 

 
Biotic or abiotic stress alone was able to induce the 
expression of genes involved in both biotic and abiotic 
stress responses (Cheong et al., 2002; Mengiste et al., 
2003). In response to a combination of heat and drought 
stress, Arabidopsis induces several resistance-related 
genes, such as two putative disease resistance proteins 
and a thaumatin-like protein. It also induces proteins 
involved in signal transduction and stress (Rizhsky et al., 
2004). Also in Arabidopsis, differential expression was 
observed for genes coding for a late embryogenesis 
abundant protein LEA-5, a putative protein kinase, and a 
DNA-binding protein in response to the application of a 
fungal protein known to cause necrosis (Keates et al., 
2003). Another study by Rao et al. (2002) identified 35 
genes significantly up- or down- regulated in rice after 
inoculation with Magnaporthe grisea. Sequence 
homology analysis showed that these genes had known 
functions in defense reactions, signal transduction, stress 
response, photosynthesis and sugar metabolism. 
Differential expression of genes with diverse functions, 
including genes known to be involved in resistance or 
stress responses and genes known to be involved in 
primary or secondary metabolism has also been 
observed in two potato lines varying in resistance to 
Phytophthora infestans (Evers et al., 2003). All of these 
studies clearly indicate similarities and distinctions in host 
responses to biotic and abiotic stresses, as well as cross-
talk (both overlap and interference) between 
pathogenesis-related responses and plant responses to 
other types of stresses (Wan et al., 2002). In another 
word, fungal infection represents a unique kind of stress 
to host plants. In response to such stress, plants not only 
induce specific antifungal genes, but also upregulate 
general stress-related genes.  

 
 

SIGNAL TRANSDUCTION AND CROSS-TALK OF 
HOST PLANTS IN RESPONSE TO BIOTIC AND 
ABIOTIC STRESS 
 
The mechanisms plants use to adapt to abiotic and biotic 
stress have been widely studied in a number of plants. 
Current research effort has focused on the isolation of 
stress-responsive genes and their regulation as a means 
to understand the molecular events underlying the 
adaptation process. An increasing body of evidence 
suggests that a subset of plant responses to biotic and 
abiotic stress is shared, such as the generation of 
reactive oxygen species (ROS), the activation of mitogen-  

 
 
 
 
Activated   protein   kinases    (MAPKs),    and    hormone 
modulations.   
 
 
Reactive oxygen species (ROS) 
 
ROS production is recognized as a common event in 
plant response to biotic and abiotic stresses (Kovtun et 
al., 2000; Lamb and Dixon, 1997; Mithöfer et al., 2004). 
The hypersensitive response (localized plant cell death at 
the infection site) to halt pathogen invasion during an 
incompatible host-pathogen interaction has also been 
reported to involve the production of ROS (Wojtaszek, 
1997). The mechanism of how ROS leads to downstream 
responses is still not clear, however, the requirement of 
specific MAPKs has been implicated (Kovtun et al., 
2000), possibly mediated through a serine/threonine 
kinase (OXI1) in Arabidopsis (Rentel et al., 2004). The 
activity of this kinase was induced in vivo by H2O2 and its 
expression was upregulated by a wide range of H2O2-
generating stimuli (Rentel et al., 2004), suggesting this 
kinase (OXI1) is an essential part of the signal 
transduction pathway linking oxidative burst signals to 
diverse downstream responses. 
 
 
Mitogen-activated protein kinases 
 
Plant–pathogen recognition causes the rapid activation of 
appropriate defenses. Some of the components in the 
signal transduction pathways have been identified and 
characterized. One good example is the mitogen-
activated protein kinase (MAPK) cascades that are major 
components downstream of receptors or sensors that 
transduce extracellular stimuli into intracellular 
responses. All plant MAPKs have a Thr–Glu–Tyr 
activation motif, except members of subfamily V, where 
Glu is replaced by Asp (Zhang and Klessig, 2001).  
Recently, a MAPK kinase 2 (MKK2) from Arabidopsis,  
specifically activated by cold and salt stress and by the 
stress-induced MAPK kinase kinase MEKK1,  was found 
to increased freezing and salt tolerance in transgenic 
plants (Teige et al., 2004), suggesting the importance of 
MAPK cascades in plant responses to multiple stresses. 

One of the mechanisms by which different stimuli 
converge onto one MAPK is believed to involve several 
unrelated kinases that function as MAPKKKs to initiate 
the MAPK cascade (Widmann et al., 1999). Based on the 
homology of the kinase domain, several plant kinases 
have been identified as MAPKKKs, including EDR1 and 
NPK1/ANPs (Zhang and Klessig, 2001). Although the 
downstream MAPKK is unknown, tobacco NPK1 and its 
Arabidopsis homologs (ANPs) have recently been shown 
to activate MPK3 and MPK6, two Arabidopsis MAPKs 
(Kovtun et al., 2000).  A recent review by Hammond-
Kosacky and Parkerz (2003) provides a comprehensive 
list of MAPKs identified from different plant-pathogen 
systems. 



 

 

  
 
 
 
Cis-acting elements and other transcription factors 
 
Studies of transcriptional activation of some stress 
responsive genes have also led to the identification of 
cis-acting elements ABRE (ABA responsive element) and 
DRE (dehydration responsive element)/CRT (C-repeat) 
that function in ABA-dependent and ABA-independent 
gene expression in response to stress, respectively (Seki 
et al., 2003).  Transcription factors belonging to the 
ethylene-responsive element binding factor family that 
bind to DRE/CRT were also isolated (Stockinger et al., 
1997; Liu et al., 1998). The genes encoding these 
transcription factors are induced early and transiently in 
response to cold, and these transcription factors, in turn, 
activate the expression of target genes. Similar 
transcription factors (DREB2A and DREB2B) are also 
induced by dehydration and promote the expression of 
various genes involved in drought stress tolerance (Liu et 
al., 1998).  The expression of a new DNA-binding protein 
DBF1 that specifically interact with the DRE2 cis-element 
of a corn rab17 gene promoter, is induced by ABA, 
dehydration and high salinity (Kizis and Pages, 2002).  

Another example of a transcription factor is calcium-
dependent protein kinases (CDPKs). CDPKs are 
implicated as important sensors of Ca2+ flux in plants in 
response to stress (Ludwig et al., 2004). CDPKs are 
encoded by multigene families, and expression levels of 
these genes are spatially and temporally controlled 
throughout development. In addition, subsets of CDPKs 
are involved in signal transduction during stress including 
cold, salt, and drought or pathogen infection. For 
example, the NtCDPK2, which is essential for Cf-9-
specified resistance to the Cladosporium fulvum Avr9 
peptide, was found to play a role in the perception of 
abiotic stresses in tobacco plants as well (Romeis et al., 
2001). Recently, a new transcription factor, BOS1 
(Botrytis susceptible 1) was found to be required for both 
biotic and abiotic stress responses in Arabidopsis 
(Mengiste et al., 2003).  
 
 
Phytohormones 
 

A variety of plant hormones, including salicylic acid 
(SA), jasmonate (JA), ethylene, and abscisic acid, have 
been implicated in mediating responses to a wide range 
of biotic and abiotic stresses.(Diaz et al., 2002; Thomma 
et al., 1998; Audenaert et al., 2002). The roles of these 
hormones are dependent upon the particular host-
pathogen interaction (Knoester et al., 1998). On the basis 
of the interactions that have been studied, a general rule 
for hormonal action has been proposed in which resistant 
responses to biotrophs require SA, whereas responses to 
necrotrophs require JA and ethylene (Feys and Parker, 
2000). In some instances, these hormones are involved 
in determining the level of host basal resistance (Delaney 
et al., 1994). In other cases, their actions are only 
involved in production of disease  symptoms  and  do  not  
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affect the growth of the pathogen. In tomato, ethylene, 
JA, and SA all independently contribute to its resistance 
to Botrytis cinerea (Diaz et al., 2002). Also in tomato, the 
host plant actively regulates the Xanthomonas 
campestris pv vesicatoria -induced disease response via 
the sequential action of at least three hormones (JA, 
ethylene, and SA), which promote expansive cell death of 
its own tissue (O'Donnell et al., 2003). 

Further, the effect of phytohormones is also regulated 
by other factors. For example, the MAPK kinase kinase, 
EDR1, negatively regulates SA-inducible defenses (Frye 
et al., 2001), whereas MAPK 4 appears to differentially 
regulate SA and JA signals (Petersen et al., 2000). These 
findings also suggest that MAPK modulates cross-talk 
between different plant defense pathways (Hammond-
Kosacky and Parkerz, 2003). 
 
 
NEW APPROACHES OF ENHANCING HOST 
RESISTANCE TO FUNGAL DISEASES THROUGH 
ENHANCEMENT OF PLANT STRESS TOLERANCE 
 
In the past few years, studies trying to understand signal 
transduction of plants under biotic or abiotic stress 
demonstrate that signaling elements isolated from one 
species might work in others, and that a broad-spectrum 
disease resistance may be obtained by manipulating the 
signal cascade to strengthen defense capability and the 
durability of multiple host defense systems. This 
enhanced understanding of signal transduction has led to 
new approaches to advance host resistance.  

Recently transgenic expression of a tobacco MAPKKK 
(NPK1) was shown to confer enhanced drought tolerance 
in transgenic corn (Shou et al., 2004). Under drought 
conditions, transgenic corn plants maintained significantly 
higher photosynthesis rates than did the non-transgenic 
control, suggesting that NPK1 induced a mechanism that 
protected photosynthesis machinery from dehydration 
damage. In addition, drought-stressed transgenic plants 
produced kernels with weights similar to those under 
well-watered conditions, while kernel weights of drought-
stressed non-transgenic control plants were significantly 
reduced when compared with their non-stressed 
counterparts. 

DREB1A, which specifically interacts with a cis-acting 
element DRE and induces expression of stress tolerance 
genes (Liu et al., 1998), has been shown in Arabidopsis 
thaliana to play a crucial role in promoting the expression 
of drought-tolerance genes. Overexpression of the cDNA 
encoding DREB1A from the stress inducible rd29A 
promoter caused minimal effects to plant growth while 
providing a high level of tolerance to drought, salt, and 
freezing in transgenic plants (Kasuga et al., 1999; 
Pellegrineschi et al., 2004).  Another study by Shin et al. 
(2002)   reported   that   transgenic   hot   pepper    plants 
expressing the tobacco stress-induced gene 1 (Tsi1) 
exhibited resistance to Pepper mild mottle virus (PMMV) 
and  Cucumber  mosaic  virus  (CMV).  Furthermore,   the  



 

 

698        Afr. J. Biotechnol. 
 
 
 
plants also demonstrated increased resistance to other 
pathogens. 
 
 
CONCLUSIONS 
 
Evidence from field studies, from proteomic comparisons 
of differences between resistant and susceptible corn 
genotypes, from gene expression analysis of plants in 
response to biotic and abiotic stresses, and from 
examination of signal transduction components involved 
in biotic and abiotic stress responses indicates the 
existence of an association between stress tolerance and 
disease resistance against A. flavus infection and 
aflatoxin production in corn. This understanding not only 
highlights the importance of expression of stress-related 
proteins in resistance, but also leads to new approaches 
to enhance plant resistance to a broad-spectrum of 
pathogens, such as overexpression of transcriptional 
regulatory genes.. 
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