Full Length Research Paper

Comparative d2/d3 LSU-rDNA sequence study of some Iranian Pratylenchus loosi populations

Behzad Hajieghrari ${ }^{*}$, Mousa Torabi-Giglou ${ }^{1}$ and Lieven Waeyenberge ${ }^{2}$
${ }^{1}$ Department of Plant Production, Moghan Junior College of Agriculture, University of Mohaghegh - Ardabili, Ardabil, Iran.
${ }^{2}$ Agricultural Research Centre, Burg. Van Gansberghelaan96, 9820 Merelbeke, Belgium.

Accepted 16 March, 2007

Abstract

The D_{2} / D_{3} LSU rDNA expansion segment of 13 isolates attaching tea shrubs roots in tea gardens that verified by morphological and morphometrical studies as Pratylenchus loosi Loof, 1960 from Guilan province, North of Iran, were amplified and sequenced. Amplification of the D_{2} / D_{3} LSU rDNA expansion segments yielded one fragment at over all sequenced isolates as 787 bp in size. The DNA sequences were aligned using Clustral X1.81 together and with three sequences of similar region of P. loosi isolates available in Genbank database (Isolate T from Serilanka and Isolates N1 and N2 from Florida, USA). Also the genetic distance between sequences data were calculated through four methods as following; Uncorrected distance (UC), Jukes-Cantor (JC) Kimura distance (K) and Jin-Neigamma distance (JNG). For generating phyllogenetic trees both Neighbor-joining (NJ) and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) were used. The results indicated that very short genetic distance exist among the Iranian isolates and between the Iranian isolates and isolate T from Serilanka whereas the Iranian isolates and isolate \mathbf{T} were genetically distinct from isolates \mathbf{N}_{1} and \mathbf{N}_{2}. The phyllogenetic analyses revealed relationship not only among Iranian isolates but also between Iranian isolates and isolate T.

Key words: Tea, Pratylenchus loosi, $\mathrm{D}_{2} / \mathrm{D}_{3}$ LSU rDNA, sequencing, Iran

INTRODUCTION

The tea root lesion nematode, Pratylenchus loosi Loof, 1960 is considered one of the most important and destructive pathogen attacking tea shrubs roots in tea gardens of North of Iran (Hajieghrari et al., 2005) as well as Serilanka and Japan (Sivapalan et al., 1986). It causes a sever decline of tea shrubs where it infects all commercial tea orchards. In Iran, this species is one of the quarantine pests and were found in rooted tea slips imported from Japan (Maafi, 1993). Nowadays, it has been distributed in some tea growth areas of north Iran (Hajieghrari et al., 2005).

[^0]Identification of Pratylenchus species is essential for facility diagnosis of potential pest problems as well as improving prediction about pathogenicity and host range. In the other hand, species identification in the genus Pratylenchus is particularly difficult because of a little morphological diversity exhibition between species. Intraspecific variability of certain morphological characters among genus Pratylenchus used for classical distinguishing species is well known and has been adequately documented (Roman and Hirschmann, 1969; Tarjan and Frederick, 1978).
Biochemical methods such as soluble protein analysis and isozyme markers useful for inter- and intraspecific differentiation of plant parasitic nematodes (Hussay, 1979; Fox and Atkinson, 1986) as well as useful for diagnosis of Pratylenchus species (Payan and Dickson, 1990; Jaumot et al., 1997; Ibrahim et al., 1995; Andres et al., 2000) but these methods are time consuming for culturing of nematode and gathering a sufficiently abundant sample because a large number of individuals are needed for biochemical analyses.

Table 1. Origin of the different Pratylenchus loosi isolates used in this study.

Species (Based on morphological and morphometricalstudies)	Location		
Pratylenchus loosi	Phashalem	Tea	P1
Pratylenchus loosi	Lishavandan	Tea	P2
Pratylenchus loosi	Jirdeh	Tea	P3
Pratylenchus loosi	Lakan shahr	Tea	P4
Pratylenchus loosi	Lahijan	Tea	P5
Pratylenchus loosi	Zemidan	Tea	P6
Pratylenchus loosi	Koomleh	Tea	P7
Pratylenchus loosi	Otaghvar(South)	Tea	P8
Pratylenchus loosi	Otaghvar(Central)	Tea	P9
Pratylenchus loosi	Otaghvar(North)	Tea	P10
Pratylenchus loosi	Rood sar	Tea	P11
Pratylenchus loosi	Amlash	Tea	P12
Pratylenchus loosi	Alborz	Tea	P13

Direct examination of the genetic material especially DNA sequence comparison are being used to examine relationship among taxa, even among diverse taxa that cannot readily be compared with morphological analysis (Chaswell-Chen et al., 1993) and a powerful tool to analyze genetic variation (Waeyenberge et al., 2000; Williamson and Westerdahl, 1993). In recent years sequence analysis of coding and non-coding region of nuclear ribosomal DNA (rDNA) have became a popular tools for species and subspecies identification of plant parasitic nematode from many genera (Ferris et al., 1993; Caswell-Chen et al., 1993; Cherry et al., 1997; De Ley et al., 2002) and has been evaluated as a means to clarify phyllogenetic relationships among population of species of nematode (Kaplan et al., 2000) because of highly stability and exhibition a mosaic of conserved and diverse regions (Powers et al., 1997). Each repeat consist of transcribed units (small subunit or SSU or 18S; large subunit or LSU or 28 S ; 5.8 S ; internal and external transcribed spacers) and an external non-transcribed or intergenic spacer (Power et al., 1997; De Ley et al., 1999). The $\mathrm{D}_{2} / \mathrm{D}_{3}$ expansion domains of the nuclear 28 S rDNA subunit are sequence region that has been successfully used for diagnosing Pratylenchus species as well as other phytoparasitic nematodes (Mizuku et al., 1997; Handoo et al., 2001; Inserra et al., 2001).

The D_{2} / D_{3} expansion segments of the 28 S rDNA subunit ($\mathrm{D}_{2} / \mathrm{D}_{3}$ LSU-rDNA) are the longest expansion fragments in the LSU and are the most rapidly evolving coding region of the rDNA genes (De Ley et al., 2002; Kaplan et al., 2000; Al Banna et al., 2004; Subbotin et al., 2005). It is demonstrated that it is most useful for characterizing species of Pratylenchus and their phyllogenetic relationships (Al-Bana et al., 1997; Mizuku et al., 1997; Duncan et al., 1999; Carta et al., 2001; De

Luca et al., 2004). The purpose of this study was to determine the nucleic acid sequence of D_{2} / D_{3} fragment of some Iranian isolates and to compare D_{2} / D_{3} LSU-rDNA homologues amplified for multiple P. loosi isolates available in the Genbank database.

MATERIAL AND METHODS

Original DNA sequence data were collected from 13 Iranian tea root lesion nematode isolates that verified by morphological and morphometrical studies as a P. loosi using three Pratylenchus genus diagnostic key (Café-filho and Huang, 1989; Frederick and Tarjan, 1989; Handoo and Goldon, 1989) and original description of P. loosi (Loof, 1960; Seinhorst, 1997). These P. loosi populations were isolated from different geographical location from tea shrubs infested roots of Guilan province, Iran (Table 1).
For DNA extraction, ten individuals from each isolates were handpicked and placed in $10 \mu \mathrm{l}$ double distilled water on slide glass and cut them into two or more pieces. Nematode pieces in $10 \mu \mathrm{l}$ double distilled water were transfer into a sterile eppendorf tube containing $8 \mu \mathrm{l}$ lysis buffer which consist of $500 \mathrm{mM} \mathrm{KCl}, 100 \mathrm{mM}$ Tris-Cl pH $8.3,15 \mathrm{mM} \mathrm{MgCl} 210 \mathrm{mM}$ DTT, 4.5% Tween 20 and 0.1% gelatin (Waeyenberge et al., 2000), then $2 \mu \mathrm{l}$ of proteinase $\mathrm{K}(600 \mu \mathrm{l} / \mathrm{ml})$ were added into each samples and were stored at $-80^{\circ} \mathrm{C}$ for 10 min for several days. After freezing, the tube were thawed and incubated for 1 h at $65^{\circ} \mathrm{C}$ in water bath followed by 10 min at $95^{\circ} \mathrm{C}$ for denaturing proteinase K before centrifugation for 5 min at 13000 rpm . The supernatant were transferred to PCR reagent mixture. Forward primer $\mathrm{D}_{2} \mathrm{~A}$ 5'- ACA AGT ACC GTG AGG GAA AGT TG 3^{\prime} and reverse primer $D_{3} B 5^{\prime}$ - TCG GAA GGA ACC AGC TAC TA 3'(Kaplan et al., 2000; Courtright et al., 2000; Tenente et al., 2004) were used for amplification of the D_{2} / D_{3} expansion region of the $28 S$ RNA gene. All PCRs consisted of $50 \mu \mathrm{l}$ reagent mixture containing; $37 \mu \mathrm{l}$ dd $\mathrm{H}_{2} \mathrm{O}, 5 \mu \mathrm{l} 10 \mathrm{X}$ reaction buffer, $1 \mu \mathrm{l} 15 \mathrm{mM} \mathrm{MgCl} 2,1 \mu \mathrm{l}$ dNTPs (10 mM), $0.3 \mu \mathrm{I} \mathrm{D}_{2}$ A primers $0.3 \mu \mathrm{l} \mathrm{D}_{3} \mathrm{~B}$ primers and $0.5 \mu \mathrm{l}$ (2.5 unit) Taq-polymerase enzyme. The PCR reaction tubes were placed in a palm thermal cycler model GP001, Correbett research, Australia. Thermal cycling was done as follows: an initial denaturetion at $95^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 40$ amplification cycles (denaturizing at $95^{\circ} \mathrm{C}$ for 30 s , annealing at $60^{\circ} \mathrm{C}$ for 45 s and extension at $72^{\circ} \mathrm{C}$ for 45 s) and a final step at $72^{\circ} \mathrm{C}$ for 10 min . Amplified products were separated on 1% TAE-buffered agarose gels, stained with ethidium bromide and visualized with UV illumination, and then excised from agarose gels using the Qiaquick Gel Extraction Kit (Qiagen Benelux B.V., the Netherlands), cloned into the pGEM-T vector and transformed into JM 109 High Efficiency Competent Cells (Promega, Leiden, the Netherlands). Ten colonies of each population were isolated using blue/white selection and submitted to PCR with vector primers (pGEM-T forward primer 5'GTTTTCCCAGTCACGAC-3' and pGEM-T reverse primer 5'-CAGGAAACAGCTATGAC-3'). Amplified products were purified using a Qiaquick PCR Purification Kit (Qiagen Benelux B.V., the Netherlands). DNA fragments were sequenced using the Big Dye Terminator V3.1 Cycle Sequencing Ready Reaction Kit and purified according to manufacturer's instructions (PE Applied Biosystems, Foster City, CA, USA). The resulting products were analyzed using an ABI Prism 310 Genetic analyzer.
The DNA sequences of all P. loosi populations were aligned using Clustal X1.81 (default options) together and with three sequences of P. loosi from Genbank (AF170439 isolate T from Serilanka, AF170438 isolate N_{2} and AF170437 isolate N_{1} from Florida, USA reported by Duncan et al., 1999). Also four types of genetic distance analyses were applied to analyze the alignment; uncorrected distance (UC), Jukes cantor (JC), Kimura distance (K) and Jin-Nei gamma distance (JNG). For generating phyllogenetic trees both Neighbor-joining (NJ) and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) were used.

Figure 1. PCR products of D_{2} / D_{3} LSU-rDNA region of P. loosi populations (P1-P13) from different geographical areas in Guilan province, Iran using specific D_{2} / D_{3} LSU-rDNA primer pair ($D_{2} A$, $\mathrm{D}_{3} \mathrm{~B}$). Ma, 1000 bp DNA ladder; Mb, 100 bp DNA ladder; C, control reaction without nematode DNA.

RESULTS

The 13 isolates showed that the qualitative characters of the populations such as number of lip annuli, spermatheca shape and tail shape agreed with original description of P. loosi Loof, 1960. The amplification of the D2/D3 LSUrDNA expansion segments yielded one fragment at over all isolates as 787 bp in size (Figure 1). Control reaction without nematode DNA template never gives any PCR product.

Shown in Figure 2 are aligned sequences of the D_{2} / D_{3} expansion segment of LSU-rDNA for Iranian isolates of P. loosi compared with three isolates from the Genbank database (AF170439 isolate T, AF170438 isolate N_{2} and AF170437 isolate N_{1}) by using Clustral X 1.81. There is some sequence variability among studied P. loosi isolates within this cluster. The comparisons of the aligned sequences demonstrate that very high sequence similarity was detected with Iranian isolates and isolate T from Serilanka. On the other hand sequence variability was observed within Iranian and American isolates (N_{1} and N_{2}) where differences was found not only between Iranian and American isolates but also with in American isolates and isolate T . It is interesting to note that all populations from Iran were replaced by G at position 320 instead of T which is present in P. loosi, isolate T. On the other hand, nucleotide T is missing at position 311 in all Iranian isolates. Within this cluster, sequence divergence within the Iranian isolates ranged from complete identity between P1, P3, P5, P8, P9, P12 and P13 therefore indicating that in these isolates the D_{2} / D_{3} LSU rDNA expansion segment is completely homogeneous, until from 1 to 3 nucleotide differences between P2, P4, P6, P7, P10 and P11 were detected between some of the Iranian isolates of P. loosi (Table 2).

The genetic distance between sequences data were calculated through four methods as following; uncorrected distance (UC), Jukes-Cantor (JC) Kimura distance (K) and Jin-Neigamma distance (JNG). The results showed very short genetic distance among Iranian isolates and within Iranian isolates and isolate T from Serilanka (less than 0.53% distance). Also the longest distance is between N_{1} and N_{2} isolates with Iranian isolate and isolate T . Phyllogenetic analyses with Neighbor-Joinig (NJ) and Un-

Table 2. Sequence differences between D_{2} / D_{3} LSU-rDNA expansion segments of Iranian P. loosi isolates (P1-P13).

Isolate	Position	Substituted nucleotide	Substituting nucleotide
P2	677	T	C
P2	492	A	G
P4	414	C	T
P6	450	A	T
P7	267	T	C
P10	701	A	G
P11	672	G	A
P11	152	C	T
P11	142	--	T

weighted Pair Group Method with Arithmetic Mean (UPGMA) yielded very similar topologies for the phyllogenetic relationship of P. loosi isolates by using calculated genetic distances (available on request). Therefore only one phyllogenetic tree are presented (Figure 3).
Two mainly clades are particularly strongly supported, one of them includes the N_{1} and N_{2} isolates (supported with $1.82,1.79,1.92$ and 1.90% distance calculated with JNG, K, JC and UC, respectively) and any one include Iranian isolates and isolate T (supported with 0\% to 0.53% distance analyzed with each four methods) In this clade the most genetic distance based on D_{2} / D_{3} LSU rDNA were obtained between P2 and P11 isolates (0.53%). The genetic distance between these clades were calculated as 8.87, 8.35, 8.33 and 7.88% distances with JNG, K, JC and UC methods, respectively.

DISCUSSION

The P. loosi was first described from tea hosts in Serilanka. Nowadays this species is reported from Japan, India, Korea, and Iran, and recently from native plants on Florida, USA. Useful diagnostic characters for identification plant parasitic nematodes such as Pratylenchus sp. are remarkably few because of the small size and simple anatomy of phytoparasitic nematodes (Chitwood, 2003). Intraspecific variability of certain morphological characters presently used for describing Pratylenchus species present difficulties in identification of species. After analyzing intraspecific morphological and morphometrical variation, Pourjam et al. (1999) demonstrated that some morphological and morphometrical similarity were observed between Iranian isolates of P. loosi and American populations from the native plants in Florida described as P. Ioosi by Inserra et al. (1996). Morphological studies confirmed their closely relationships, therefore despite some morphological and morphometrical variations between them, Pourjam et al. (1999) proposed that the American isolates as a subspecific rank of P. loosi. It seems that there are difficulties in identify P. loosi-like population

	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P13;	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P4;	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P10;	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P2;	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P6;	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P5;	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P12;	ACAAGTACCGTGAGGG
	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P8;	AAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P3;	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P1;	AAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
P7;	ACAAGTACCGTGAGGGAAAGTTGAAAAGCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
	T; --------------------------GCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
	N1; ---------------------------GCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA
	N2; -GCACTTTGAAGAGAGAGTTAAAGAGGACGTGAA

P11; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P13; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P4; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P10; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P2; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P6; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P5; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P12; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P9; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P8; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P3; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P1; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC P7; ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCGCAGTC ACCGATGAGATGGAAACGGACAGAGCTAGCGTATCTGGCTTGCATTCAGCTTGCACAGTC

P11; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGT-GGTGGCTGCG
P13; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG
P4; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG
P10; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG P2; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG
P6; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG P5; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG
P12; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG P9; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG P8; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG P3; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG P1; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG P7; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG T; GCTACCGATGAATCGCTGATCTCCAGATTGGGACTGTTGACTAGTCGGTTGGTGGCTGTG N1; GCTGCCCATGAATCGCTGACCTCCAGATTGGGGCTGTTGACTAGTGGGCCGGTGGCGGTG N2; GCTGCCCATGAATCGCTGACCTCCAGATTGGGGCTGTTGACTAGTGGGCCGGTGGCGGTG

P11; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P13; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P4; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P10; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P2; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P6; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P5; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P12; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P9; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P8; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P3; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P1; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT P7; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT T; TTGTGCATTTGCAAGTGGAGTGCGTCGAGGCATCCGGTGCGGCGGAATGAACTTGGTTTT N1; TAGTGCATTTGCAAGTGGAGTGCGTCGAGGCGCCCGGGATGGCGGAATGAACTGGGCTTT
N2; TAGTGCATTTGCAAGTGGAGTGCGTCGAGGCGCCCGGGATGGCGGAATGAACTGGGCTTT

P11	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
P13;	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
P4;	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
P10;	GGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
P12;	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
P9;	GGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
P8;	GGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
P3;	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
P1;	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCATCTGT
P7;	GTATCTGT
	GAGGCCAGCTTGCTGGTACCCGGACTCGAGGGATTTCTGTTCATGCTGGATTGCA
	GAGGCCAGCTTGCTGGTACCCGG CTCG-GGGATTTCTGTTCGTTCTGAGC-GTTCCCAC
N2;	GAGGCCAGCTTGCTGGTACCCGGGCTTG-GGGATTTCTGTTCGTTCTGA
P11;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGGGGTCGC
P13;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
P4;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
P10;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGGGGTCGC
P2	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
P6;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
P5;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
P12;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGGGGTCGC
P9;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
P8;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
P3;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
P1;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT-GGATGTCGGTGGCGGTCGC
T;	--GTGGACAAGGCTTTGCGGGCTGAGTTGGGTGCCGAGCT GGATGTCTGTGGCGGTCGC
N1;	GAATGGACATGGCTTTGCGGGTTTGGTTGGGTGTCGAGTC-GGGGGTCGGTGGCGGTCGC
N2	TACGAGTT-GGGAGCCGGTGGCGGTCGC

P11; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
P13; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT P4; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
P10; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT P2; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
P6; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
P5; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
P12; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT P9; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
P8; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
P3; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
P1; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
P7; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
T; TTGCGACACGTACTGTGCCGCCAGTTCGGTCCTGGCTTAGCTCACTCCTCTGTTCAATCT
N1; ATGCGACACGTACTGTGCACTCGGTTCGTGCCTGGCCCGACTC-CTCCACTGTTCAATCT
N2; ATGCGACACGTACTGTGCACTCGGTTCGTGCCTGGCCCGGCTC-CTCCACTGTTCAATCT

P11; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P13; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P4; CGGCGTAAAAGCTGGTCATCCTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P10; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P2; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P6; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTAACG
P5; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P12; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P9; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P8; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG P3; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P1; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
P7; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
T; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
N1; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG
N2; CGGCGTAAAAGCTGGTCATCTTTCCGACCCGTCTTGAAACACGGACCAAGGAGTTTATCG

P13;	
	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
P10;	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
2;	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATAAAAGTGAACGTATCCGC
P6;	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
P5;	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
P12;	GCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
P9;	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
P8	TGTGCGCGAGTCATT-GGGGGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
P3;	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
P7;	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
T	TGTGCGCGAGTCATT-GGGCGTTGAAAACCCAAAGGCGCAATGAAAGTGAACGTATCCGC
N1;	GAGTCATT-GGGCGTTCAAAACCCAAAGGCGCAATGAAAGTGAACGT TCCAT
N2;	CCCAAAGGCGCAATGAAAGTGAACGT TCCAT
P11;	(GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
	GAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
2;	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGGGCAGCATGGCCCCATCCT
P6;	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
P5;	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
P12;	-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
P9;	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
8;	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
P7;	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
T;	TA-GGAGCCAACGTGCGATCCTGGTCATTGCGGTGGCCAGGCGCAGCATGGCCCCATCCT
1;	TTCGGAGCCGACGTGCGATCCTGGTCACTGCGGTGGCCAGGCGCAGCATGGCCCCATCCC
	TTCGGAGCCGACGTGCGATCCTGGTCACCGCGGTGGCCAGGCGCAGCATGGCCCCATCC

P11; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT
P13; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT
P4; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT
P10; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT
P2; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT
P6; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT
P5; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT
P12; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT
P9; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT P8; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT P3; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT P1; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT P7; GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT GACTGCTTGCAGTAGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT GACTGCTTGCAGTGGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT GACTGCTTGCAGTGGGGTGGAGGAAGAGCGTACGCGATGAGACCCGAAAGATGGTGAACT

P11; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGGAGTCCGAAGCGATTCTGACGT P13; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P4; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P10; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P2; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCTGAAGCGATTCTGACGT
P6; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P5; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P12; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P9; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P8; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P3; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P1; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT P7; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT T; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT N1; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT N2; ATTCCTGAGCAGGATAAAGCCAGAGGAAACTCTGGTGGAAGTCCGAAGCGATTCTGACGT

P11;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P13;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P4;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P10;	GCAAATCAATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P2;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P6;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P5;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P12;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P9;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P8;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P3;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P1;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
P7;	GCAAATCGATCGTCTGACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCT
T;----------------------	

P11;	GGTTCCTTCCGA
P13;	GGTTCCTTCCGA
P4;	GGTTCCTTCCGA
P10;	GGTTCCTTCCGA
P2;	GGTTCCTTCCGA
P6;	GGTTCCTTCCGA
P5;	GGTTCCTTCCGA
P12;	GGTTCCTTCCGA
P9;	GGTTCCTTCCGA
P8;	GGTTCCTTCCGA
P3;	GGTTCCTTCCGA
P1;	GGTTCCTTCCGA
P7;	GGTTCCTTCCGA
T;	------------------------
N1;	
N2;	----

Figure 2. Sequence alignment of $\mathrm{D}_{2} / \mathrm{D}_{3}$ LSU r DNA with Clustral X 1.81 for 13 isolate of P. Ioosi (P1-P13) in compared with same position of three isolates AF170439 isolate T, AF170438 isolate N_{2} and AF170437 isolate N_{1} from Genbank database reported by Duncan et al.(1999).

Figure 3. Phyllogenetic tree describing the relationships of Pratylenchus loosi isolates of this study in compared with three isolates AF170439 isolate T, AF170438 isolate N_{2} and AF170437 isolate N_{1} from Genbank database reported by Duncan et al. (1999) based on D_{2} / D_{3} LSU rDNA sequences Jin-Neigamma distance (JNG) and generated by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) analyses.
based on morphological and morphometrical methods without the aid of molecular markers. In the recent years, comparative analysis of the $D_{2} / D_{3} 28 \mathrm{~S}$ rDNA expansion segment sequence has became a popular tool to differentiate cryptic species which are morphological identical (or with some overlapped morphological variation) but genetically distinct (Subbotin et al., 2005).

Duncan et al. (1999) analyzed some species of Pratylenchus as well as tree isolates of P. loosi, isolate T from Serilanka (original description by Loof, 1960) and isolates N_{1} and N_{2} from central Florida, USA describing P. loosi (Inssera et al., 1996) by using D_{2} / D_{3} LSU rDNA expansion segment sequence and found that there is substantial $D_{2} / D_{3} 28 \mathrm{~S}$ rDNA sequence difference between them. These datasets appear to indicate that N_{1} and N_{2} isolates from Florida do not consist of sibling species and proposed that the American isolates as an undescribed species of Pratylenchus.

In order to clarify the taxonomic status of tea infesting nematode from Guilan province, we characterize the D_{2} / D_{3} expansion segment of large submit of nuclear DNA. Sequence dataset demonstrated a very low level of sequence diversity in Iranian isolates of P. loosi and isolate T from Serilanka strongly suggesting extensive genetic homogenization. These result provide evidence to support the proposal that Iranian isolate belong to P. loosi and phyllogenetically relationship exist between Iranian and
isolate T from Serilanka; and despite the morphologically similarity of P. loosi populations described from Iran and American isolate, there are substantial D_{2} / D_{3} sequence difference between them, confirming Duncan et al. (1999) proposal that the American isolates as a undescribed species of Pratylenchus.
The presence of Iranian isolates and T isolate D_{2} / D_{3} LSU-rDNA nucleotide sequences can be considered as the molecular signature of P. loosi and can be used as an additional tool for close identification of this species from other geographical regions and among other P. loosi-like species.

Al-Banna et al. $(1997,2004)$ considered that the D3 expansion segment does not show intra specific variation in Pratylenchus sp. Our also study showed that the $\mathrm{D}_{2} / \mathrm{D}_{3}$ LSU rDNA expansion segment is not a suitable region to use for intraspecific variation of P. loosi as well as some other plant parasitic nematodes (Subbotin et al., 2005) because the $D_{2} / D_{3} 28 S$ rDNA expansion segment is the most rapidly evolving coding region of the rDNA and is flanked by highly conserved sequences and can distinguish taxa at species level.

REFRENCES

AI Banna L, Ploeg AT, Williamson VM, Kaloshian I (2004). Discrimination of six Pratylenchus species using PCR and species-specific primers. J. Nematol. 36(2):142-146.

AI Banna L, Williamson V, Gardner SL (1997). Phyllogenetic analyses of nematodes of the genus Pratylenchus using nuclear 26 SrDNA . Mol. Phylogenet. Evol. 7: 94-102.
Andres MF, Pinochet J, Fernandez-Dorrego A, Delibes A (2000). Detection and analysis of inter-and intraspecific diversity of Pratylenchus spp. Using isozyme markers. Plant Pathol. 49: 640-649.
Café-filho AC, Huang CS (1989). Descriptions of Pratylenchus pseudofallax n . sp. with a key to species of the genus Pratylenchus Filipjave, 1936 (Nematoda, Pratylenchidae). Rev. Nematol. 12: 7-15.
Carta LK, Skantar AK, Handoo ZA (2001). Molecular morphological and thermal characters of 10 Pratylenchus spp. and relatives using the D3 segment of the nuclear LSU rRNA gene. Nematropica. 31: 195-209.
Caswell-Chen EP, Williamson VM, Westerdahl BB (1993). Viewpoint; Applied biotechnology in nematology. Supplement to J. Nematol. 25(4): 719-730.
Cherry T, Szalanski AL, Todd TC, Powers TO (1997). The internal transcribed spacer region of Belonolaimus (Nemata: Belonolaimidae). J. Nematol. 29(1): 23-29.

Chitwood DJ (2003). Research on plant-parasitic nematode biology conducted by the United States department of agriculture-Agricultural research service. Pest Manage Sci. 59: 748-753.
Courtright EM, Wall DH, Virginia RA, Frisses LM, Vida JT, Thomas WK (2000). Nuclear and mitochondrial DNA sequence diversity in Antarctic nematode Scottnema lindsayane. J. Nematol. 32: 143-153.
De Ley IT, De Ley P, Virstraete A, Karssen G, Moens M, Vanfleteren J (2002). Phyllogenetic analyses of Meloidogyne small subunit rDNA. J. Nematol. 34(4): 319-327.
De Ley IT, Karssen G, De Ley P, Vierstrate A, Waeyenberge L, Moens M, Vanfleteren J (1999). Phyllogenetic analyses of internal transcribed spacer region sequences with in Meloidogyne. J. Nematol. 31: 530-531.
De Luca F, Faneelli E, Divito M, Reyss A, De Giorgi C (2004). Comparison of the sequences of the D3 expansion of 26 S ribosomal genes reveals different degrees of heterogeneity in different population and species of Pratylenchus from the Mediterranean region. Eur. J. Plant Pathol. 110: 949-957.
Duncan LW, Inserra RN, Thomas WK, Dunn D, Mustika, I, Frisse LM,

Mendes ML, Morris K, Kaplan DT (1999). Molecular and morphological analysis of isolates of Pratylenchus coffeae closely related species. Nematropica. 29(1): 61-80.
Ferris VR, Ferris JM, Faghihi J (1993). Variation in spacer ribosomal DNA in some cyst-forming species of plant parasititic nematodes. Fanndam. Appl. Nematol. 16(2): 177-184.
Fox PC, Atkinson HJ (1986). Resent developments in the biochemical taxonomy of plant parasitic nematodes. Agricultural Zoological Reviews. 1: 301-331.
Frederick JJ, Tarjan AC (1989). A compendium of the genus Pratylenchus Filipjev, 1936 (Nemata: Pratylenchidae). Rev. Nematol. 12 (3): 243-256.
Hajieghrari B, Mohammadi M, Kheiri A, Maafi ZT (2005). A study about geographical distribution of root lesion nematode (Pratylenchus loosi Loof, 1960) in tea gardens at Guilan province, Iran. Comm. Appl. Biol. Sci. 70(4): 889-892.
Handoo ZA, Carta LK, Skantar AM (2001). Morphological and molecular characterization of Pratylenchus arlingtoni n. sp., P. convallariae and P. fallax (Nematoda: Pratylenchidae). Nematology. 3(6): 607-618.

Handoo ZA, Goldon AM (1989). A key and diagnostic compendium to the species of the genus Pratylenchus Filipjev, 1936 (Lesion Nematodes). J. Nematol. 21(2): 202-218.
Hussay RS (1979). Biochemical systematic of Nematodes - A review. Helminthological Abstracts. 48(4): 141-148.
Ibrahim SK, Perry RN, Webb RM (1995). Use of isozyme and protein phenotypes to discriminate between six Pratylenchus species from Great Britain. Ann. Appl. Biol. 126: 37-344.
Inserra RN, Duncan LW, Troccoli A, Dunn D, Santos JMD, Kaplan D, Vovlas N (2001). Pratylenchus jaehni sp. n. from citrus in Brazil and its relationship with P. coffeae and P. loosi (Nematoda: Pratylenchidae). Nematology. 3(7): 653-665.
Inserra RN, Duncan LW, Vovlas N, Loof PAA (1996). Pratylechus loosi from Pasture grass in central Florida. Nematology. 42: 159-172.
Jaumot M, Pinochet J, Fernandez C (1997). Protein analysis of root lesion nematodes using SDS-PAGE. Nematropica. 27(1): 33-39.
Kaplan DT, Tomas WK, Frisse LM, Sarah JL, Stanton JM, Speijer PR, Marin DH, Opperman CH (2000). Phylogenetic analysis of geographically diverse Rhadopholus similis via rDNA sequence reveals a monomorphic motif. J. Nematol. 32(2): 134-142.
Loof PAA (1960). Taxonomic studies on the genus Pratylenchus (Nematoda). L E B Fondes Publ. 39.
Maafi ZT (1993). Observation of root lesion nematode Pratylenchus loosi in imported tea seedlings from Japan (Short report). Appl. Entomol. Phytopathol. 2: 60.
Mizuku T, Orui Y, Minagawa N (1997). Morphology and molecular characteristics of Pratylenchus Japonicus (Ryss, 1988) n stat (Nematoda, Pratylenchidae). ESAKIA, 37: 203-214.
Payan LA, Dickson DW (1990). Comparison of populations of Pratylenchus brachyurus based on isozyme phenotypes. J. Nematol. 22(4): 538-545.
Pourjam E, Waeyenberge L, Moens M, Gerart E (1999). Morphological, Morphometrical and Molecular study of Pratylenchus coffeae and P. loosi (Nematoda: Pratylenchidae) Med. Fac. Landbouw. Univ. Gent. 64 (3a): 391-401.
Powers TO, Todd TC, Burnell AM, Murray PCB, Fleming CC, Szalaski AL, Adams BA, Harris T (1997). The rDNA internal transeribed spacer region as taxonomic marker for nematodes. J. Nematol. 29(1): 441-450.
Roman J, Hirschmann H (1969). Morphology and morphomrtrics of six species of Pratylenchus. J. Nematol. 1(4): 363-386.
Seinhorst JW (1997). Pratylenchus loosi. C.I.H. Descriptions of plantParasitic Nematodes. 7, No. 98.
Sivapalan P, Kulasegaram S, Kathivevetpillai A (1986). Handbook on tea. Tea research institute of Serilanka. Talawakele, Serilanka. p. 220.

Subbotin SA, Volvlas N, Rozzoli RC, Sturhan D, Lamberti F, Moens M, Bladwin SG (2005). Phylogeny of Criconematina Siddigi, 1980 (Nematoda, Tylenchida) based on morphology and D2/D3 expansion segments of the 28 -rDNA gene sequences with application of secondary structure model. 7(6): 927-944.
Tarjan AC, Frederick JJ (1978). Intra specific morphological variation among population of Pratylenchus brachyurus and P. coffeae. J.

Nematol. 10(2): 152-160.
Tenente GCMV, De Ley P, De Ley IT, Karssen G, Vanfleteren JR (2004). Sequence analysis of the D2/D3 region of the large subunit rDNA from different Meloidogyne isolates. Nematropica. 34(1): 1-11.
Waeyenberge L, Ryss A, Moens M, Pinochet J, Vrain TC (2000). Molecular characterization of 18 Pratylenchus species using rDNA restriction fragment length polymorphism. Nematology. 2(2): 135-142.

Williamson VM, Westerdahl BB (1993). Viewpoint applied biotechnology in nematology. Suppl. J. Nematol. 25(45): 719-730.

[^0]: *Corresponding author. E-mail: bhajieghrari@uma.ac.ir. Tel :
 +989143186861. Fax : +984527463417
 Abbreviations: LSU, Large subunit; SSU, Small subunit; ITS, Internal transcribed spacer; UC, Uncorrected distance; JC, Jukes-Cantor; K Kimura distance; JNG, Jin-Neigamma distance; NJ, Neighbor-joining; UPGMA, Unweighted Pair Group Method with Arithmetic Mean.

