Full Length Research Paper

Volumetric and viscometric behaviour of soya bean and gram proteins in aqueous methotrexate (anticancer drug) solution at 298.15 to 308.15K

Man Singh, Rajesh K. Yadav* and H. S. Verma

Chemistry Research Lab, Deshbandhu College, University of Delhi, New Delhi-110019, and Department of Chemistry J.V. College Baraut, CCS. University Meerut India.

Accepted 28 March, 2006

Apparent molar volumes (V_{ϕ}) and viscosities (η) for 0.00005 to 0.0004 kg.mol⁻¹ (50 to 400 µmol kg⁻¹) aqueous methotrexate (MTX), gram (Gp) and soya bean (SBp) proteins, and similar compositions of Gp and SBp each in 50 to 400 µmol kg⁻¹ aqueous MTX were determined at 298.15, 303.15 and 308.15K. The V_{ϕ} values are positive except aqueous MTX and listed as SBp > Gp > MTX in aqueous and SBp > Gp in MTX solutions, respectively. It infers weaker hydrophobic heteromolecular interaction of SBp in binary and ternary systems. The higher η values of SBp and Gp in MTX than those of aqueous MTX prove strengthening of hydrophobic interactions of proteins by MTX. It illustrates the conformational changes of proteins; slightly higher V_{ϕ} values of SBp than of Gp. The MTX confirm higher structural activity in biological process. The V_{ϕ}⁰ of MTX increases with K and decrease with composition. But with compositions the values continuously decrease with lower magnitude.

Key words: Density, Apparent molal volume, viscosity B coefficient, methotrexate, soya bean, gram protein.

INTRODUCTION

Currently thermodynamics and transport functions of naturally occurring proteins in aqueous solution are of biophysical significance. Due to dominance of spectroscopic techniques, only limited physico-chemical studies are available in literature; soya and gram proteins have never been focused for such studies. Majority of proteins responds to aqueous and mixed solvent due to polyionic nature. Thus solvation has become an interesting tool for solute-solvent interactions, which gives some insights of structural interactions useful for biological activities due to conformational states. Therefore protein-drugs interactions have become the nucleus of biotechnological and pharmaceutical innovations. The physico-chemical characterizations of proteins in drug solutions have not been paid adequate attention and scarcity of such data with protein-drug solutions is noted. However such studies

could render substantial help for drug design and understanding the physical basis of their structural interactions. Thereby in the present work the model studies with methotrexate (MTX), an anticancer drug was chosen for the studies of the ρ , V_{ϕ} , η and B data which depict internal state of the molecule in solution. This approximately calculates the state of intermolecular forces, hydrophilic and hydrophobic interaction. Additionally Several biological effects and action of MTX are given elsewhere (Farber et al., 1956; Weinblatt et al., 1985; Bookbinder et al., 1984; Baggott et al., 1993; Cronstein et al., 1991, 1993; Morabito et al., 1998;), and biochemical mechanism (Gao et al., 1998; Dolhain et al., 1998), influence on production in lymphocytes (Morgan et al., 1998; Nesher et al., 1997; Genestier et al., 1998) have dealt with, with biological aspects where no cognizance of physicochemical studies is made. However HPLC studies of MTX with reverse phase are guoted elsewhere (Smolenski et al., 1990, 1993, 1991). Thus a brief literature review on studies of MTX with respect to biological relevance has found no physico-chemical reference yet, along with

^{*}Corresponding author. E-mail: rajeshkr_yadav2003@yahoo.co.in. Tel: 91-011-26217579.

303.15K										
	Literature	Experimental	Literature	Experimental	Literature	Experimental				
BSA(g%)	ρ±/g.cm⁻³	ρ±/g.cm⁻³	V _∲ ±/cm³mol⁻¹	V _∲ ±/cm ³ mol ⁻¹	η±/cp	η±/cp				
0.0010	0.99641	0.99642	64907.39	64907.41	0.7895	0.7894				
0.0014	0.99622	0.99621	65070.20	65070.19	0.7992	0.7993				
0.0018	0.99619	0.99619	65116.27	65116.27	0.8085	0.8085				
Egg albumin										
0.0010	0.99625	0.99625	39890.08	39890.08	0.7614	0.7614				
0.0014	0.99623	0.99622	39970.16	39970.14	0.7769	0.7770				
0.0018	0.99623	0.99623	40010.54	40010.54	0.7917	0.7917				
Lysozyme										
0.0010	0.99634	0.99633	39850.97	39850.95	0.8039	0.8040				
0.0014	0.99621	0.99621	39977.65	39977.65	0.8041	0.8041				
0.0018	0.99607	0.99607	40054.00	40054.00	0.8065	0.8065				

Table1^a. Experimental and literatures density values along with apparent molal volumes and viscosities at 303.15k.

a = Man Singh, Hema and K. C. Gupta; Chemistry & Biodiversity in press 2004.

effects of concentrations as gross elevation of uric acid due to excess nucleic acid degradation from dead cells (Pui et al., 1997; Simmonds et al., 1988; Herhert et al., 1999; Smolenski et al., 1998; Barankiewicz et al., 1991; Kalsi et al., 1998; Smits et al., 1998; McKendry et al., 1997; Kremer, 1995; Yamanaka et al., 1998). Soya bean and gram have been described (Beretta et al., 2000; Denten et al., 1998; Su et al., 1998) based on biological properties. Thus an estimation of intermolecular forces with water and proteins in aqueous solution is of interest to protein engineering (Mulder et al., 1839; Leiberg et al., 1841). Soya protein has cholesterol lowering effect in human serum (Carroll et al., 1995, 1980) with lysine and arginine rich soya protein exerting hypocholesterolemic effect (Potter, 1995; Sirtori and Lovati, 2001). Thus the present systems investigate a relevance of thermodynamic and transport functions ρ , V_b and η for conformational states of proteins rationalizing a role of solvent for molecular forces between hydrophilic groups on protein backbone (Nagele et al., 1996; Plazzar et al., 1998; Dhont, 1996; Beretta et al., 1997; Durell et al., 1994). Such values focus size of solvent-protein complexes and torsional forces on Newtonian (Sear, 1999, Neal et al., 1999, Petsev and Vekilov, 2000). An electrostatic, covalent and van der Waals forces of proteins play key role in monitoring the conformationals (Eberstein et al., 1994; Hunter et al., 1907; Kossel, 1928; Park et al., 1992; Aparicio et al., 2003). Hence the studies substantiate the residual forces responsible for reorientation during solutesolvent and solute-cosolute-solvent interactions. Intensive functions ρ^0 , $V_{\phi}^{\ 0}$ and B represent an internal state of protein molecule influence of concentration, and MTX due to a physical basis of interactions with water (Burley et al., 1998, Kollman et al., 1990) in relation to biological importance (Mahadevan and Hall, 1990; Kollman, 1977). A description of functional groups of proteins that monitor

the interactions are explained elsewhere (Stiillinger et al., 1980, Mottonen et al., 1992, Ippolito, 1990). Comprehensively, such interactions of MTX may illustrate an optimization of globular proteins (McPherson et al., 1992; Muschol et al., 1997, 1995; Poon, 1997; Rosenbaum et al., 1996), which has stimu-lated for this work.

MATERIAL AND METHODS

Soya bean and gram were extracted from raw seed powder of soya and gram, respectively, and their purity was checked (David et al., 2000). The MTX (purity 98%, Aldrich), Gp and SBp solutions were prepared, while cleaned bicapillary pyknmometer and viscometer were calibrated with water with $\pm 0.00003/10^3$ kg mol⁻¹ and $\pm 0.00004/0.1$ kg m⁻¹s⁻¹ accuracies, respectively, agreeing with reported values. The solutions were filled in them for density and viscosity, with special attention to prevent an evaporation of solutions. The aqueous BSA, egg albumin and lysozyme were run as controlled system and an agreement with our data given in Table 1. The densities, apparent molar volumes and viscosities of systems are measured and found as a linear function of temperature. The measurements were carried out in a thermo-statically controlled and well-stirred water bath with a temperature accuracy of \pm 0.01°C, read on Beckmann thermometer.

Measurements

Calibration of Pyknometer and viscometer was checked with aqueous NaCl solutions (Mohammad et al., 2002) at 298.15K at a thermal stability of bath better than \pm 0.01°C. A Hewlett-Packard quartz thermometer calibrated with gallium temperature standard measures the bath temperature and an accuracy of concentration of solutions was better than 1 x 10⁵ m. The 0.99705, 0.99565 and 0.99404/10³ kg m³ density of water (Alexander and Manzurola. 1999) at 298.15, 303.15 and 308.15K, respectively, were used. The calibration was repeated immediately before and after each measurement of density and reproducibility was better than 1 x 10³ kg m⁻³. The kinetic correction to energy of viscometer was calculated and found to be 1.8977 x 10⁻⁴, 2.32647 x 10⁻⁵ and 2.32647 x 10⁻⁶ at

Aqueous Methotrexate								
	298.15K	303.15K	308.15K					
m/ µ.mol.kg⁻¹	$\rho \pm /10^3$ kg.m ³	ρ±/10 ³ kg.m ³	$\rho \pm /10^3 kg.m^3$					
50	0.99775±0.00029	0.99613±0.00029	0.99430±0.00029					
100	0.99775±0.00029	0.99614±0.00029	0.99430±0.00029					
200	0.99776±0.00029	0.99614±0.00029	0.99431±0.00029					
400	0.99776±0.00029	0.99615±0.00029	0.99432±0.00029					
Aqueous Gram	protein							
50	1.00055±0.00029	0.99593±0.00029	0.99419±0.00029					
100	1.00059±0.00029	0.99594±0.00029	0.99421±0.00029					
200	1.00067±0.00029	0.99595±0.00029	0.99426±0.00029					
400	1.00082±0.00029	0.99597±0.00029	0.99435±0.00029					
Aqueous Soya	Bean protein							
50	0.99742±0.00029	0.99586±0.00029	0.99409±0.00029					
100	0.99742±0.00029	0.99587±0.00029	0.99410±0.00029					
200	0.99744±0.00029	0.99588±0.00029	0.99412±0.00029					
400	0.99747±0.00029	0.99591±0.00029	0.99414±0.00029					

Table 2. Densities (ρ) of aqueous Methotrexate, Gram and Soya Bean Proteins with uncertainty in each data after $\pm \sigma$ sign at 298.15, 303.15 and 308.15K.

298.15, 303.15 and 308.15K, respectively. It depicts a negligible shear and not able to interfere the natural flow of the solution.

Theoretical

The ρ values were calculated from $\rho = ((W-W_e)/(W_0-W_e))\rho_0 + 0.0012(1-(W-W_e)/(W_0-W_e))$ relation. The ρ solution, ρ_0 solvent and 0.0012×10^3 kg mol⁻¹ air densities, respectively. The (1-(W-W_e)/(W_0-W_e)) is buoyancy correction for air, m molality, W_e, W_0 and W are weights of empty, solvent and solution filled pyknometer, respectively. Errors in ρ data are calculated from equations given below.

The V_{pyk} is pyknometer volume calculated from (W₀-W_e)/ ρ_0 and V_{ϕ} data are computed with ρ from following equation:

 $V_{\phi} = M/\rho + 1000/(\rho_0 - \rho)/\rho_0 \rho m$

The M is molar mass of solute. An uncertainty in $V_{\boldsymbol{\phi}}$ is computed from the equation

$$\sqrt{\left(\frac{W - W_0}{10^{-5}}\right)^2 + \left(\frac{W_e}{10^{-5}}\right)^2} \approx \pm S_n$$

$$\sqrt{\left(\frac{\pm S_n}{W - W_e}\right)^2 + \left(\frac{\pm S_v}{V_{pyk}}\right)^2} = \frac{\Delta\rho}{\rho}$$

$$\sqrt{\left(\frac{W_0 - W_e}{10^{-5}}\right)^2 + \left(\frac{W_e}{10^{-5}}\right)^2} \approx \pm S_v$$

 $V_{\phi} = (1000/m)\Delta\rho/\rho$

The $\Delta \rho = \rho - \rho_0$, the viscosity η is calculated from relation $\eta = \eta_0(\rho, t)/(\rho_0, t_0)$

The t and t₀ flow times and η and η_0 are viscosity of solution and solvent and the η_{rel} (relative viscosity) is calculated from η/η_0 . Like ρ , the errors in η data were obtained.

RESULTS AND DISCUSSION

The ρ , V_{ϕ} and η data are least square fitted against m for values at infinite dilution referred to as limiting values) from the following equation:

$$\rho = \rho^0 + S_d m$$

The ρ^0 is limiting density and S_d slopes. The V_{ϕ} is fitted in equation

$$V_{\phi} = V_{\phi}^{0} + S_{v} m + S_{v}^{*} m^{2}$$

The V_{ϕ}^{0} is limiting constant, S_{v} and S_{v}^{*} are slopes. The V_{ϕ}^{0} focuses solute-solvent and the S_{v} and S_{v}^{*} the solute-solute and charge-charge interactions, respectively. The η_{rel} is fitted to extended Jones-Dole equation (Singh et al., 2005) given below:

$$(\eta_{rel}-1)/m = B + Dm + Cm^2$$

The B (kg mol⁻¹) Jones-Dole coefficient, D (kg mol⁻¹)² and C (kg mol⁻¹)³ are slopes measuring heteromolecular interactions. Tables 2-4 and 7-12 contains primary data,

Table 3. Aparent molal volumes (V_{ϕ}) of aqueous Methotrexate, Gram and Soya bean proteins with uncertainty in each data after ± σ sign at 298.15, 303.15 and 308.15K.

Aqueous Methotrexate								
	V _ø ±σ/10 ⁶ m³mol⁻¹	$V_{\phi} \pm \sigma / 10^6 m^3 mol^{-1}$	V _e ± σ/ 10 ⁶ m ³ mol ⁻¹					
m/ μ.mol.kg⁻¹	298.15K	303.15K	308.15K					
50	-13594.80±0.00004	-9317.01±0.00002	-4724.14±0.00001					
100	-6597.43±0.00007	-4459.39±0.00005	-2167.22±0.00003					
200	-3094.16±0.00014	-2030.58±0.00001	-888.77±0.00005					
400	-1336.79±0.00029	-808.12±0.00002	-249.54±0.00011					
Aqueous Gram pro	tein							
50	-4223.87±0.00017	60632.85±0.00001	63374.60±0.00001					
100	30478.13±0.00035	63391.05±0.00003	64640.12±0.00002					
200	47825.32±0.00072	64768.4±0.00006	65270.54±0.00004					
400	56491.30±0.00151	65456.46±0.00013	65581.06±0.00013					
Aqueous Soya Bear	n protein							
50	73327.33±0.00002	76565.11±0.00001	140635.20±0.000003					
100	76948.43±0.00004	78632.51±0.00002	110733.10±0.000006					
200	78758.15±0.00008	79663.07±0.00005	95781.22±0.000015					
400	79661.35±0.00017	80177.87±0.0001	88303.50±0.000042					

Table 4. Viscosity (η) of aqueous Methotrexate, Gram and Soya Bean Protein with uncertainty in each data after $\pm \sigma$ sign, cp= 10g cm⁻¹ s⁻¹, at 298.15, 303.15 and 308.15K.

Aqueous Methotrexate								
m/µ.mol.kg ⁻¹	298.15K	303.15K	308.15K					
	η±σ/cp.	η±σ/cp.	η±σ/cp					
50	0.9096±0.0033	0.8113±0.0024	0.7290±0.0016					
100	0.9088±0.0015	0.8106±0.0010	0.7284±0.0006					
200	0.9072±0.0006	0.8093±0.0004	0.7277±0.0003					
400	0.9040±0.0002	0.8065±0.0002	0.7274±0.0002					
Aqueous Gra	Aqueous Gram protein							
50	1.0017±0.0239	0.8697±0.0170	0.7364±0.0037					
100	0.9976±0.0114	0.8690±0.0083	0.7357±0.0016					
200	0.9973±0.0056	0.8676±0.0040	0.7343±0.0006					
400	0.9967±0.0027	0.8646±0.0018	0.7314±0.0002					
	Aque	ous Soya Bean protein						
50	1.0533±0.0355	0.8779±0.0191	0.7393±0.0044					
100	1.0525±0.0176	0.8778±0.0094	0.7383±0.0020					
200	1.0510±0.0086	0.8775±0.0046	0.7364±0.0008					
400	1.0480±0.0041	0.8770±0.0022	0.7328±0.0003					

13-15 the regression constants, 5 and 6 regression constants of systems.

MTX > Gp > SBp sequence of ρ^0 values for binary systems at each K with 0.00162 and 0.00184 decreases for MTX, the 0.00157 and 0.00459 for Gp, and 0.00459 and 0.00175/10³kg.m⁻³ for SBp from 298.15 to 303.15K and from latter to 308.15K (Table 5), respectively. It depicts a generation of higher internal pressure on the

solutions due to stronger heteromolecular forces in sequence of MTX > Gp > SBp. The higher ρ^0 values than of water at each K conclude their stronger hydrogen bond formation with water. Firstly, the hydrogen bonded water is broken and interact strongly with MTX and proteins; thus are referred to as water structure breaker. It reveals stronger MTX structural interactions than those of Gp and weaker of the SBp with water, due to its one –CONH-

Figure. 1a. Protein-water-Methotrexate interaction.

(amide) and two -COO⁻ (carboxylic) groups at one (Figure 1) and two $-NH_2$ (amino) at another ends cause such behaviour. Secondly as compared to SBp, the Gp exert much internal pressure on water due to stronger structure breaker. As compared to MTX the hydrophilic interactions of the proteins are weaker than those of their hydrophobic. It infers that the amino acid residues in Gp are more polar with larger activities than of SBp and MTX. The Gp>SBp>MTX order of S_d values at each K, comparatively show a larger activity of Gp with concentration predicting Gp-Gp intermolecular interactions. The S_d values of Gp signify larger reorientation structure followed by destabilization with composition and conformational states. Such arrangement in their structures favors stronger Gp-Gp hydrophobic intermolecular interactions gene-

rating much of the internal pressure on the solutions. The Gp-Gp interactions weaken electrostiction of the water, causing mild water-protein interactions. Secondly such electrostatic changes could favor a cage formation around the Gp molecule applying larger internal pressure facilitating stronger hydrophobic interaction. Strategically such intermolecular engineering of the proteins is of biotechnological and biophysical use in regards to medium and the physical conditions. The 0.65916 and 0.35135, 0.00191 and 0.00913, and 0.00781 and 0.01851/10⁻¹kg².m⁻¹mol⁻¹ variations in S_d values for Gp, SBp and MTX, respectively, for each 5°C elucidate mild effect of concentration on interactions with temperature. The lower S_d values for MTX prove weaker effect of compositions on MTX-MTX interactions at each K, con-

Figure 1b. Protein-water-Methotrexate interaction.

Figure 1c. Methotrexate-Water interaction

cluding that the hydrated MTX molecules may not further destabilize the water inferring stabilization of water structure breaking action. The V₀⁰ values for binary aqueous MTX are negative and for Gp and SBp the positive. Its SBp>Gp>MTX order is reverse to ρ^0 values supporting the stronger MTX intermolecular interactions with water. The MTX>Gp>SBp order of S_v is noted with values in a range of 2x10⁷ and 4x10⁷/10⁻⁶ kg m³ mol⁻² resolving a larger expansion in size of the conformatory states but the ρ^0 failed to resolve such changes. This motivated us to determine the V₀⁰ values and mark a cage formation of larger size around protein molecules. Although it is con-

tradictory in relation to the ρ^0 values, due to intermolecular force between MTX and water, and water itself, but such changes in size of the molecules are attributed to change in dipole moment. Larger expansion in SBp volume with composition at each K confirms slightly stronger volumetric interactions with weakening of hydrophobic forces as compared to other systems. An expansion in V_{ϕ}^0 predicts unfolding of tertiary structure with larger entropy. The V_{ϕ} values are fitted in polynomial against concentration predicting different intermolecular interactions around lower, mediocre and higher concentrations. The MTX>Gp>SBp and SBp>Gp>MTX

Aqueous	Aqueous Methotrexate									
T/K	$\rho/10^{3}$ kg.m ⁻³	S _d /10 ⁻¹ kg ² m ⁻¹ mol ⁻¹	V _o ⁰ /10 ⁶ m ³ mol ⁻¹	S _v m/10 ³ kgm ³ mol ⁻²	S _v *m2/kg ² m ³ mol ⁻³					
298.15	0.99775	0.03982	-17970	1×10 ⁸	-2×10 ¹¹					
303.15	0.99613	0.04763	-12353	8×10 ⁷	-1×10 ¹¹					
308.15	0.99429	0.06614	-6322.2	4×10 ⁷	-7×10 ¹¹					
Aqueous	Gram protei	n								
298.15	1.00051	0.77928	-25912	6×10 ⁸	-9×10 ¹¹					
303.15	0.99592	0.12012	58910	5×10 ⁷	-7×10 ¹⁰					
308.15	0.99417	0.47147	62584	2×10 ⁷	-3×10 ¹⁰					
Aqueous	Soya Bean p	protein								
298.15	0.99741	0.13712	71064	6×10 ⁷	-1×10 ¹¹					
303.15	0.99584	0.13521	75275	3×10 ⁷	-5×10 ¹⁰					
308.15	0.99404	0.14434	159324	-5×10 ⁸	8×10 ¹¹					

Table 5. Parameters in the equation $\rho = \rho^0 + S_d m$ and $V_{\phi}^0 = V_{\phi}^0 + S_v m + S_v m^2$ of aqueous Methotrexate, Gram and Soya Bean Proteins at 298.15, 303.15 and 308.15K.

Table 6: Regression constants of $(\eta_r - 1)/m$ of aqueous Methotrexate, Gram and Soya Bean proteins at 298.15, 303.15 and 308.15K.

Aqueous Methotrexate								
T/K	B/10 ⁶ kg mol ⁻¹	D/(10 ⁶ kg mol ^{⁻1}) ²	C/(10 ⁶ kg mol ⁻¹) ³					
298.15	472.8750	-3093040.32260	4976612903.22580					
303.15	351.7500	-2319435.48390	3727419354.83880					
308.15	239.8333	-1607774.19350	2637634408.60210					
Aqueous Gra	m protein							
298.15	3174.0833	-20324338.70970	32910215053.76330					
303.15	2268.3333	-14405741.93550	23176344086.02140					
308.15	512.8750	-3357685.48390	5402419354.83870					
Aqueous Soy	a bean protein							
298.15	4693.5833	-29685209.67740	47765053763.44070					
303.15	2531.7917	-15972508.06450	25698655913.97830					
308.15	617.1667	-4053258.06450	6523655913.97850					

orders of S_v and S_v values are reverse of each other denoting stronger intermolecular interactions for higher compositions. The latter predicts more opening of tertiary structures. The S_v of SBp for higher concentration show larger expansion and the MTX the least with values ranging from $2x10^7$ to $55x10^7/10^{-6}$ kg² m³ mol⁻³.

The SBp>Gp>MTX sequence for B values show larger decrease with K with the values between 111.9167 and 2161.7916/ 10^{-3} kg mol⁻¹. From 2161.7916 to 1914.6250/ 10^{-3} kg mol⁻¹ decrease in B values with K is noted for SBp proving a larger hydrodynamic volume than of others due to an effective conformational structure. It shows larger dependence of the stability of hydrodynamic size of their hydrated complex on thermal energy. The B values for MTX are lower by 2701.2083, 1916.5833, 273.0417 and 1519.5000, 263.4584, 104.2917/ 10^{-3} kg mol⁻¹ than those of SBp and Gp at three temperatures. It proves weaker Newtonian force on vis-

cous flow due to weakly stable water-MTX hydrogen bonding. But the B values of SBp are higher than of Gp by 1519.5000, 263.4584 and $104.2917/10^{-3}$ kg mol⁻¹ at each K (Table 6) with reverse behavior of MTX.

Ternary systems

The ρ^0 values of proteins for aqueous MTX are found higher than those of the aqueous (Table 13) by 0.00079 to 0.00255 and 0.00090 to 0.00182/10³ kg m⁻³ at each K. The MTX asserts an additional internal pressure in solutions, credited to stronger protein-MTX interaction rather than water-proteins (Figure 1a). Here, the MTX with polar parts, foster the water structure breaking action of proteins weakening hydrogen bonds of water facilitating a cage formation of it and MTX around the proteins (Figure 1b). The hydrated MTX may be fitted into the interstitiary spaces of the β pleated sheets and α helix of the protein to channe-

0.0004m									
	298.15K		303.	15K	30)8.15K			
m/µ.mol.kg⁻¹	$\rho/10^3$ kg.m ³	±σ	$\rho/10^3$ kg.m ³	$\pm \sigma$	$\rho/10^3$ kg.m ³	±σ			
50	0.99832	±0.0002	0.99712	±0.0002	0.99569	±0.0002			
100	0.99833	±0.0002	0.99736	±0.0002	0.99594	±0.0002			
200	0.99834	±0.0002	0.99785	±0.0002	0.99645	±0.0002			
400	0.99837	±0.0002	0.99882	±0.0002	0.99747	±0.0002			
0.0002m									
50	0.99786	±0.0002	0.99711	±0.0002	0.99567	±0.0002			
100	0.99801	±0.0002	0.99735	±0.0002	0.99593	±0.0002			
200	0.99836	±0.0002	0.99783	±0.0002	0.99643	±0.0002			
400	0.99936	±0.0002	0.9988	±0.0002	0.99745	±0.0002			
0.0001m									
50	0.99789	±0.0002	0.99663	±0.0002	0.99431	±0.0002			
100	0.99797	±0.0002	0.99687	±0.0002	0.99456	±0.0002			
200	0.99813	±0.0002	0.99736	±0.0002	0.99507	±0.0002			
400	0.99844	±0.0002	0.99833	±0.0002	0.99609	±0.0002			
0.00005m									
50	0.99777	±0.0002	0.99662	±0.0002	0.99237	±0.0002			
100	0.99786	±0.0002	0.99686	±0.0002	0.99263	±0.0002			
200	0.99812	±0.0002	0.99735	±0.0002	0.99314	±0.0002			
400	0.99842	±0.0002	0.99832	±0.0002	0.99415	±0.0002			

Table 7. Densities (ρ) of Soya Bean protein in aqueous Methotrexate system with uncertainty in each data given $\pm \sigma$ sign at 298.15, 303.15 and 308.15K.

Table 8. Apparent molal volumes (V_{ϕ}) of Soya Bean protein in aqueous Methotrexate system with uncertainty in each data given $\pm \sigma$ sign at 298.15, 303.15 and 308.15K.

298.15K(0.0004m)			303.15	К	308.15K		
m/μ.mol.kg ⁻¹	V _∲ /10 ⁶ m ³ mol ⁻¹	±σ	V _∲ /10 ⁶ m ³ mol ⁻¹	±σ	V _∲ /10 ⁶ m ³ mol ⁻¹	±σ	
50	69467.23	±0.00003	61193.10	±0.00005	53175.17	±0.00007	
100	74959.04	±0.00006	68495.60	±0.00012	64421.99	±0.00016	
200	77720.15	±0.00012	72119.12	±0.00034	70016.37	±0.00043	
400	79111.90	±0.00024	73875.50	±0.00107	72755.63	±0.00126	
0.0002m							
50	78721.13	±0.00001	61179.72	±0.00005	53281.59	±0.00007	
100	78156.03	±0.00002	68526.27	±0.00012	64512.82	±0.00016	
200	77622.75	±0.00012	72196.67	±0.00034	70070.62	±0.00043	
400	76547.72	±0.00064	73915.76	±0.00106	72783.47	±0.00126	
0.0001m							
50	77832.10	±0.00001	70979.45	±0.00002	80827.13	±0.00002	
100	78451.95	±0.00002	73406.34	±0.00007	78296.99	±0.00003	
200	78752.49	±0.00008	74592.02	±0.00024	77002.83	±0.00015	
400	78884.01	±0.00028	75129.44	±0.00088	76297.65	±0.00072	
0.00005m							
50	80239.01	±0.00001	70924.74	±0.00002	120216.60	±0.0001	
100	79522.31	±0.00001	73379.26	±0.00007	98060.54	±0.00017	
200	78803.34	±0.00007	74578.76	±0.00024	86953.30	±0.00023	
400	78952.34	±0.00027	75123.08	±0.00088	81341.36	±0.00006	

298.15K	0.00	04m	0.0	002m	0.0001m		0.0000)5m
m/µ.mol.kg ⁻¹	η/ср	±σ/cp	η/ cp	±σ/cp	η/ cp	±σ/cp	η/ ср	±σ/cp
50	1.0424	0.0046	1.0384	0.0038	1.0366	0.0035	1.0357	0.0033
100	1.0409	0.0021	1.0369	0.0018	1.0352	0.0016	1.0343	0.0015
200	1.0378	0.0009	1.0343	0.0007	1.0323	0.0006	1.0314	0.0006
400	1.0317	0.0003	1.0291	0.0002	1.0265	0.0002	1.0257	0.0001
303.15K								
50	1.0381	0.0047	1.0346	0.0040	1.0323	0.0036	1.0315	0.0034
100	1.0372	0.0022	1.0337	0.0019	1.0314	0.0017	1.0306	0.0016
200	1.0353	0.0010	1.0317	0.0008	1.0295	0.0007	1.0287	0.0007
400	1.0313	0.0004	1.0277	0.0003	1.0255	0.0002	1.0247	0.0002
308.15K								
50	1.0301	0.0040	1.0298	0.0039	1.0276	0.0035	1.0247	0.0029
100	1.0291	0.0019	1.0288	0.0018	1.0265	0.0016	1.0238	0.0013
200	1.0280	0.0008	1.0276	0.0008	1.0255	0.0007	1.0227	0.0006
400	1.0272	0.0003	1.0269	0.0003	1.0247	0.0002	1.0219	0.0002

Table 9. Viscosity (η) of Soya Bean protein in aqueous Methotrexate system with uncertainty in each data given $\pm \sigma$ sign at 298.15, 303.15 and 308.15K.

Table 10. Densities (ρ) of Gram protein in aqueous Methotrexate system with uncertainty in each data given $\pm \sigma$ sign at 298.15, 303.15 and 308.15K.

0.0004m										
	298.15K		303	.15K	308	308.15K				
m/µ.mol.kg ⁻¹	$\rho/10^{3}$ kg.m ⁻³	$\pm \sigma/10^{3}$ kg.m ⁻³	$\rho/10^{3}$ kg.m ⁻³ ± $\sigma/10^{3}$ kg.m ⁻³ ρ		ρ / 10 ³ kg.m ⁻³	$\pm \sigma/10^{3}$ kg.m ⁻³				
50	0.99855	± 0.0002	0.99768	± 0.0002	0.99660	± 0.0002				
100	0.99855	± 0.0002	0.99768	± 0.0002	0.99660	± 0.0002				
200	0.99857	± 0.0002	0.99770	± 0.0002	0.99662	± 0.0002				
400	0.99859	± 0.0002	0.99772	± 0.0002	0.99664	± 0.0002				
0.0002m										
50	0.99855	± 0.0002	0.99767	± 0.0002	0.99660	± 0.0002				
100	0.99856	± 0.0002	0.99768	± 0.0002	0.99660	± 0.0002				
200	0.99857	± 0.0002	0.99769	± 0.0002	0.99662	± 0.0002				
400	0.99860	± 0.0002	0.99772	± 0.0002	0.99664	± 0.0002				
0.0001m										
50	0.99854	± 0.0002	0.99768	± 0.0002	0.99661	± 0.0002				
100	0.99855	± 0.0002	0.99768	± 0.0002	0.99662	± 0.0002				
200	0.99856	± 0.0002	0.99770	± 0.0002	0.99663	± 0.0002				
400	0.99859	± 0.0002	0.99772	± 0.0002	0.99666	± 0.0002				
0.00005m										
50	0.99854	± 0.0002	0.99767	± 0.0002	0.99660	± 0.0002				
100	0.99855	± 0.0002	0.99768	± 0.0002	0.99660	± 0.0002				
200	0.99857	± 0.0002	0.99769	± 0.0002	0.99662	± 0.0002				
400	0.99859	± 0.0002	0.99772	± 0.0002	0.99665	± 0.0002				

lize the residual force that shrinks the molecules. Secondly MTX might be causing stronger hydrophilic interaction and hydrophobic with proteins making sandwiched between them or their hydrated complex. In either way it is reorienting and modifying structures and activity of the proteins hampering the hydrophobic force.

0.0004m											
	298.15K		303.1	5K	308.1	5K					
m/µ.mol.kg ⁻¹	V _o /10 ⁶ m ³ mol ⁻¹	±σ	V _e /10 ⁶ m ³ mol ⁻¹	±σ	V _e /10 ⁶ m ³ mol ⁻¹	±σ					
50	64840.81	± 0.00021	49984.15	± 0.00017	34855.88	±0.00012					
100	72657.40	± 0.00043	65264.16	± 0.00034	57743.69	± 0.00023					
200	76566.00	± 0.00085	72904.47	± 0.00068	69187.91	± 0.00046					
400	78519.20	± 0.00172	76723.54	± 0.00137	74908.92	± 0.00094					
0.0002m											
50	64748.66	± 0.00021	49864.63	± 0.00017	34634.27	± 0.00012					
100	72611.14	± 0.00043	65204.56	± 0.00034	57632.85	± 0.00023					
200	76542.68	± 0.00086	72874.84	± 0.00068	69132.44	± 0.00046					
400	78507.36	±0.00172	76708.88	± 0.00137	74881.15	± 0.00094					
0.0001m											
50	64731.96	± 0.00021	49795.35	± 0.00017	34177.78	± 0.00012					
100	72603.15	± 0.00043	65169.79	± 0.00034	57404.10	± 0.00023					
200	76539.06	± 0.00085	72857.31	± 0.00068	69017.56	± 0.00047					
400	78505.92	±0.00172	76699.98	± 0.00137	74823.20	± 0.00095					
0.00005m											
50	64670.95	± 0.00021	49717.46	± 0.00017	34412.81	± 0.00012					
100	72572.53	± 0.00043	65131.09	± 0.00034	57522.08	± 0.00023					
200	76523.62	± 0.00085	72838.21	± 0.00068	69077.02	± 0.00047					
400	78498.08	± 0.00172	76690.68	± 0.00137	74853.40	0.00094					

Table 11. Apparent molal volumes (V_{ϕ}) of Gram protein in aqueous Methotrexate system with uncertainty in each data given $\pm \sigma$ sign at 298.15, 303.15 and 308.15K.

Table 12. Viscosity (η) of Gram protein in aqueous Methotrexate system with uncertainty in each data given $\pm \sigma$ sign at 298.15, 303.15 and 308.15K.

m/µ.molkg⁻¹	0.0004m		0.00	02m	0.0001m		0.00005m	
298.15K	η/cp	±σ/cp	η/ср	±σ/cp	η/ср	±σ/cp	η/ср	±σ/cp
50	1.0421	0.0035	1.0386	0.0033	1.0369	0.0046	1.0357	0.0039
100	1.0406	0.0016	1.0370	0.0015	1.0354	0.0021	1.0342	0.0018
200	1.0375	0.0006	1.0340	0.0006	1.0324	0.0009	1.0311	0.0007
400	1.0313	0.0002	1.0279	0.0001	1.0262	0.0003	1.0251	0.0002
303.15K								
50	1.0379	0.0036	1.0345	0.0034	1.0329	0.0047	1.0316	0.0040
100	1.0365	0.0017	1.0331	0.0016	1.0314	0.0022	1.0302	0.0018
200	1.0335	0.0007	1.0301	0.0007	1.0285	0.0009	1.0273	0.0007
400	1.0274	0.0002	1.0241	0.0002	1.0225	0.0003	1.0213	0.0002
308.15K								
50	1.0300	0.0035	1.0298	0.0029	1.0290	0.0040	1.0277	0.0039
100	1.0285	0.0016	1.0283	0.0013	1.0275	0.0018	1.0261	0.0018
200	1.0263	0.0007	1.0261	0.0006	1.0253	0.0007	1.0240	0.0007
400	1.0235	0.0002	1.0233	0.0002	1.0225	0.0002	1.0212	0.0002

It could affect normal growth based processes of the life; thus it ruptures the cancerous cells of the body curing the cancer patient. Gp > SBp sequence of ρ^0 values in MTX at each K with 0.00086 to 3.29044/10³ kg m⁻³ lowering in values (Table 13), reveals a comparatively stronger Gp-MTX interactions with larger activity of the Gp along with stronger concentration effect. Thus water with MTX

favors cage formation around Gp with stronger molecular forces due to hydrophobic interactions of Gp with MTX and weaker with SBp. The Gp causes stronger cohesive forces that increase with composition with higher ρ^0 values in MTX. The ρ^0 values of Gp and SBp systems decrease with composition and K. It elucidates an increase in residual forces attributed to solute-solute interac-

0.0004m							
Regr	ession constants of	Gram protein	Regression constants of Soya Bean protein				
T/K	ρ ⁰ /10 ³ kg.m ⁻³	S _d /10 ⁻¹ kg ² m ⁻¹ mol ⁻¹	ρ ⁰ / 10 ³ kg.m ⁻³	S _d /10 ⁻¹ kg ² m ⁻¹ mol ⁻¹			
298.15	0.99854	0.12174	0.99831	0.13913			
303.15	0.99767	0.12174	0.99688	4.86087			
308.15	0.99659	0.12174	0.99543	5.09043			
0.0002m							
298.15	0.99854	0.13913	0.99758	4.33913			
303.15	0.99766	0.13913	0.99687	4.82957			
308.15	0.99659	0.12174	0.99542	5.07826			
0.0001m							
298.15	0.99853	0.13913	0.99781	1.57043			
303.15	0.99767	0.12174	0.99639	4.86087			
308.15	0.99660	0.13913	0.99405	5.09043			
0.0005m							
298.15	0.99854	0.14087	0.99769 1.87304				
303.15	0.99766	0.13913	0.99638	4.86087			
308.15	0.99659	0.15130	0.99212	5.08000			

Table 13. The regression constants of ρ of proteins in aqueous Methotrexate system. The limiting density, ρ^0/g cm⁻³, slope constants S_d/10³g²cm⁻³mol⁻¹ at 298.15, 303.15 and 308.15K.

Table 14. The regression constants of V_{ϕ} of proteins in aqueous Methotrexate system.

0.0004m								
Regression constants of Gram protein				Regression constants of Soya protein				
T/K	V _{\$\$} ⁰ /10 ⁶ m ³ mol ⁻¹	S _v m/10 ³ kgm ³ m ol ⁻²	S _v *m2/kg ² m ³ m ol ⁻³	V _∲ ⁰ /10 ⁶ m ³ mol ⁻¹	S _v m/10 ³ kgm ³ m ol ⁻²	S _v *m2/kg ² m ³ m ol ⁻³		
298.15	59955	1E+08	-2E+11	66028	9000000	-1E+11		
303.15	40434	3E+08	-4E+11	56636	1000000	-2E+11		
308.15	20551	4E+08	-6E+11	46153	20000000	-3E+11		
0.0002m								
298.15	59834	1E+08	-2E+11	79086	-9000000	-6000000		
303.15	40277	3E+08	-4E+11	56570	1E+08	-2E+11		
308.15	20260	4E+08	-6E+11	46285	2E+08	-3E+11		
0.0001m								
298.15	59812	1E+08	-2E+11	77447	1000000	-2E+10		
303.15	40186	3E+08	-4E+11	69470	4000000	-7E+10		
308.15	19661	4E+08	-6E+11	82416	4000000	-7E+10		
0.0005m								
298.15	59732	1E+08	-2E+11	80982	-2E+07	3E+10		
303.15	40084	3E+08	-4E+11	69398	4000000	-7E+10		
308.15	19969	4E+08	-6E+11	134071	4E+08	6E+10		

tions but decrease with thermal energy indicating MTX, Gp and SBp stronger van der Waals forces (Papanagopoulos and Dondos, 1996; Tewari and Srivastav, 1992) with broken water. The higher densities illustrate stronger heteromolecular forces among MTX, protein and water increasing with concentrations. Probably the side effects of MTX in body could be rationalized due to the MTX- MTX interactions reported by Monahan et al. (1996, 1997). The possible sites of MTX molecule due to MTX-MTX interaction may change the pharmacokinetics including (1) gastrointestinal absorption, (2) Gp and SBp binding, (3) stronger MTX-MTX, Gp-Gp and SBp-SBp interactions. It could be due to the stronger electrostatic forces of pep-tide bonds due to weaker hydrogen bond-

Sova Bean protein in aqueous Methotrexate							
T/K	0.0004						
	B/kg mol ⁻¹	D/(kg mol ⁻¹) ²	C/(kg mol ⁻¹) ³				
298.15	639.00000	-4102000.00000	660000000.00000				
303.15	646.37500	-4085459.67740	6573387096.77410				
308.15	540.87500	3467040.32260	5576612903.22580				
0.0002	0.0002						
298.15	532.83330	-3415387.09680	5502150537.63440				
303.15	554.50000	-3506540.30710	5641935483.87090				
308.15	541.41670	-3424725.00650	5512365591.39780				
0.0001	0.0001						
298.15	489.08330	-3148209.67740	5065053763.44080				
303.15	496.75000	-3142661.29030	5056451612.90320				
308.15	483.25000	-3053532.25810	4911290322.58060				
0.00005							
298.15	465.08330	-2992919.35480	4813440860.21510				
303.15	475.75000	-3010338.70970	4843548387.09670				
308.15	410.08330	-2589629.03230	4161827956.98920				
Gram protei	n in aqueous Methotrexate	9					
T/K		0.0004					
298.15	631.08330	-4051500.00000	65166666666666				
303.15	644.20830	-4134201.61290	6649731182.79570				
308.15	549.75000	-3539629.03230	5695161290.32250				
0.0002	0.0002						
298.15	539.25000	-3473467.74190	5588709677.41930				
303.15	555.00000	-3572709.67740	5748387096.77410				
308.15	544.50000	-3506548.38710	5641935483.87090				
0.0001							
298.15	497.20830	-3207943.54840	5159408602.15050				
303.15	513.00000	-3308064.51610	5322580645.16130				
308.15	523.50000	-3374225.80650	5429032258.06450				
0.00005							
298.15	465.75000	-3010338.70970	48435483387.09680				
303.15	481.50000	-3109580.64520	5003225806.45160				
308.15	489.37500	-3159201.61290	5083064516.12900				

Table 15. The regression constants of $(\eta_r - 1)/m$ of proteins in aqueous Methotrexate system.

bonding with water against water-water molecules. Such interac-tions play key role in chemical denaturation and conform-ational state of proteins and contribution of MTX as is estimated with the present set of thermodynamic and transport properties. The SBp>Gp order of V_{ϕ}^{0} values in MTX at each K indicates that the SBp is comparatively less packed. Thus its packing might be associated with the number of amino group and nature of amino acids of proteins. The ρ^{0} values in MTX could be rationalized to strengthening of the protein-water interactions by MTX due to their stronger binding with each other exerting higher internal pressure. With MTX concentration, the ρ^{0} of proteins decreases (Tables 7 and 10) weakening electrostatic forces between water and proteins. For

higher MTX concentrations the ρ^0 values remains almost same depicting stabilizing effect on protein conformational states that overcomes the influence of protein concentrations. Thus stronger water-MTX-protein interactions exist facilitating their solvation, where MTX concentrations cause unrest increasing entropy leading to the unfolding of proteins. For SBp, an increase in MTX composition seems to weaken the intermolecular forces between protein and water as MTX decreases the electrorestriction of water by increasing MTX- water interactions (Figure 1c). The van der Waals forces operating among MTX, protein and water (Figure 1b) does monitor hydrophilic as well as hydrophobic interactions. The action of MTX for concentrations and temperature remains similar for Gp (Table 13). Their V₀⁰ (Marshall, 1993; Pandey et al., 1987) in MTX with concentrations and temperature decrease while the S_v and S_v increase. It infers generation of slightly stronger intermolecular forces with stabilization of hydrophobic forces amounting to their restriction of rearrangement of bonds around higher concentrations. Their $V_{\varphi}^{\ 0}$ values with MTX concentration decrease (Table 14) with a close agreement with the observations of (Marsh et al., 1995). Thus MTX develops higher internal pressure by strengthening heteromolecular forces shrinking the volume. Such action mechanism of MTX matches the exertion effect caused by nonsteroidal anti-inflammatory drugs reported (Dewan et al., 1998). Molecular ion of MTX causes stronger dipole-dipole and dipole-induced-dipole with polyions (proteins) interactions due to hydrogen bonding. Due to the larger sizes of the molecular and polyions, a weak London or dispersive molecular forces operate in solutions. The compositions enhance the magnitude of their contributions due to various types of interactions and temperatures. Critically these effects derived from the S_v and S_v^* values are positive and negative, respectively and show similarity with organic molecules in ethanol systems (Parmar et al., 2004; Fort, 1966).

The SBp>Gp sequence of B values in MTX (Table 15) with 7.9167 to 79.2917/kg.mol⁻¹ decreases at each K is lower than of aqueous proteins by 37.0000 to 4024.5833/kg.mol⁻¹ and predicts stronger influence of MTX on their hydrodynamic sphere. In this context the Gp is seen to be mild water structure breaker while SBp slightly strengthen the intermolecular forces. Such behaviors of them could be attributed to the torsional forces in complexes due to their geometry. Notably the n values for SBp and Gp are higher in MTX than in water proving protein-protein interaction as hindrance to the laminar flow causing stronger tortional forces (Tables 4, 9 and 12). The stronger intermolecular force on viscous flow causes stronger protein interactions with larger cohesive forces. This depicts that the cage model remains very effective and polyvalent polyions of proteins develop the hydration sphere of larger size. The B values are found higher (Table 15). The B values of SBp and Gp are lower in aqueous MTX than those of in water, it prove disruption of the cage model developing smaller sized hydration sphere due to the weakening of solutecosolute-solvent interactions by Newtonian flow. Due to a large hydrophobic part in proteins and the possible dominance of the hydrophobic and hydrohpilic groups, their interactions in MTX are expected to produce lower B values as compared to those in water. The positive B values denote a net structure-promoting tendency of MTX, also the MTX, SBp and Gp produce positive dB/dT values which are reported to be structure breakers in MTX, while in aqueous behave as structure maker. For aqueous proteins a slight decrease in the B values with K, denotes the thermal denaturation and a negligible decrease in B values in MTX, shows less denaturation.

Thus the MTX bears with the thermal changes proteins structure at higher temperatures as is reported elsewhere (Nishida et al., 2002, 2001; Ramesh et al., 1992; Shitara et al., 2003).

Conclusion

The studies substantiate the naturally occuring proteinsanticancer drug interactions focusing a drug phamacokinetics and dynamics. Also the impact of composition and thermal changes on the solute-solvent and solutecosolute-solvent interactions denoted with ρ^0 , V_{ϕ}^0 and B functions. The V_{ϕ}^0 and slope values of proteins demonstrate that Gp casts stronger intra and intermolecular forces shrinking the molecule to a lower volume. The higher and lower S_v and S_v values for SBp in MTX prove that SBp-SBp interaction becomes stronger than that of Gp-Gp and higher value of slope proves stronger pairwise interaction.

ACKNOWLEDGEMENT

Authors are thankful to UGC, Govt. of India, New Delhi, for financial support and Mr. Ashok Kumar Yadav (Indian Army), for moral support.

REFERENCES

- Aparicio F, Ireta J, Rojo A, Escobar L, Cedillo A, Galvan M (2003). On the existence of electronic states confined by charged groups in proteins. J. Phys. Chem. 107: 1692-1697.
- Baggott JE, Morgan SL, Ha TS, Alarcon GS (1993). Antifolates in rheumatoid arthritis: a hypothetical mechanism of action. Clin Exp Rheumatol. 11(suppl. 8): S101–105.
- Barankiewicz J, Jimenez J, Uyesaka J, Gruber HE (1991). Regulation of adenosine concentration by acadesine (AICA-Riboside) in human B-lymphoblasts. Adv Exp Med Biol. 309A: 275-278.
- Beretta S, Chirico D, Asodio D, Baldini GJ (1997). Photon Correlation Spectroscopy of interacting and dissociating Hemoglobin, J. Chem. Phys. 106: 8427-8435
- Beretta S, Chirico G, Baldini G (2000). Short-range interactions of globular. proteins at high ionic strengths. Macromolecules. 33: 8663-8670.
- Bookbinder SA, Espinoza LR, Fenske NA, Germain BF (1984). Methotrexate: its use in the rheumatic diseases. Clin. Exp. Rheumatol. 2: 185-193.
- Burley SK, Petsko GA (1998). Aromatic-aromatic interactions in and around alpha helices. Adv. Protein Chem. 39: 125-189.
- Carroll KK, Kurowska EM (1995). Soya consumption and cholesterol reduction: review of animal and human studies. J. Nutro. 125: 594S-597S.
- Cronstein BN, Eberle MA, Gruber HE, Levin RI (1991). Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA. 88: 2441–2445.
- Cronstein BN, Naime D, Ostad E (1993). The anti-inflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest. 92: 2675-2682.
- David LN, Michael MC (2000). Lehninger principles of biochemistry.
- Dhont JKG (1996). An Introduction to Dynamics of Colloids, Elsevier: Amsterdam.

- Dolhain RJ, Tak PP, Dijkmans BA, De Kuiper PI (1998). Methotrexate reduces inflammatory cell numbers, expression of monokines and of adhesion molecules in synovial tissue of patients with rheumatoid arthritis. Br J. Rheumatol. 37: 502–508.
- Durell SR, Brooks BR, Ben-Naim A (1994). Solvent-Induced Forces Between Two Hydrophilic Groups. J. Phys. Chem. 98: 2198-2202.
- Eberstein W, Georgalis Y, Saenger W (1994). Molecular interactions in crystallizing lysozyme solutions studied by photon correlation spectroscopy. J. Cryst. Growth. 143: 71-78.
- Farber S, Toch E, Manning-Sears E, Pinkel D (1956). Advances in chemotherapy of cancer in man. In: Greenstein HA, ed. Advances in cancer research. New York: Academic Press. pp. 2–73.
- Fort RT (1996). Volumetric behavior of binary liquid mixtures at a Temperature of 303.15 K. Trans. Farad. Soc. 62: 1112.
- Gao IK, Leins C, Bohlen H, Heilig B (1998). Inhibition of interleukin-8 synthesis by intraarticular methotrexate therapy in patients with rheumatoid arthritis. Z Rheumatol. 57: 95–100.
- Genestier L, Paillot R, Fournel S, Ferraro C (1998). Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J. Clin Invest. 102: 322–328.
- Ippolito JA (1990). Hydrogen bond stereochemistry in protein structure and function. J. Mol. Biol. 215: 457-471.
- Kalsi KK, Smolenski RT, Yacoub MH (1998). Effects of nucleoside transport inhibitors and adenine/ribose supply on ATP concentration and adenosine production in cardiac myocytes. Mol Cell Biochem. 180: 193–199.
- Kollman PA (1977). Noncovalent interactions. Acc. Chem. Res. 10: 365-371.
- Kollman PA, Merz KM (Jr) (1990). Computer modeling of the interactions of complex molecules. Acc. Chem. Res. 23: 246-252.
- Kossel A (1928). Protamines and Histones; Longmans & Co: London.
- Kremer JM (1995). Possible mechanisms of action of methotrexate in patients with rheumatoid arthritis. Br. J. Rheumatol. 34(2): 26-29.
- Mahadevan H, Hall CK (1990). Statistical-mechanical model of protein precipitation by nonionic polymer. Am. Inst. Chem. Eng. J. 36: 517-1528.
- Marshall WL (1993). Volume, electrostriction, and solvation relations along the liquid-vapor critical curve of aqueous sodium chloride solutions. J. Sol. Chem. 22: 539-554.
- McKendry RJ (1997). The remarkable spectrum of methotrexate toxicities. Rheum Dis Clin North Am. 23: 939–954.
- McPherson A (1992). Preparation and Analysis of Protein Crystals; Wiley: New York.
- Mohammad A, Wahab M, Azhar A, Mohammad AM (2002). Volumetric Behavior of Binary Liquid Mixtures at a Temperature of 303.15 K. Bull. Korean Chem. Soc. 23: 959-956.
- Morabito L, Montesinos MC, Schreibman DM, Balter L (1998). Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5'-nucleotidase-mediated conversion of adenine nucleotides. J. Clin. Invest. 101: 295–300.
- Morgan SL, Baggott JE, Lee JY, Alarcon GS (1998). Folic acid supplementation prevents deficient blood folate levels and hyperhomocysteinemia during longterm, low dose methotrexate therapy for rheumatoid arthritis: implications for cardiovascular disease prevention. J. Rheumatol. 25: 441–416.
- Mulder GJ. (1839). Ueber die zusammensetzung einiger thierischen substanzen. J Prakt Chem. 16: 129-152.
- Muschol M, Rosenberger F (1997). Liquid-liquid Phase Separation, Precipitate Formation and Crystallization in Supersaturated Lysozyme Solution, J. Chem. Phys. 107: 1953-1962.
- Neal BL, Asthagiri D, Velev OD, Lenhoff AM, Kaler EW (1999). "Why is the Osmotic Second Virial Coefficient Related to Protein Crystallization.?". J. Cryst. Growth. 196: 377-387
- Nesher G, Osborn TG, Moore TL (1997). Effect of treatment with methotrexate, hydroxychloroquine, and prednisone on lymphocyte polyamine levels in rheumatoid arthritis: correlation with the clinical response and rheumatoid factor synthesis. Clin Exp. Rheumatol. 15: 343–347.
- Nishida K, Kaji K, Kanaya T (2001). Theoretical calculation of reduced viscosity of polyelectrolyte solutions T. Polym. 42(6): 8657-8662.
- Nishida K, Kaji K, Kanaya T, Fanjat N (2002). Determination of intrinsic viscosity of polyelectrolyte solutions. Polym. 43(6): 1295-1300.

- Pandey JD, Haroon S, Krishna KD, Madhulika U, Ranjan D, Misra K. (2000). Interactions of 6-aminopurine (adenine) in water and aqueous urea solutions. Can. J. Chem./Rev. Can. Chim. 78(12): 1561-1569.
- Papanagopoulos D, Dondos A (1996). Difference between the dynamic and static behaviour of polymers in dilute solutions. 37: 1053-1055(3).
- Park JM, Muhoberac BB, Dubin PL, Xia J (1992). Effects of protein charge heterogeneity in protein-polyelectrolyte complexation. Macromolecules. 25: 290-295.
- Parmar ML, Awasthi RK, Guleria MK (2004). A study of partial molar volumes of citric acid and tartaric acid in water and binary aqueous. J. Indian Acad. Sci. pp. 33-38.
- Petsev DN, Vekilov PG (2000). Phys. Evidence for non-DLVO hydration interactions in solutions of the protein apoferritin. Phys. Rev. Lett. 84: 1339-1342.
- Poon WCK (1997). Crystallization of globular proteins. Phys. Rev. E 55: 3762-3764.
- Potter SM (1995). Overview of proposed mechanisms for the hypocholesterolemic effect of Soya. J. Nutr. 125: 606S-611S.
- Pui CH, Relling MV, Lascombes F, Harrison PL (1997). Urate oxidase in prevention and treatment of hyperuricemia associated with lymphoid malignancies. Leukemia. 11: 1813–1816.
- Ramesh KW, Rama KG (1992). Densities, viscosities, and application of transition-state theory for water + potassium thiocyanate. J. Chem. Eng. Data. 37: 377-386.
- Rosenbaum DF, Zamora PC, Zukoski CF (1996). Phase Behavior of Small Attractive Colloidal Particles. Phys. Rev. Lett. 76: 150-153.
- Sear RP (1999). Phase behavior of a simple model of globular proteins. J. Chem. Phys. 111: 4800-4806.
- Shitara Y, Itoh T, Sato H, Li AP (2003). Sugiyamalnhibition of Transporter-Mediated Hepatic Uptake as a Mechanism for Drug-Drug Interaction between Cerivastatin and Cyclosporin A J. Pharmacol. Exp. Ther. 304(2): 610 - 616.
- Simmonds HA, Fairbanks LD, Morris GS, Webster DR (1988). Altered erythrocyte nucleotide patterns are characteristic of inherited disorders of purine or pyrimidine metabolism. Clin Chim Acta. 171: 197–210.
- Singh M (2005). The studies of density, Apparent molar volumes, and viscosity of Bovine Serum Albumin, Egg Albumin, and Lysozyme in Aqueous and RbI, CsI, and DTAB Aqueous solutions at 303.15 K. Chemistry and Biodiversity. 2: 809-824.
- Singh M (2005). Studies of apparent molal volume and viscosity of mutual citric acid and disodium hydrogen orthophosphate aqueous systems from 298.15 to 313.15K, J. Chem. Sci. Indian Acad. Sci. Bangalore, India, (in press).
- Singh M (2005). Studies of molecular interactions of α-amino acids in aqueous and cationic surfactants systems investigated from their densities and apparent molal volumes at 283.15, 288.15 and 293.15 K. Pak. J. Sci. Ind. Res. 48(5): 303-311.
- Sirtori CR, Lovati MR (2001). Soya proteins and cardiovascular disease. Curr. Atheroscler. Rep 3: 47-53.
- Smits GJ, McVey M, Cox BF, Perrone MH (1998). Cardioprotective effects of the novel adenosine A1/A2 receptor agonist AMP 579 in a porcine model of myocardial infarction. J Pharmacol Exp Ther. 286: 611–618.
- Smolenski RT, Kalsi K, Zych M, Kochan Z (1998). Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase inhibited cardiac cells. J. Mol. Cell Cardiol. 30: 673–683.
- Su TJ, Lu JR, Thomas RK, Cui ZF, Penfold J (1998). The effect of pH on the adsorption of lysozyme at the hydrophilic silicon oxide/water interface, a neutron reflection studies. J. Langmuir. 14: 438-445.
- Tewari N, Srivastav AK (1992). Complex formation between pairs of vinyl polymers. Macromolecules. 25: 1053.
- Weinblatt ME, Coblyn JS, Fox DA, Fraser PA (1985). Efficacy of lowdose methotrexate in rheumatoid arthritis. N Engl J Med. 312: 818– 822.
- Yamanaka H, Togashi R, Hakoda M, Terai C (1998). Optimal range of serum urate concentrations to minimize risk of gouty attacks during anti-hyperuricemic treatment. Adv. Exp. Med. Biol. 431: 13–18.