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This study highlights the recent advances in the treatment and value addition of lignocellulosic wastes 
(LCW) with main focus on domestic and agro-industrial residues. Mechanical, physical and biological 
treatment systems are brought into perspective. The main value-added products from lignocellulosic 
wastes are summarized in a manner that pinpoints the most recent trends and the future directions. 
Physicochemical and biological treatment systems seem to be the most favored options while biofuels, 
biodegradable composites and biosorbents production paints a bright picture of the current and future 
bio-based products. Engineered microbes seem to tackle the problem of bioconversion of substrates 
that are otherwise non convertible by conventional wild strains. Although the main challenge facing 
LCW utilization is the high costs involved in treatment and production processes, some recent 
affordable processes with promising results have been proposed. Future trends are being directed to 
nanobiotechnology and genetic engineering for improved processes and products. The paper presents 
state of the art review of the dual advantage of handling LCW for cleaner environment and production 
of renewable bio-products. 
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INTRODUCTION 
 
Lignocelluloses wastes (LCW) refer to plant biomass 
wastes that are composed of cellulose, hemicellulose, 
and lignin. They may be grouped into different categories 
such as wood residues (including sawdust and paper mill 
discards), grasses, waste paper, agricultural residues 
(including straw, stover, peelings, cobs, stalks, nutshells, 
non food seeds, bagasse, domestic wastes (lignocellu-
lose garbage and sewage), food industry residues, 
municipal solid wastes and the like (Qi et al., 2005; Roig 
et al., 2006; Rodríguez et al., 2008). Currently, the 
second generation bio-products such as bioethanol, 
biodiesel, biohydrogen and methane from lignocellulose 
biomass are increasingly been produced from wastes 
rather than from energy crops (jatropha, switchgrass, 
hybrid poplar and willow) because the latter competes for 
land and water with food crops that are already in high 
demand. The use of food crops such as corn and 
sugarcane to produce biofuels is increasingly being 
discouraged due to the current worldwide rise in food 
prices. In order to minimize food-feed-fuel conflicts, it is 
necessary to integrate all kinds of biowaste into a 
biomass economy (Mahro and Timm, 2007). Further-

more, the use of LCW offers a possibility of geogra-
phically distributed and greenhouse-gas-favourable 
sources of products (Rubin, 2008). 

The lignocellulosic biomass, which represent the 
largest renewable reservoir of potentially fermentable 
carbohydrates on earth (Mtui and Nakamura, 2005), is 
mostly wasted in the form of pre-harvest and post-harvest 
agricultural losses and wastes of food processing 
industries. Due to their abundance and renewability, 
there has been a great deal of interest in utilizing LCW for 
the production and recovery of many value-added pro-
ducts (Pandey et al., 2000; Das and Singh, 2004; Foyle 
et al., 2007). Among the main recovery products include 
enzymes, reducing sugars, furfural, ethanol, protein and 
amino acids, carbohydrates, lipids, organic acids, phe-
nols, activated carbon, degradable plastic composites, 
cosmetics, biosorbent, resins, medicines, foods and 
feeds, methane, biopesticides, biopromoters, secondary 
metabolites, surfactants, fertilizer and other miscella-
neous products (Tengerdy and Szakacs, 2003; Mtui, 
2007; Ubalua, 2007; Galbe and Zacchi, 2007; Demirbas, 
2008). Alongside producing these products, the processes 



 
 
 
 
also remove wastes from the environment. 

The barrier to the production and recovery of valuable 
materials from LCW is the structure of lignocellulose 
which has evolved to resist degradation due to cross-
linking between the polysaccharides (cellulose and hemi-
cellulose) and the lignin via ester and ether linkages (Yan 
and Shuya, 2006; Xiao et al., 2007). Cellulose, hemicellu-
lose and lignin form structures called microfibrils, which 
are organized into microfibrils that mediate structural 
stability in the plant cell (Rubin, 2008). The main goal of 
any pretreatment, therefore, is to alter or remove 
structural and compositional impediments to hydrolysis 
and subse-quent degradation processes in order to 
enhance digestibility, improve the rate of enzyme 
hydrolysis and increase yields of intended products 
(Mosier et al., 2005; Hendriks and Zeeman, 2009). These 
methods cause mechanical, physical chemical or 
biological changes in the plant biomass in order to 
achieve the desired products.  

Technology of LCW bioconversion has long been 
considered to be rather expensive. However, recent 
increases in grain prices mean that the switch to second 
generation bio-products such as biofuels from LCW will 
reduce competition with grain for food and feed, and 
allow the utilization of materials like straw which would 
otherwise go to waste. Technologies that will allow cost-
effective conversion of biomass into fuels and chemicals 
consider economy of scale, low-cost pretreatment 
systems and highly effective and efficient biocatalysts 
(Schneider and McCar, 2003; Gray et al., 2006).  

This work reviews the recent developments in LCW 
pretreatment, value addition and techno-economic 
considerations. 
 
 
PRETREATMENT TECHNOLOGIES FOR 
LIGNOCELLULOSIC WASTES 
 
Mechanical pretreatment 
 
Mechanically based pretreatment technologies are aimed 
at reducing the size of LCW to facilitate subsequent 
treatments. Reduction of biomass size below #20 sieves 
shows the best mechanical performance (de Sousa et al., 
2004). Mechanical pretreatment technologies increase 
the digestibility of cellulose and hemicellulose in the 
lignocellulosic biomass. The use of mechanical chopping 
(de Sousa et al., 2004); hammer milling (Iñiguez-
Covarrubias et al., 2001; Mani et al., 2004); grind milling 
(Mtui and Nakamura, 2005); roll milling (Qi et al., 2005); 
vibratory milling (Guerra et al., 2006) and ball milling 
(Inoue et al., 2008) have proved success as a low cost 
pretreatment strategy. The pulverized materials with 
increased surface area have been found to facilitate the 
subsequent physicochemical and biochemical pretreat-
ments of corn stover, barley straw sugar cane baggase, 
wheat straw, wood waste and municipal solid waste. 
They result to improved digestibility of cellulose and hemi-  
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cellulose to glucan and xylan, respectively; they further 
enhance enzymatic digestibility with lower enzyme loads. 
Mechanical pretreatment also result to substantial lignin 
depolymerization via the cleavage of uncondensed-aryl 
ether linkages (Inoeu et al., 2008). Solubility and 
fermentation efficiency of the natural lignocellulosic 
residues is also substantially increased by mechanophy-
sicochemical pretreatment, leading to value-added 
utilization of these residues (Qi et al., 2005).  
 
 
Physical pretreatment 
 
Elevated temperatures and irradiation are the most 
successful physical treatments in the processing of LCW. 
Thermogravimetric treatment of wood waste under both 
inert and oxidant atmospheres from room temperature up 
to 1100 K leads to moisture loss; hemicellulose, cellulose 
and lignin decomposition (Lapuerta et al., 2004). On the 
other hand, pyrolysis of nutshells, straws, sawdust and 
municipal solid wastes at temperatures of 600 - 1200 K 
result to yields of char, liquid and gaseous products of up 
to 55% of the original LSW (Puértolas et al., 2001; 
Demirbas, 2002; Bonelli, 2003; Chen et al., 2003; Álvarez 
et al., 2005; Phan et al., 2008; Zabaniotou et al., 2008). 

Irradiation can cause significant breakdown of the 
structure of LSW. Microwave irradiation at a power of up 
to 700 W at various exposure times resulted to weight 
loss due to degradation of cellulose, hemicellulose and 
lignin, and the degradation rates are significantly en-
hanced by the presence of alkali (Zhu et al., 2005a, 
2005b, 2006). In addition, gamma radiation has been 
shown by Yang et al. (2008) to cause significant 
breakdown of the structure of powder of 140 mesh wheat 
straw, leading to weight loss and glucose yield of 13.40% 
at 500 kGy.  
 
 
Physicochemical pretreatment 
 
Combined chemical and physical treatment systems are 
of importance in dissolving hemicellulose and alteration 
of lignin structure, providing an improved accessibility of 
the cellulose for hydrolytic enzymes (Hendriks and 
Zeeman, 2009). The most successful physicochemical 
preatments include thermochemical treatments such as 
steam explosion or (steam disruption), liquid hot water 
(LHW), ammonia fiber explosion (AFEX) and CO2 
explosion (Sun and Cheng, 2002). In these processes, 
chipped biomass is treated with high-pressure saturated 
steam, liquid ammonia or CO2 and then the pressure is 
swiftly reduced, making the materials to undergo an 
explosive decompression.  

Steam explosion is typically initiated at a temperature 
of 160 – 260°C (corresponding pressure of 0.69 – 4.83 
MPa) for several seconds to a few minutes before the 
material is exposed to atmospheric pressure. The 
processes cause hemicellulose degradation and lignin 
transformation due to high  temperature,  thus  increasing 
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the potential of cellulose hydrolysis. Addition of H2SO4 (or 
SO2) or CO2 in steam explosion of LCW can effectively 
improve enzymatic hydrolysis, decrease the production of 
inhibitory compounds, and lead to more complete 
liquefaction of hemicellulose, glucan, xylan, mannan, 
galactan, and arabinan (Jeoh and Agblevor, 2001; Sun 
and Cheng, 2002). Such pretreatments also lead to 
higher digestion efficiencies during production of 
monosaccharides, oligosaccharides, lactic acid, antibac-
terial violet pigments and methane gas (Liu et al., 2002; 
Kim et al., 2003; Asada et al., 2005; Wang and Chen, 
2007; Öhgren et al., 2007). Wet oxidation pretreatment at 
200 - 210°C in the presence of alkali or Na2CO3 leads to 
LCW solubilization and better enzymatic convertibility to 
value-added products (Fox and Noike, 2004; Lissens et 
al., 2004; Martín et al., 2008). 

Liquid hot water (LHW) pretreatment utilizes pressuriz-
ed hot water at pressure less than 5 Mpa and tempe-
rature range of 170 - 230°C for several minutes followed 
by decompression up to atmospheric pressure. Bagasse, 
corn stalk and straws of wheat, rice and barley pretreated 
by LHW have been reported to effect 80 - 100% 
hemicellulose hydrolysis, resulting to 45 - 65% xylose 
(Sun and Cheng, 2002; Sánchez and Cardona, 2008). 

On the other hand, in AFEX treatment, the dosage of 
liquid ammonia ranging from 1 – 2 kg ammonia/kg dry 
biomass, temperature 90°C, and residence time of 30 
min can significantly improve the saccharification rates 
(Chundawat et al., 2007; Thomsen and Belinda, 2007). 
On CO2 explosion, 75% of the theoretical glucose 
released during 24 h of the enzymatic hydrolysis has 
been reported (Sun and Cheng, 2002). Ethanol yield of 
up to 83% of the theoretical value has been achieved for 
LCW subjected to physicochemical treatment (Jeoh and 
Agblevor, 2001). 
 
 
Chemical pretreatment 
 

Chemicals ranging from oxidizing agents, alkali, acids 
and salts can be used to degrade lignin, hemicellulose 
and cellulose from LCW. Poweful oxidizing agents such 
as ozone and H2O2 effectively remove lignin; does not 
produce toxic residues for the downstream processes; 
and the reactions are carried out at room temperature 
and pressure (Sun and Cheng, 2002). Alkali (NaOH, 
Ca(OH)2, NaOH-urea, Na2CO3) hydrolyses of rice straw 
(Carrillo et al., 2005); spruce wood waste (Zhao et al., 
2007); sugarcane, cassava and peanuts wastes 
(Thomsen and Belinda, 2007); corn cob (Torre et al., 
2008); organic fraction of municipal solid waste (Torres 
and Lloréns, 2008) have been investigated. When these 
pretreatments are performed by using 0.5 - 2 M alkali at 
120 - 200°C, they substantially facilitate saccharification 
and improve enzymic hydrolysis of LCW. 

Dilute and concentrated acids at high temperature are 
suited for hydrolysis of LCW. Studies by del Campo et al. 
(2006) and Karimi et al. (2006) have established that 
0.5% H2SO4 is optimal for treatment of wastes from vege- 

 
 
 
 
tables and rice straw, respectively. More concentrated 
H2SO4 (up to 2.5 M) has been shown to be able not only 
to hydrolyse cellulose and hemicellulose, but also in 
separating lignin and other organic components from 
LCW (Iranmahboo et al., 2002; Alma and Acemioglu, 
2004; Okafoagu and Nzelibe, 2006; Miller et al., 2007; 
Rahmanet al., 2007). SO2 and fly ash in flare gas; HNO3, 
HCl and polyhydric alcohol in the presence of sulfuric 
acid are also useful in LCW pretreatment (Fan, 2003; 
Herrera et al., 2004; Kobayashi et al., 2004; Rodríguez-
Chonga et al., 2004; Hassan and Shukry, 2008): Recent 
studies have shown that when acids are combined with 
alkali, they play a more effective role in LCW 
pretreatment than acids and alkalis alone (Damisa et al., 
2008). 

Organic acids such as oxalic, acetylsalicylic and 
salicylic acid can be used as catalysts in the organosolv 
process whereby an organic or aqueous organic solvent 
mixture with inorganic acids (HCl or H2SO4) are used to 
break the internal lignin and hemicellulose bonds. The 
organic solvents used in the process include methanol, 
ethanol, acetone, ethylene glycol, triethylene glycol and 
tetrahydrofurfuryl alcohol (Sun and Cheng, 2002). The 
use of a dicarboxylic acid catalyst, maleic acid, for 
hemicellulose hydrolysis in corn stover overcomes the 
technical and economic hurdle of hemicellulose hydro-
lysis (Lu and Mosier, 2007). 
 
 
Biological pretreatment 
 
Biological treatment involves the use of whole organisms 
or enzymes in pretreatment of LCW. Both fungi and 
bacteria are used for biotreatment of LCW. Commercial 
preparations of fungal and bacterial hydrolytic and 
oxidative enzymes are also widely used instead of these 
microorganisms. 

Fungal pretreatment of agricultural residues is a new 
method for improvement of digestibility (Sinegani et al., 
2005). White-, brown- and soft-rot fungi are used to 
degrade lignin and hemicellulose in waste materials 
whereby brown rots mainly attack cellulose, while white 
and soft rots attack both cellulose and lignin. White-rot 
fungi are the most effective basidiomycetes for biological 
pretreatment of lignocellulosic materials (Sun and Cheng, 
2002). Recent studies have shown that Aspergillus 
terreus (Emtiazi et al., 2001); Trichoderma spp (Pérez et 
al., 2002); Cyathus stercoreus (Keller et al., 2003); 
Lentinus squarrosulus (Shide et al., 2004); Lentinus 
edodes (Songulashvili et al., 2005; Brienzo et al., 2007); 
Trametes pubescens (Melamane et al., 2007); Pleurotus 
spp (Ragunathan and Swaminathan, 2004; Mukherjee 
and Nandi, 2004; Belewu, 2006; Locci et al., 2008); 
Penicillium camemberti (Ta�eli, 2008), Phanerochaete 
chrysosporium (Das and Hossain, 2000; Shi et al., 2008) 
grown at 25 - 35°C for 3 - 22 days resulted to 45 - 75% 
and 65 - 80% holocellulose and lignin degradation, 
respectively.  The   postreatement  by  anaerobic  biopro- 



 
 
 
 
cesses of LCW effluents that have been pretreated with 
fungi can lead to higher biogas than the original effluents 
(Coulibaly et al., 2003). Recombinant strains of 
Saccharomyces cerevisiae have been genetically 
engineered to carry out simultaneous saccharification 
and fermentation (SSF) to produce extracellular endo-
glucanase and �-glucosidase that are able to ferment 
cellulose and hemicellulose to 6-carbon and 5-carbon 
sugars and subsequent fermentation to ethanol (Sedlak 
and Ho, 2004; van Maris et al., 2006; Haan et al., 2007; 
Chu and Lee, 2007; Wisselink et al., 2007). In bio-
organosolv process, fungal (Ceriporiopsis 
subvermispora) pretreatment of wood waste for 2 - 8 
weeks followed by organic solvent treatment at 140 - 
200°C for 2 h has achieved considerable energy efficient 
delignification and hemicellulose hydrolysis (Itoh et al., 
2003; Sánchez and Cardona, 2008). 

Bacterial pretreatment of LCW involves both anaerobic 
and aerobic systems. Anaerobic degradation utilizes 
mainly mesophillic, rumen derived bacteria (Han and 
Shin, 2002; Hu and Yu, 2005, 2006; Neves et al., 2006; 
Hu et al., 2008; Yue et al., 2008). Aerobic-anaerobic 
systems have an upper hand when it comes to 
degradation of LCW richer in lignin content (Ammary, 
2004; Mshandete et al., 2005, 2008) while in aerobic 
system alone, actinomycete Streptomyces griseus is able 
to produce high levels of extracellular hydrolytic enzyme 
that degrade lignocellulose (Arora et al., 2005). 
Escherichia coli and Klebsiella oxytoca strains have been 
genetically engineered to produce microbial biocatalysts 
that produce bioethanol from lignocellulosic materials 
(Jarboe et al., 2007; Peterson and Ingram, 2008). 

Enzymatic pretreatment of LCW utilize hydrolytic and 
oxidative enzymes which are mainly derived from fungi 
and bacteria. Cellulases are usually a mixture of several 
enzymes. At least three major groups of cellulases are 
involved in the hydrolysis process: (1) endoglucanase 
(endo-1,4-glucanohydrolase) which attacks regions of low 
crystallinity in the cellulose fiber, creating free chain-
ends; (2) exoglucanase or cellobiohydrolase (CBH) (1,4-
�-glucan cellobiohydrolase) which degrades the molecule 
further by removing cellobiose units from the free chain-
ends and (3) �-glucosidase which hydrolyzes cellobiose 
to produce glucose (Sun and Cheng, 2002). In addition, 
there are also a number of ancillary enzymes that attack 
hemicellulose, such as glucuronidase, acetylesterase, 
feruloylesterase, xylanase, �-xylosidase, galactomanna-
nase and glucomannanase (Nikolov et al., 2000; Draude 
et al., 2001; Aranda et al., 2004; Mtui and Nakamura, 
2005, Roman et al., 2006; Georgieva et al., 2008). During 
the enzymatic hydrolysis, cellulose is degraded by 
cellulases to reducing sugars that can be fermented by 
yeasts or bacteria to ethanol.  

Ligninolytic enzymes are primarily involved in lignin 
degradation in oxidative reactions that are mainly free 
radical driven in the presence (or sometimes absence) of 
mediators. The main enzymes  involved  are  lignin  pero- 
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xidase, manganese peroxidase and laccase (Hao et al., 
2006; Mtui and Nakamura, 2007, 2008; Mtui and Masalu, 
2008). The hydrolytic and oxidative enzymatic reactions 
are mainly carried out at 30 - 45°C with low enzyme 
loading rate at reaction time of 6 - 26 h. All the 
pretreatment methods discussed above are summarized 
in Figure 1. 
 
 
VALUE-ADDED PRODUCTS FROM 
LIGNOCELLULOSIC WASTES 
 
Advances in industrial biotechnology offer potential 
opportunities for economic utilization of agro-industrial 
residues. Biodevelopment of biowastes provide a wide 
range of affordable renewable value-added products from 
LCW (Pandey et al., 2000; van Wyk, 2001; Howard et al., 
2003). 
 
 
Reducing sugars 
 
Fermentable sugars comes first in the value chain of 
processed LCW with glucose, xylose, xylitol, cellobiose, 
arabinose, pentose and galactose being the main 
reduced sugars produced (Akmar and Kennedy, 2001; 
Saha, 2003; Rodríguez-Chonga et al., 2004; Yáñez et al., 
2004; Sepúlveda-Huerta et al., 2006; Tabka et al., 2006; 
Hanchar et al., 2007; Singh et al., 2008; Li et al., 2008; 
Kim et al., 2008). In these sugar producing processes, 
hydrolysable sugars yield of up to 83.3% has been 
achieved at the reaction temperatures of 37 - 50°C for 6 – 
179 h at pH 5 - 6. The size of substrate added 
determines the amount of the saccharification products 
(Baig et al., 2004). In the enzymatic hydrolysis step using 
celluclast® supplemented with novozym®, a degree of 
saccharification of 100% has been achieved (Marques et 
al., 2008). Some transgenic plant residues have been 
reported to yield nearly twice as much sugar from cell 
walls compared to wild-types (Chen and Dixon, 2007). 
Glucose seems to be the major monosaccharide product 
from LCW. The challenge facing depolymerization of 
hemicellulose into fermentable sugars is the requirement 
for a consortium of enzymes to complete the hemi-
cellulose hydrolysis, leading to high enzyme costs. Efforts 
to overcome the problem include process improvement 
and the use of modified microorganisms that produce the 
required hemicellulose enzymes (Lu and Mosier, 2007; 
Haan et al., 2007). 
 
 
Enzymes 
 
Lignocellulosic enzymes, mainly from fungi and bacteria, 
are important commercial products of LCW bio-
processing used in many industrial applications including 
chemicals, fuel, food, brewery and wine, animal feed, 
textile   and   laundry,   pulp   and  paper  and  agriculture 
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Figure 1. A summary of various methods used in the pretreatment of lignocellulosic wastes. 

 
 
 
(Howard et al., 2003). Overall, extracellular enzymes are 
secondary metabolic products released in the presence 
of inducers at N-limited media (Mtui and Nakamura, 
2007). They include hydrolytic enzymes such as 
cellulases; hemicellulases and pectinases; degradative 
enzymes like amylases, proteases; and ligninolytic 
enzymes like laccases, peroxidases and oxidases. 
Cellulases production from LCW has been extensively 
studied (Jecu, 2000; Emtiazi and Nahvi, 2000; El-hawary 
and Mostafa, 2001; Ögel et al., 2001; Raj and Singh, 
2001; Ojumu et al., 2003; Wen et al., 2005; 
Muthuvelayudham and Viruthagiri, 2006; Pothiraj et al., 
2006; Daroit et al., 2007; Gao et al., 2008). Phytases, 
mannanases and amylases are also produced by 
microorganisms using LCW as the main feedstock 
(Bhavsar et al., 2008; Mabrouk et al., 2008).  

On the other hand, hemicellulolytic enzymes, mainly 
xylanases, are produced from a wide range of LCW 
biomass (Abdel-Sater and El-Said 2001; Rezende et al. 
2002; Pandey and Pandey, 2002; Isil and Nilufer, 2005; 
Haq et al., 2006; Elisashvili et al., 2006; Dobrev et al., 
2007; Mohana et al., 2008). Pectinases such as endo-
polygalacturonase (endo-PG), exo-polygalacturonase 
(exo-PG) and pectin liase are mainly produced from solid 
state fermentation processes utilizing agricultural 

residues (Silva et al., 2005; Botella et al., 2005, 2007), 
while protease has been produced by Penicillium 
janthinellum in submerged cultures (Oliveira et al., 2006). 

Among the ligninases produced from LCW, laccases 
are the mostly studied (Nazareth and Sampy, 2003; 
Moldes et al., 2003, 2004; Couto et al., 2006; Couto and 
Sanromána, 2006; Mishra and Kumar, 2007; Alcántara et 
al., 2007; Minussi et al., 2007), followed by Manganese 
peroxidase and lignin peroxidase (Couto et al., 2001, 
2003; Wuyep et al., 2003; Velázquez-Cedeño et al., 
2004; Couto and Sanromána, 2005; Alam et al., 2005; 
Asgher et al., 2006; Songulashvili et al., 2007; Elisashvili 
et al., 2008). 

Very high enzyme activities (31,786 U/L) have been 
reported when the experiments are carried out under 
optimal conditions (pH 5.5 - 6: temperature 30 - 45°C) 
(Rosales et al., 2007). Recovery of pure enzymes is 
achieved through 50 - 80% (NH4)2SO4 saturation followed 
by chromatographical purification techniques (A-el-
Gammal et al., 2001; Mtui and Nakamura, 2008). Several 
efforts have been made to increase the production of 
enzymes through strain improvement by mutagenesis 
and recombinant DNA technology. Cloning and sequenc-
ing of the various genes of interest could economize the 
enzymes production processes (Kumar et al., 2008). 



 
 
 
 
Biofuels 
 
Worldwide, there is a growing concern over the fossil oil 
prices increase, the security of the oil supply and the 
negative impact of fossil fuels on the environment, 
particularly greenhouse gas emissions (Hahn-Hägerdal et 
al., 2006). Conversion of LCW to biofuels provides the 
best economically feasible and conflict-free second-
generation renewable alternatives (Rubin, 2008). Signifi-
cant advances have been made towards bioconversion of 
plant biomass wastes into bioethanol, biodiesel, 
biohydrogen, biogas (methane).  

Production of ethanol from sugars or starch from 
sugarcane and cereals, respectively, impacts negatively 
on the economics of the process, thus making ethanol 
more expensive compared with fossil fuels. Hence, the 
technology development focus for the production of 
ethanol has shifted towards the utilization of residual 
lignocellulosic materials to lower production costs 
(Howard et al., 2003). Currently, research and develop-
ment of saccharification and fermentation technologies 
that convert LCW to reducing sugars and ethanol, 
respectively, in eco-friendly and profitable manner have 
picked tempo with breakthrough results being reported 
(Lin and Tanaka, 2006; Prasad et al., 2007; Patel et al., 
2007; Pasha et al., 2007; Tahezaden and Karimi, 2007; 
Sánchez and Cardona, 2008). Ethanol yield of 6 - 21% 
has been obtained through fermentation of agricultural 
and municipal residues (Akin-osanaiye et al., 2005; Mtui 
and Nakamura, 2005; Sjöde et al., 2007; Li et al., 2007; 
Cara et al., 2008; Sørensen et al., 2008). While 
microaeration enhances productivity of bioethanol from 
LCW using ethanologenic E. coli (Okuda et al., 2007), 
simultaneous saccharification and fermentation (SSF) 
using recombinant Saccharomyces cereviasiae result to 
as high as 62% of the theoretical value (Itoha et al., 
2003). The principal benefits of performing the enzymatic 
hydrolysis together with the fermentation, instead of in a 
separate step after the hydrolysis, are the co-
fermentation of both hexoses and pentoses during SSF, 
reduced end-product inhibition of the enzymatic 
hydrolysis and the reduced investment costs (Kádár and 
Réczey, 2004; Olofsson et al., 2008). Life cycle 
assessment (LCA) shows that bio-ethanol from LCW 
results to reductions in resource use and global warming 
(von Blottnitz and Curran, 2007). The long-term benefits 
of using waste residues as lignocellulosic feedstocks will 
be to introduce a sustainable solid waste management 
strategy for a number of lignocellulosic waste materials; 
contribute to the mitigation in greenhouse gases through 
sustained carbon and nutrient recycling; reduce the 
potential for water, air, and soil contamination associated 
with the land application of organic waste materials; and 
to broaden the feedstock source of raw materials for the 
bio-ethanol production industry (Champagne, 2007).  

Biodiesel is a renewable fuel conventionally prepared 
by transesterification of pre-extracted vegetable  oils  and  
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animal fats of all resources with methanol, catalyzed by 
strong acids or bases (Liu and Zhao, 2007). They are 
fatty acid methyl or ethyl esters used as fuel in diesel 
engines and heating systems (Ito et al., 2005). 
Production of biodiesel from lignocellulosic residues such 
as olive oil wastes has been a subject of research 
towards improving the thermal waste treatment systems 
and cleaner energy production (Arvanitoyannis et al., 
2007a, 2007b). Since the current supplies from LCW 
based oil crops and animal fats account for only 
approximately 0.3%, biodiesel from algae is widely 
regarded as one of the most efficient ways of generating 
biofuels and also appears to represent the only current 
renewable source of oil that could meet the global 
demand for transport fuels (Schenk et al., 2008).  

Hydrogen has been considered a potential fuel for the 
future since it is carbon-free and oxidized to water as a 
combustion product (Najafpour et al., 2004). While 
conventional burning or composting seem to be the most 
cost-effective hydrogen production methods, bacteria 
such as Enterobacter aerogenes and Clostridium sp 
isolates can convert saccharified LCW biomass into 
biohydrogen (Ito et al., 2005). Biohydrogen production 
from agricultural residues such as olive husk pyrolysis 
(Ça lar and Demirba, 2002); conversion of wheat straw 
wastes into biohydrogen gas by cow dung compost (Fan 
et al., 2006); bagasse fermentation for hydrogen 
production (Singh et al., 2007) generate up to 70.6% gas 
yields. System optimization for accessibility of polysac-
charides in LCW and the use of genetically efficient 
bacterial strains for agrowaste-based hydrogen produc-
tion seem to be the ideal option for clean energy 
generation. Hydrogen gereration from inexpensive 
abundant renewable biomass can produce cheaper 
hydrogen and achieve zero net greenhouse emissions 
(Zhang et al., 2007). 

Biogas production from lignocellulosic materials is a 
steady anaerobic process where methane rich biogas 
comes mostly from hemicellulose and cellulose. 
Anaerobic biomethane production is an effective process 
for conversion of a broad variety of agricultural residues 
to methane to substitute natural gas and medium calorific 
value gases (Demirbas and Ozturk, 2005). Biogas 
containing 55 - 65% methane can be produced from jute 
caddis - a lignocellulosic waste of jute mills by anaerobic 
fermentation, using cattle dung as sole source of 
inoculum (Banik, 2004). Anaerobic digestion of poultry 
droppings, cow dung and corn stalk can give up to 
137.16 L of biogas from 0.28 m3 digester (Anozie et al., 
2005). Mesophilic aerobic pretreatment to delignify sisal 
pulp waste prior to its anaerobic digestion has been 
shown to improve methane yields (Mshandete et al., 
2005, 2008).  

Overall, the success of biofuels production from LCW is 
dependent on the optimal performance and cost 
effectiveness of pretreatment and product generation 
processes. 
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Organic acids 
 
Organic acids are some of the products of ligninolytic 
residues fermentations via environmentally friendly 
integrated processes. Volatile fatty acids including acetic 
acid, propionic acids and butyric acid are produced from 
a wide range of LSW such as cereal hulls (Jin et al., 
2002, 2004, 2006); bagasse residues (Henrique et al., 
2005); food wastes (Lim et al., 2008) and sisal leaf 
decortications residues (Mshandete et al., 2008). In 
addition, lactic acid is produced from waste sisal stems 
(Muruke et al., 2006), sugarcane bagasse (Adsul et al., 
2007) and kitchen waste (Ohkouchi and Inoue, 2007) by 
using Lactobacillus isolates. Furthermore, formic acid, 
levulinic acid, citric acid, valeric acid, caproic acid and 
vanillinic acid are obtainable from bioprocessing of LCW 
(Olson, 2001; Chaudhary and Sharma, 2005; Mshandete 
et al., 2008; Ibrahim et al., 2008). Overall, organic acids 
production requires batch or continuous incubation 
conditions, the average reaction parameters being 35°C, 
pH 6.0, hydraulic retention time (HRT) of up to 8 days 
and organic loading rates of 9 g/l d. Product yields of up 
to 39.5 g/l have been reported (Lim et al., 2008). 
 
 
Compost 
 
Compost, a nutrient-rich, organic fertilizer and soil 
conditioner, is a product of humification of organic matter. 
This process is aided by a combination of living organi-
sms including bacteria, fungi and worms which transform 
and enhance lignocellulosic waste into humic-like 
substances (Eyheraguibel et al., 2008). Vermicomposting 
is the bio-oxidation and stabilization of organic matter 
involving the joint action of earthworms and micro-
organisms, thereby turning wastes into a valuable soil 
amendment called vermicompost (Benitez et al., 2005; 
Aira et al., 2006, 2007). Substrates suitable for making 
humus–rich compost include cereal straw and bran (Hart 
et al., 2003); urban wastes (Taiwo and Oso, 2004); water 
hyacinth (Chatterjee et al., 2005); lemon tree prunings, 
cotton waste and brewery waste (García-Gómez et al., 
2005); horticultural wastes (Wen-Jing et al., 2004, Lopez 
et al., 2006); olive, palm and grape wastes (Salètes et al., 
2004; Alburquerque et al., 2006; Cayuela et al., 2006; 
Arvanitoyannis et al., 2007a). While bacteria inoculants 
such as Bacillus shackletonni, Streptomyces thermovul-
garis and Ureibacillus thermosphaericus are used to 
improve the composting process (Vargas-Garcı et al., 
2007), ligno-cellulolytic fungi inocula (e.g. Trichurus 
spiralis) may also be used in a pretreatment process 
before composting in order to reduce the resistance of 
the substrate to biodegradation (Hart et al., 2003; 
Vargas-García et al., 2007). A new earthworm strain of 
Perionyx sansibaricus is able to humify a substrate 
combination of guar gum industrial waste, cow dung and 
saw dust (Suthar, 2007). Composting can, therefore, be 
considered as  a  low-cost  technology  to  convert  agro- 

 
 
 
 
industrial LCW into value-added biofertilizers. 
 
 
Biocomposites 
 
Biodegradable polymers constitute a loosely defined 
family of polymers that are designed to degrade through 
the action of living organisms. Such commercially 
available biodegradable polymers are polycaprolactone, 
poly (lactic acid), polyhydroxyalkanoates, poly (ethylene 
glycol), and aliphatic polyesters like poly (butylene 
succinate) (PBS) and poly (butylene succinate-co-buty-
lene adipate) (Tserki et al., 2006). Lignocellulosic 
material-thermoplastic polymer composites are among 
the emerging products of LCW. In most cases, 
lignocellulosic biomass flour is used as the reinforcing 
filler and polypropylene as the thermoplastic matrix poly-
mer to manufacture particle-reinforced composites (Yang 
et al., 2004). Natural fibres from LCW are considered to 
be of low-cost by-products, environmentally friendly and 
practically sustainable raw materials (Georgopoulos et 
al., 2005). Evaluations of LCW fiber plastic composites 
utilizing wood fibre wastes (Bhattacharyya and 
Jayaraman, 2003; Yuan et al., 2004; Schilling et al., 
2004; Ashori, 2008); wheat and rice straw (Digabel et al., 
2004; Yang et al., 2004a); jute/cotton, sisal/cotton and 
ramie/cotton hybrid fabrics (Mishra et al., 2004; Alsina et 
al., 2005; Jacob et al., 2006); non-wood plant fibres 
(Ndazi et al., 2006); waste newsprint paper (Madani et 
al., 2004; Baroulaki et al., 2006); flax and hemp (Tserki et 
al., 2006); oil palm wastes (Shaji et al., 2006; John et al., 
2008); cotton gin waste (Bourne et al., 2007); banana 
fibres (Pothan et al., 2007); cereal husks (Yang et al., 
2004b, 2007; López et al., 2007); tissue paper wastes 
and corn peels (Lertsutthiwong et al., 2008); bagasse 
(Habibi et al., 2008) and nanofibers from the agricultural 
residues (Alemdar and Sain, 2008) have shown that such 
composites are suitable for making products that have 
improved biodegradability, mechanical strength, thermal 
stability, electrical conductivity and recyclability. 

Treated LCW wastes are also used in the construction 
industry for manufacturing of light-weight agro-gypsum 
panels (Basta et al., 2002) and lightweight sand 
concretes (Reis, 2006; Bederina et al., 2007) with im-
proved structural and thermal properties. Biocomposites 
are very promising in producing sustainable current and 
future green materials to achieve durability without using 
toxic chemicals. The challenge facing the biocomposite 
industry is to make materials that have better rubber/fiber 
interface, improved wettability and compatibility. 
 
 
Food and feed  
 
Bioconversion of lignocellulosic agro-residues through 
mushroom cultivation and single cell protein (SCP) pro-
duction offer the potential for converting these residues 
into   protein-rich   palatable   food  and  reduction  of  the  



 
 
 
 
environmental impact of the wastes. Mushrooom cultiva-
tion provides an economically acceptable alternative for 
the production of food of superior taste and quality which 
does not need isolation and purification (Israilides and 
Philippoussis, 2003; Philippoussis et al., 2007). Cultiva-
tion of edible mushrooms such as Lentinus spp, Lentinula 
spp, Leonotis spp, Pleurotus spp, Agaricus spp, 
Agrocybe spp, Volvariella spp, Lentinus spp and Grifola 
spp is achievable on a wide range of LCW substrates 
such as wood waste, corncob meal, wheat straw, barley 
straw, soybean straw, cereal bran, cotton waste, 
sorghum stalk, banana pseudostem, hazelnut husks, 
waste tea leaves, dry weed plants, peanut shells, waste 
paper and olive mill wastewater (Morais et al., 2000; 
Philippoussis et al., 2001; Yildiz et al., 2002; Oku, 2004; 
Kalm and Sargın, 2004; Silva et al., 2005; Özçelika and 
Pek�en, 2007; Peker et al., 2007; Das and Mukherjee, 
2007; Akyüz and Yildiz, 2008; Gaitán-Hernández and 
Salmones, 2008; Rani et al., 2008). Mushrooms with 
increased number of fruit bodies and high contents of 
protein and total carbohydrates are obtained when LCW 
substrates are used in combination. 

On the other hand, SCP production from LCW offers a 
potential substrate for conversion of low-quality biomass 
into an improved animal feed and human food. SCP is 
the protein extracted from cultivated microbial biomass. It 
can be used for protein supplementation of a staple diet 
by replacing costly conventional sources like soymeal 
and fishmeal to alleviate the problem of protein scarcity. 
Moreover, bioconversion of agricultural and industrial 
wastes to protein-rich food and fodder stocks has an 
additional benefit of making the final product cheaper 
(Anupama and Ravindra, 2000). Removal of nucleic 
acids and toxins from SCP is key to ensure the safety of 
food and feed. Among the SCP obtained from LCW using 
agricultural wastes as the main growth media, 
Saccharomyces cerevisiae, Trichoderma reesei and 
Kluyveromyces marxianus top the list (Robinson and 
Nigam, 2003; Chaudhary and Sharma, 2005). SCP yield 
of 51 and 39.4% efficiency of conversion of beet-pulp into 
protein has been reported ffrom the above strains. Solid 
state fermentation of LCW seems to be the most 
preferred culturing method, while cloning is being 
considered as a suitable technique for improvement of 
SCP production (Anupama and Ravindra, 2000). 
 
 
Medicines 
 
LCW provides a suitable growth environment for mush-
rooms that comprise a vast source of powerful new 
pharmaceutical products. In particular, Lentinula edodes, 
Tremella fuciformis and Ganoderma lucidum contain 
bioactive compounds such as anti-tumor, anti-inflam-
matory, anti-virus and anti-bacterial polysaccharides. 
Moroever, they contain substances with immunomo-
dulating properties, as well as active substances that 
lower   choresterol   (Israilides  and   Philippoussis,  2003;  
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Philippoussis et al., 2007; Zhang et al. 2007). Future 
prospects for research on bioactive compounds from 
fungi grown on such cheap and ubiquitous substrates 
look bright and could lead to breakthroughs in the search 
for antibacterial, antiviral and anticancer chemotherapies. 
 
 
Biosorbents 
 
Adsorbents obtained from plant wastes are feasible 
replacements for costly conventional methods of 
removing pollutants such as heavy metals ions, dyes, 
ammonia and nitrates from the environment. The use of 
lignocellulosic agrowastes is a very useful approach 
because of their high adsorption properties, which results 
from their ion-exchange capabilities. Agricultural wastes 
can be made into good sorbents for the removal of many 
metals, which would add to their value, help reduce the 
cost of waste disposal, and provide a potentially cheap 
alternative to existing commercial carbons (Krishnani and 
Ayyappan, 2006). Chemically modified plant wastes such 
as rice husks/rice hulls, spent grain, sugarcane 
bagasse/fly ash, sawdust, wheat bran, corncobs, wheat 
and soybean straws, corn stalks, weeds, fruit/vegetable 
wastes, cassava waste fibres, tree barks, azolla (water 
fern), alfalfa biomass, coirpith carbon, cotton seed hulls, 
citrus waste and soybean hulls show good adsorption 
capacities for Cd, Cu, Pb, Zn and Ni (Ahmedna et al., 
2004; Basso et al., 2004; Dupont et al., 2005; Harman et 
al., 2007; Š�iban et al., 2008; Ngah et al., 2008; Zubair et 
al., 2008). They are usually modified with formaldehyde 
in acidic medium, NaOH, KOH/K2CO3 and CO2, or acid 
solution or just washed with warm water (Tsai et al., 
2001; Šcibanet al., 2008). Scanning electron micrographs 
with energy spectra shows that heavy metals are 
immobilized via two possible routes: adsorption and 
cation exchange on hypha, and the chelation by fungal 
metabolite (Huang et al., 2008). 

LCW have also been shown to be able to adsorb dyes 
from aqueous solutions. Adsorption of reactive dyes by 
sawdust char and activated carbon (Gan et al., 2004); 
ethylene blue by waste Rosa canina sp. seeds (Gürses et 
al., 2006); anionic dyes by hexadecyltrimethylammonium-
modified coir pith (Namasivayam and Sureshkumar, 
2006); and methylene red by acid-hydrolysed beech 
sawdust (Batzias and Sidiras 2007) have been reported. 
Ammonia and nitrate removal by using agricultural waste 
materials as adsorbents or ion exchangers have also 
been studied (Orlando et al., 2002; Kishore et al., 2006). 
Prehydrolysis enhances the adsorption properties of the 
original LCW material due to the removal of the 
hemicelluloses during sulphuric acid treatment, resulting 
in the ‘opening’ of the lignocellulosic matrix’s structure, 
the increasing of the surface area and the activation of 
the material’s surface owing to an increase in the number 
of dye binding sites (Batzias and Sidiras, 2007). The 
main value-added products from LCW are generally 
summarized in Figure 2. 
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Figure 2. The main value-added products from lignocellulosic wastes (SSF=simultaneous fermentation and saccharification, 
VFAs = volatile fatty acids). 

 
 
 
TECHNO-ECONOMIC EVALUATION  
 
Technologies that are being developed for commercial 
pretreatment and value addition of LCW face technical 
and economical impediments. Therefore, cost effective 
technical innovations that allow cost-effective conversion 
of biomass into fuels and chemicals are mandatory. 
These technologies include low-cost thermochemical 
pretreat-ment, highly effective enzymes and efficient and 
robust fermentative microorganisms (Gray et al., 2006; 
Cardona and Sánchez, 2007; Vertès et al., 2008). The 
choice of appropriate feedstocks and processes ought to 
consider those which consume less electricity, produce 
fewer emissions in total, and has less of a human health 
impact (Kemppainen and Shonnard, 2005). 

The high cost of enzymes presents a significant barrier 
to commercialization of bio-based products. In the 
simplest terms, the cost is a function of the large amount 
of enzyme protein required to break down polymeric 
sugars in cellulose and hemicellulose to fermentable 
monomers. In recent years, significant effort has been 
expended to reduce the cost by focusing on improving 
the efficiency of known enzymes, identification of new, 
more active enzymes, creating enzyme mixes optimized 
for selected  pretreated  substrates,  and  minimization  of  

enzyme production costs (Merino and Cherry, 2007).  
Ethanol's future role as a fuel hinges on several factors 

including feedstock availability, processing costs and 
supportive political framework. Improvements in pre-
treatment and advances in biotechnology, especially 
through process combinations can bring the ethanol 
production overall process efficiency to 68%. Also, a 
combined effect of higher hydrolysis-fermentation effi-
ciency, lower specific capital investments, increase of 
scale, cheaper biomass feedstock costs and using 
genetically engineered microorganisms that can convert 
xylose and/or pentose to ethanol can greatly improve 
ethanol production efficiency and reduce the cost of the 
production (Sun and Cheng, 2002; Carlo et al., 2005). 
Processes that produce only ethanol from lignocellulosics 
display poor economics. The large market for ethanol 
makes it possible to achieve economies of scale that 
reduce sugar costs, and co-producing chemicals 
promises greater profit margins or lower production costs 
for a given return on investment. For the large processing 
plants, the production costs are significantly reduced 
compared to small plants (Wyman, 2003; Murphy and 
McCarthy, 2005). Yield improvements in all major steps 
of LCW processing would enable lower capital re-
quirements, thus improving the  economics  and  lowering  



 
 
 
 
investment risk (Bohlmann, 2006). Bioproducts from LCW 
will continue to be the keystone of industrial 
biotechnology-based economy whereby biorefineries 
leverage common raw materials and unit operations to 
integrate diverse processes to produce demand-driven 
product portfolios (Otero et al., 2007). High product yields 
and less energy-demanding processes could be achieved 
by increasing the dry matter content resulting in higher 
products, and thereby improving the overall process 
economy (Sassner et al., 2008). 
 
 
FUTURE TRENDS 
 
Although pretreatment systems and the concomitant 
release of bio-products from LCW have been greatly 
improved by new technologies, there are still challenges 
that need further investigations. These challenges include 
development of more efficient pretreatment and pro-
duction technologies, bioprospecting and development of 
stable genetically engineered microorganisms, improved 
gene cloning and sequencing technologies and 
enhancement of productions based on economies of 
scale for more efficient and cost effective conversions of 
LCW into value-added products.  

So far, lignocellulosic biomass has been the most 
promising economically viable and renewable source of 
biohydrogen and biodiesel. However, the second 
generation microalgal systems seem to be more 
advantageous in that they: (1) have a higher photon 
conversion efficiency (as evidenced by increased 
biomass yields per hectare): (2) can be harvested batch-
wise nearly all-year-round, providing a reliable and 
continuous supply of oil: (3) can utilize salt and waste 
water streams, thereby greatly reducing freshwater use: 
(4) can couple CO2-neutral fuel production with CO2 
sequestration: (5) produce non-toxic and highly bio-
degradable biofuels (Schenk et al., 2008). Therefore, 
extensive research is now being directed toward that end. 
Plant fibers as fillers and reinforcements for polymers are 
currently the fastest-growing type of polymer additives. 
Nanobiotechnology seems to take charge as far as the 
use of LCW nanofibres in plastic composites is 
concerned (Alemdar and Sain, 2008). It is envisaged that 
nano materials from renewable biowastes will be the 
main focus of future research. 
 
 
Conclusion 
 
This work has attempted to take a broad analysis of most 
of the research done worldwide in the past nine years 
regarding the enormous diversity of value-added 
products from pretreated lignocelluloses wastes (LCW). 
Various pretreatment and production systems providing 
technical and economic feasibility to harness the 
renewable materials while at the same time cleaning up 
the environment have been highlighted. Physicochemical  
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and biological pretreatment systems appear to be the 
mostly preferred methods, while the use of treated LCW 
as bio-based adsorbents of pollutants, and the production 
of degradable biofuels and biopolymers from LCW have 
drawn a lot of research interest. Current and future 
research trends are directed towards the developments 
and applications of engineered organisms to tackle the 
challenges encountered from using conventional naturally 
occurring strains. At the same time, production of nano 
materials from pretreated LCW provides bright future 
prospects in the biocomposites industry. Although the 
main challenge facing LCW pretreatment and value-
addition industry over the next few years will be to reduce 
processing and production costs, this work looked at 
studies that suggest the ways out of this problem. The 
review serves as a valuable reference material for a wide 
range of scientists and technologists in the relevant 
fields. 
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