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Available P and enzyme activities strongly depend on the soil water potential. The objective of this 
study was to test the effects of water potential on soil available P, microbial biomass P(MBP) and some 
phosphomonoesterase activities. A semiarid soil classified as Calcic Haploxerept was treated with raw 
sewage sludge at a rate of 20 g kg-1. Four levels of irrigation (deionized water) were established for 90 
days of incubation. Constant water potentials used for soil incubation were: saturation (SA, 0 bar), field 
capacity (FC, -0.3 bar), and permanent wilting point (PWP, -15 bar) in three treatments. An irrigation 
treatment was also drying-rewetting cycle (DWC) between -0.3 to -15 bars. After 0, 20, 60 and 90 days of 
incubation, soils were sampled for analysis. The addition of sewage sludge decreased soil pH and 
increased soil EC, organic C, total N, organic P, available P, MBP contents and phytase, alkaline and 
acid phosphatases activities significantly. The effects of soil moisture, incubation time and their 
interaction on soil available P, MBP and phosphomonoesterase activities were significant at different 
levels. During 20 days of incubation, available P and phosphatase activities decreased, whereas 
microbial P and phytase activity increased significantly. Thereafter, only available P increased and 
phytase activities decreased continuously, but microbial P, alkaline and acid phosphatase activities 
fluctuated during incubation. Soils incubated in DWC and FC compared to soils incubated in SA and 
PWP had higher available P contents. Microbial P and phosphomonoesterase activities increased with 
increasing soil water potentials significantly. The highest (38.7 mg kg-1) and lowest (28.9 mg kg-1) 
microbial P was measured in soil incubated in SA and PWP respectively. Correlation coefficient 
between available and microbial P was negative and significant. The activities of alkaline phosphatase, 
acid phosphatase and phytase were higher and lower in soils incubated in SA and PWP, respectively.  
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INTRODUCTION 
 
Many soils in the Mediterranean region have been 
progressively degraded resulting in a decrease in their 
fertility (Pascual et al., 1998). Organic wastes have been 
extensively used in order to improve soil quality. Indeed, 
organic waste can enhance plant productivity as it 
contains N, P, etc. Among the different macronutrients 
contained in sludge, phosphorus is an essential element 
for plant metabolism since it is present in numerous mole-  
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cules such as phospholipids or nucleotides. It makes up 
about 0.2% of plant dry weight. Terrestrial plants gene-
rally meet their P requirement by the uptake of soil P in 
inorganic form (Marschner, 1995). 

According to Lima et al. (1996), only a small portion of 
organic waste total P is in the inorganic form and can be 
assimilated by plants or microorganisms, while approxi-
mately 70% of P is in the organic form. Organic P is a 
major component of soil P, making up 20-80% of the total 
P in the surface layers of soil (Dalal, 1977). A major 
constituent of organic P in soil is phytate (inositol hexa- 
and pentaphosphates), which can account for up to half 
of the total organic P present (Dalal, 1977). 

To be assimilated, organic P present in organic fraction  



 
 
 
 
must be previously mineralized into inorganic orthopho-
sphate ions. Mineral orthophosphate is the sole form of P 
to be assimilated by microorganisms and plants (Rao et 
al., 1996). This process is catalyzed by phosphatase 
enzymes, which are found in soil microorganisms, plant 
roots and in extracellular forms in manures and soils. 
Among these enzymes, acid and alkaline phosphomono-
esterases (E.C. 3.1.3.) and phytase (E.C. 3.1.4.) are con-
sidered as the predominant phosphatases in most types 
of soil and litter (Tabatabai, 1994; Criquet et al., 2004). 

Alkaline phosphatase (E.C. 3.1.3.1) is an extra cellular 
enzyme enabling utilization of phosphomonoesters as the 
source of inorganic phosphate (Pi) required for the main-
tenance of cellular metabolism. It is an adaptive enzyme 
whose biosynthesis is controlled by the concentration of 
Pi in the medium (Orhanovic et al., 2000) 

Phosphatases measured in soils reflect the activity of 
enzymes bound to soil colloids and humic substances, 
free phosphatases in the soil solution, and phosphatases 
associated with living and dead plant or microbial cells 
(Nannipieri et al., 1990). Phosphatase activity is related 
to soil and vegetation conditions (Herbien and Neal, 
1990), responds to changes in management (Adams, 
1992; Clarholm, 1993) and can be related to seasonal 
changes in soil temperature and moisture (Speir and 
Cowling, 1991). 

Phytate-degrading enzymes, commonly referred to as 
phytases (myo inositol hexakisphosphate phosphohy-
drolases), are presumably the primary agents in soil res-
ponsible for dephosphorylating InsP6. These enzymes, 
which originate from a diverse group of organisms 
including fungi, bacteria and plants (Irving, 1980), 
catalyze hydrolysis of the phosphate ester bond(s) of 
InsP6, forming orthophosphate and a series of partially 
dephosphorylated phosphoric esters of myo-inositol 
(Mitchell et al., 1997). In some cases hydrolysis may go 
to completion, yielding myoinositol (Greiner, 2006). 

Soil enzyme activities are useful candidate ‘‘sensors’’, 
since they integrate information both about microbial 
status and soil physico-chemical conditions (Aon et al., 
2001). Variations in phosphatase activity are a good indi-
cator of the biological state of a soil (Pascual et al., 
1998). The use of wastes, such as sewage sludge, in 
agriculture and for land reclamation is increasingly 
becoming important for soil conservation in semi-arid 
climate zones (Navas et al., 1998; Ros et al., 2003). One 
method to reverse such soil degradation involves the 
addition of organic matter to improve soil quality (Garcıa 
et al., 2000). Using organic wastes and manures, in arid 
and semi-arid regions will contribute to enrichment of 
these soils with organic matter and help to reduce other 
environmental problems (Ku¨tu¨k et al., 2003). Sewage 
sludge addition has been shown to produce beneficial 
changes including increases in organic matter, organic 
carbon, major nutrients (e.g., N, P), water-holding capa-
city and porosity (Ku¨tu¨k et al., 2003).  

Generally,   organic   waste  application  stimulates  soil  
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microbial processes by increasing the number of 
culturable bacteria and fungi, microbial biomass C and N, 
basal respiration and enzyme activities (Fernandes et al., 
2005). Alkaline phosphomonoesterase activity of the 
manure-treated soil was more than 2- to 4-fold greater 
than those in soils from the other treatments tested by 
Parham (2002).  

Soil moisture content is one of the most important 
factors which can affect soil biological and biochemical 
processes. According to Magid et al. (1999), micro-
organisms lose some of their ability to degrade complex 
substrates during desiccation. Harris (1981) reported that 
microorganism's ability to withstand desiccation was 
influenced by their cell walls and their growth type. Slow 
growing soil organisms are less susceptible to drying 
condition than fast growing soil organisms (Robinson et 
al., 1965). Mikha et al. (2005) reported that repeated dry-
rewetting cycles, did not significantly reduce the size of 
the microbial biomass.  

Therefore, the size of microbial biomass is not a limiting 
factor for N, C and P mineralization (Franzluebbers et al., 
1994). Soil microbial population and enzyme activities 
strongly depend on the soil moisture contents and the 
objectives of this study was to assess the temporal 
variability and to test the soil water potential effects on 
available P, MBP and some phosphoesterase activities in 
sewage sludge treated soil. 
 
 
MATERIALS AND METHODS 
 
Soil and organic waste sampling 
 
The soil classified as Calcic Haploxerept (Soil Survey Staff, 1998), 
was sampled from the top 20 cm layer of an agricultural soil in 
Hamedan that was fallowed during the previous year, in northwest 
of Iran, with semi-arid climate (annual rainfall of 300 mm; annual 
average temperature 13°C). Raw sewage sludge was sampled from 
Serkan Wastewater Plant, which processes domestic wastewater. 
The soil was air dried to do the incubations experiment.   
 
 
Soil physical and chemical analyses 
 
Air-dried soil was subsequently crushed and sieved to pass a 2 mm 
mesh screen for particle-size analysis using the hydrometer method 
(Gee and Bauder, 1986). Equivalent calcium carbonate (ECC) was 
measured by back titration procedure (Leoppert and Suarez, 1996). 
Soil pH and electrical conductivity (EC) were measured in a 1:5 soil: 
water extract after shaking for 30 min (Hesse, 1971). Organic 
carbon (OC) was analyzed by dichromate oxidation and titration 
with ferrous ammonium sulfate (Walkley and Black, 1934). Total 
nitrogen in all samples was determined by the Kjeldahl method 
(Hinds and Lowe, 1980). Total, organic, and available phosphorus 
was extracted with percholoric and nitric acid, Sulfuric acid and 0.5 
M NaHCO3 ( pH 8.5) respectively and determined spectrophoto-
metrically as blue molybdate-phosphate complexes under partial 
reduction with ascorbic acid (Sommers and Nelson, 1972; Bowman, 
1989; Jackson, 1958).  

Sewage sludge was also analyzed for pH, electrical conductivity, 
total organic carbon, total N and total P according to those 
methods.  
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Table 1. Some characteristics of the sewage sludge used. 
 

Properties Mean 
pH (1:5) 7.5 
Electrical conductivity (dS.m-1) 4.6 
Total organic carbon (g.kg-1) 570.0 
Total N (g.kg-1) 57.3 
Total P (g.kg-1) 30.1 
C/N 9.9 
C/P 18.6 

 
 
 
Microbiological and biochemical analyses  
 
Fresh soil samples were stored at 4°C for microbiological analyses. 
Microbial biomass P (MBP) was determined in each sample using 
CHCl3 as a biocide and bicarbonate as an extractant (Brookes et 
al., 1982; Hedley and Stewart, 1982). The difference between P in 
nonbiocide-treated samples and P in biocide-treated samples was 
considered to be MBP. 

Acid and alkaline phosphatases were analyzed according to the 
methods of Eivazi and Tabatabai (1977). Phytase activity was 
assayed by the improved method of Han et al. (1999). 
 
 
Incubation procedure 
 
The sampled soil was treated with sewage sludge (SS) at a rate of 
20 g kg-1 (w/w) with three replicates. Four levels of irrigation 
(deionized water) were established for 90 days of incubation. 
Constant water potentials used for soil incubation were: saturation 
(SA, 0 bar), field capacity (FC, -0.3 bar), and permanent wilting 
point (PWP, -15 bar) in three treatments. An irrigation treatment 
was also drying-rewetting cycle (DWC) between -0.3 to -15 bars. 
After 0, 20, 60 and 90 days of incubation a portion of each soil was 
taken for analysis of soil available P and MBP, phytase, alkaline 
and acid phosphatases according to the methods mentioned above. 
Analysis of soil parameters in DWC treatment carried out at 48 h 
after soil rewetting. Soil moisture was near field capacity at this 
time.  
 
 
Statistical analyses 
 
The study was a factorial test with completely randomized design. 
The effects of soil moisture (SM), incubation time (IT) and their 
interactions (SM*IT) on available P, MBP and also soil phytase, 
alkaline and acid phosphatase activities were tested. Data were 
statistically analyzed for standard deviation, means were calculated 
and Duncan’s new multiple range tests were performed to assess 
the effect of soil water potential on available and MBP and also soil 
phytase, alkaline and acid phosphatase activities in a sewage 
sludge treated soil. The computer programs used for data analysis 
were Ms-Excel and SAS 6 and SPSS 9.0 for windows (spss Inc). 
 
 
RESULTS 
 
Selected properties of the sewage sludge used in this 
study are shown in Table 1. Sewage sludge EC was high. 
The addition of sewage sludge to soil increased soil EC 
and decreased soil pH. Also, soil organic C, total N and P 
contents were increased  significantly  (Table 2).  The  in- 

 
 
 
 
crease of organic C was 1.48 times that of the control soil 
(no sewage sludge addition). Changes in total N content 
were similar to those obtained for organic C. Total P was 
increased from 2.03 to 2.64 g kg-1. Soil organic, available 
and MBP contents were also increased after addition of 
sewage sludge to soil (Table 2). The increase in MBP 
was 2 times that of untreated soil. Phytase, alkaline and 
acid phosphatases activities were increased more than 3 
times than that of untreated soil. The increase in phytase 
activity was higher than those of the other soil properties. 
It was 13.12 times higher compared to untreated soil.  

Table 3 shows analysis of variance of soil available and 
microbial P contents and alkaline phosphatase, acid 
phosphatase and phytase activities as affected by soil 
moisture (SM) and incubation time (IT). Soil moisture, 
incubation time and their interaction had strongly signifi-
cant effects (p<0.01) on all of these properties (except 
acid phosphatase activity). The effect of incubation time 
on acid phosphatase activity was significant at p<0.05 
and the effect of interaction between soil moisture and 
incubation time on this soil property were not significant.    
 
 
The effects of soil moisture 
 
Sewage sludge treated soils incubated in DWC and FC 
compared to sewage sludge treated soils incubated in SA 
and PWP had higher available P contents. The differen-
ces between available P in soils incubated in DWC, FC 
and SA were not significant (p<0.05). However, available 
P in soil incubated in PWP was significantly lower than 
those incubated in other moisture treatments (Table 4).  

Microbial P in soils incubated in different moisture con-
ditions was significantly different. It was significantly 
higher in soil incubated in SA condition (38.7 mg kg-1) 
and lowest in soil incubated in PWP (28.8 mg kg-1). 
Microbial P in soils incubated in DWC (33.9 mg kg-1) and 
FC (33.2 mg kg-1) were not significantly different.  

Soil incubation in different moisture obviously changed 
alkaline phosphates activity. Same as observed for 
microbial P, alkaline phosphatase activity was higher in 
soil incubated in SA compared to those incubated in 
other moisture treatments. Alkaline phosphatase activity 
in soil incubated in FC was significantly higher that in soil 
incubated in DWC. The lowest alkaline phosphatase 
activity was assayed in soil incubated in PWP (4.4 �mol 
P.N.P g-1h-1).  

The effect of soil moisture on acid phosphatase activity 
was lower than the effect on alkaline phosphates activity. 
Although acid phosphatase activity in soil incubated in SA 
was the highest however there were not significant 
difference between soils incubated in PWP, FC and SA. 
The lowest acid phosphatase activity was measured in 
soil incubated in DWC condition (1.8 �mol P.N.P g-1h-1). 
The ratios of alkaline/acid phosphatase activities were 
also analyzed in this study. The results showed that alka-
line/acid phosphatase ratio  was highest in soil incubated 
in DWC condition (2.6) compared to other conditions The  
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Table 2. Some soil characteristics before and after treatment with sewage sludge. 
 

 
Soil properties 

Before 
treatment 

After 
treatment 

Increase 
ratio 

pH (1:5) 7.9 7.6 0.9 
EC (dS.m1) 0.1 0.2 1.6 
Organic C (g.kg1) 21.4 31.6 1.5 
Total  N (g.kg1) 3.9 4.6 1.2 
Total  P (g.kg1) 2.03 2.6 1.3 
C/N 5.3 6.8 1.3 
C/P 10.5 11.9 1.1 
Organic P (g.kg-1) 0.8 0.9 1.1 
Biomass P (mg.kg1) 21.2 42.5 2 
Available P (mg.kg1) 25.3 36.5 1.4 
Alkaline phosphates act. (�mol P.N.P g-1h-1) 1.5 5.3 3.6 
Acid phosphatase act. (�mol P.N.P g-1h-1) 0.8 3.1 3.9 
Phytase activity  (�mol P g-1.min-1) 0.6 7.8 13.1 
ECC (%) 3.5   
Sand (%) 63.5   
Silt (%) 20.6   
Clay (%) 15.9   

 
 
 

Table 3. Analysis of variance (mean square) of sewage sludge treated soil available P, microbial P, alkaline 
phosphatase, acid phosphatase and phytase activities as affected by soil moisture (SM) and incubation 
time (IT) a. 
 

Source of 
variations 

Df Available 
P 

Microbial 
P 

Alkaline 
phosphate act. 

Acid phosphatase 
act. 

Phytase 
act. 

SM 3 231.1*** 193.8*** 4.5*** 4.3*** 342.8*** 

IT 3 2355.8*** 3242.6*** 1.0*** 1.5* 58.8*** 

SM*IT 9 185.5*** 8083298*** 0.2*** 0.6 6.4*** 

 
a Mean squares marked by *, ** and *** are significant at P<0.05, P<0.01 and P<0.001, respectively. 

 
 
 

Table 4. Available P, microbial P, alkaline phosphatase, acid phosphatase and phytase activities in sewage sludge treated 
soils incubated in different moistures#. 
 

Soil 
moisture## 

Available 
P 

(mg.kg-1) 

Microbial 
P 

(mg.kg-1) 

Alkaline 
phosphates act. 
(�mol PNP g-1h-1) 

Acid   
phosphatase act. 
(�mol PNP g-1h-1) 

Alkaline/acid 
phosphatase 

ratio 

Phytase act.       
(�mol P g-

1min-1) 

DWC 48.0a 33.9b 4.5c 1.7b 2.6a 6.7c 

PWP 38.8b 28.8c 4.4d 2.6a 1.8b 4.9d 

FC 47.8a 33.2b 5.0b 2.9a 1.7b 11.3b 

SA 46.9a 38.7a 5.7a 3.1a 1.7b 16.9a 

 
# Values with different character are significantly different at the 0.05 probability level. 
## DWC- drying-rewetting cycle (between -0.3 to -15 bar), PWP- permanent wilting point (-15 bar), FC- field capacity  
(-0.3 bar), SA- saturation (0 bar). 

 
 
 
differences between alkaline/acid phos-phatase ratios in 
soils incubated in PWP, FC and SA were not significant 
(Table 4).  

Phytase activities in soils incubated in different 
moisture conditions were significantly different. Phytase 

activity was significantly higher in soil incubated in SA 
condition (16.9 �mol P g-1min-1) compared to those 
incubated in other conditions. Phytase activity in soil incu-
bated in FC was significantly different from those assay 
ed in soils incubated in PWP and DWC. The  lowest  phy-  
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Table 5. Soil available P, microbial P, alkaline phosphatase, acid phosphatase and phytase activities in different incubation 
time #. 
 

Incubatio
n time 
(days) 

Available 
P 

(mg.kg-1) 

Microbial 
P 

(mg.kg-1) 

Alkaline 
phosphates act. 
(�mol PNP g-1h-1) 

Acid   
phosphatase act. 
(�mol PNP g-1h-1) 

Alkaline/acid 
phosphatase 

ratio 

Phytase act. 
(�mol P g-

1min-1) 
0 36.5c 42.5b 5.3a 3.1a 1.9b 7.8d 

20 32.1d 52.1a 4.7bc 2.5b 1.9b 13.1a 

60 49.9b 16.9d 4.7c 2.3b 2.1a 9.7b 

90 63.1a 23.1c 4.8b 2.5b 2.0a 9.3c 

 
# Values with different character are significantly different at the 0.05 probability level. 

 
 
 
tase activity (5.0 �mol P g-1min-1) was measured in soil 
incubated in PWP.  
 
 
The effects of incubation time 
 
Available P significantly decreased from 36.5 mg kg-1 to 
32.1 mg kg-1 in 20 days of incubation in sewage sludge 
treated soil (Table 5). It may be related to increase of 
microbial population and P immobilization. Available P 
increased to 49.9 and 63.1 mg kg-1 at 60 and 90 days of 
incubation respectively. The differences between avail-
able P at different times of soil incubation were significant 
(p<0.05). Microbial P was also different at different times 
of incubation. The highest microbial P was measured 
after 20 days of incubation. Microbial P significantly 
increased from 42.5 mg kg-1 to 52.1 mg kg-1 in 20 days of 
incubation and then decreased to 16.9 mg kg-1 at 60 days 
of incubation and again increased to 23.1 mg kg-1 at 90 
days of incubation. These changes may be due to tem-
poral variability of microbial populations in soil.   

Alkaline phosphatase activity decreased from 5.4 to 4.8 
�mol PNP g-1h-1 in 20 days of incubation and to 4.7 and 
4.8 �mol PNP g-1h-1 in 60 and 90 days of incubation 
respectively. The temporal variability of acid phosphatase 
activity was same as alkaline phosphatase activity. Acid 
phosphatase activity was significantly higher at start of 
incubation and thereafter decreased from 3.1 �mol PNP 
g-1h-1 to 2.3 �mol PNP g-1h-1 at 60 days of incubation and 
was 2.5 �mol PNP g-1h-1 after 90 days of incubation 
(Table 5). The ratio of alkaline/acid phosphatase activity 
increased continuously in 60 days of incubation 
significantly. Although it decreased from 2.1 in 60 days of 
incubation to 2.0 in 90 days of incubation but this 
decrease was not significant.   

The differences between phytase activities in different 
time of incubation were significant at 0.05 level. Same as 
microbial P, Phytase activity in sewage sludge treated 
soil increased significantly from 7.8 �mol P g-1min-1 to 
13.1 �mol P g-1min-1 after 20 days of incubation. It may 
be related to increase of microbial population and acti-
vities. After 20 days of incubation phytase activity de-
creased continuously. It was assayed 9.3 �mol P g-1min-1 
after 90 days of incubation. 

Correlation analysis  
 

Correlation coefficient between soil available P and 
microbial P was negative and significant at 0.001 level. 
Soil available P and phosphatases activities had negative 
correlation coefficient. Whereas, soil available P had 
positive correlation with phytase activity and the ratio of 
alkaline/acid phosphatase activity. But these correlations 
were not significant. 

Microbial P had no significant correlations with phos-
phatases activities. The correlation coefficient between 
microbial P and the ratio of alkaline/acid phosphatase 
activity was also not significant. However microbial P had 
a positive and significant correlation with phytase activity.  

Soil alkaline phosphatase activity had positive and 
significant correlations with acid phosphatase and phy-
tase activities at 0.01 and 0.001 levels respectively. Soil 
acid phosphatase activity had positive and significant 
correlations with phytase activity at 0.05 levels.  

Correlation coefficient between the ratio of alkaline/acid 
phosphatase activity and alkaline phosphatase activity 
was not significant. But the ratio of alkaline/acid phos-
phatase activity had negative and significant correlations 
with acid phosphatase and phytase activities at 0.001 
and 0.05 levels respectively.  
 
 
DISCUSSION 
 
This study shows that soil total P, organic P, available P 
and MBP contents and phosphoesterase activities were 
increased by addition of sewage sludge to soil. The 
increase of soil MBP, alkaline and acid phosphatases 
activities and especially Phytase activity were more 
obvious. Other researchers also reported that short-term 
application of organic wastes in soil caused an increase 
in available P (Lehmann et al., 2005). Jenkinson and Lad 
(1981) suggested that treatment of soils with animal 
manure, not only increased the available nutrient in soil, 
but also affected soil microbial biomass. Addition of 
organic wastes to soil improved the generation and activi- 
ties microbial biomass (Martens, 2000). The added orga-
nic waste promotes biological and microbial activities, 
which accelerate the breakdown of organic substances in 



 
 
 
 
the added waste to soil (Agbenin and Goladi, 1998).  

Many researchers found the positive effect of the 
addition organic matter to soil on enzymes activities 
(Fernandes et al., 2005; Kizilkaya and Bayraki, 2005). 
The enhanced biological activities in the organic waste 
treated soil are evidenced by high phosphatase and de-
hydrogenase activities and microbial C and P. According 
to Garcia et al. (1993), organic matter of sewage sludge 
contains high amounts of enzymatic substrates inducing 
the activity of the different phosphatases in soil. When 
they are applied to soil, these easily available substrates 
stimulate enzyme production and consequently microbial 
growth. Labile organic phosphorus is a substrate of acid 
phosphates (Thanh Nguyen and Marschner, 2005). 

This study showed that soil available P and microbial P 
were severely affected by soil moisture. The highest and 
lowest soil available P and especially microbial P were 
obtained for soils incubated in SA and PWP respectively. 
These findings may be related to microbial activity and 
populations. It was reported that soil drying reduces 
microbial activity and mineralization of organic C, N and 
P (Pulleman and Tietema, 1999), decreases microbial 
mobility (Grifin, 1981) and restricts substrate and nutrient 
availability (Sommers et al., 1981). According to Magid et 
al. (1999), microorganisms lose some of their ability to 
degrade complex substrates during desiccation.  

However in this study available P was higher in soil 
incubated in drying and rewetting condition. Mikha et al. 
(2005) reported that repeated dry-rewetting cycles, did 
not significantly reduce the size of the microbial biomass. 
Therefore, the size of microbial biomass was not the 
limiting factor for N, C and P mineralization 
(Franzluebbers et al., 1994).  

Results presented showed that soil available P and 
microbial P were affected by incubation time significantly. 
The first decrease of available P and increase of 
microbial P may be due to increase of soil microbial 
population and immobilization of inorganic soil Wong et 
al. (1998) reported that available P in sewage sludge 
treated soil decreased significantly 28 days after soil 
treatment. The addition  of  organic waste with easily 
degradable materials to soil results in high microbial 
biomass due to the stimulation of autochthonous micro-
bial activity in soil and the addition of exogenous micro-
organisms originating on sludge (Saviozzi et al., 2002). 
The negative and significant correlation between avail-
able P and microbial P observed in this study may be in 
accordance with Wong et al. (1998) and Saviozzi et al. 
(2002) reports. After 20 days of incubation, microbial P 
decreased and available P increased due to microbial 
autolysis and P mineralization because of the reduction 
of easily degradable materials (Yan et al., 2000) and the 
induction of unfavorability of soil for microbial populations 
(Bardget et al., 1999).  

This study showed that soil phosphomonoesterase 
activities were significantly affected by soil water poten-
tial. The highest and the lowest alkaline phosphatase and  
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phytase activities were recorded in sewage sludge 
treated soil incubated in SA and PWP conditions 
respectively. These results are in accordance with that of 
Speir and Cowling (1991). However, Kramer and Green 
(2000) reported that soil moisture and temperature had 
limited effects on phosphates activities. It was reported 
that the role of fungi in alkaline phosphatase production 
was dominant. Zornoza et al. (2006), studied air-drying 
and rewetting pre-treatment effects on some soil enzyme 
activities under Mediterranean conditions and found that 
acid phosphates showed an increase in activity at the 
end of incubation time. Higher values of acid 
phosphatase activity during incubation may be due to 
changes in environmental conditions with incubation, 
such as soil moisture, that could favour acid phosphates 
production, secretion or reactivation.  

The study of temporal variability of soil phosphomono-
esterase activities showed that in sewage sludge treated 
soils alkaline and acid phosphatase activities decreased 
and phytase activity increased with decreasing available 
P and with increasing microbial P after 20 days of incu-
bation. The correlation between phytase activity and 
microbial P was positive and significant. However the 
negative correlation between available P and phosphor-
monoesterase activity was not significant. There have 
been reported on the negative and significant relationship 
between available P and phosphates activity (Moscatelli 
et al., 2005). This phenomenon can be explained by a 
competitive inhibition of phosphatases by phosphate ions 
or by a negative feedback of phosphate ions on PHO 
genes resulting in a repression of phosphatase synthesis 
by microorganisms (Oshima et al., 1996). Another 
explanation could be the availability of C and N sub-
strates, which, as mentioned by Allison and Vitousek 
(2005), is closely linked to P nutrient mineralization by 
microorganisms.  

However non significant correlation between available 
P and phosphatase activity in this study may be 
explained by intending enzyme fractions in soil. A fraction 
of soil enzymes is associated with living microorganisms, 
other fractions are associated with non-living cell and 
particulate matter of the soil matrix and the rest is present 
in the soil water solution as free enzymes (Burns, 1982). 
The exogenous enzymes linked to soil colloids (immobi-
lized enzymes), are less susceptible to denaturation 
(Garcia et al., 1993) and could have an important 
ecological effect on soil quality, because biochemical 
activity could remain in soil despite rapid reduction of 
microbial population.  

Garcia et al. (2000) reported that in the calcareous soils 
with highly stabilized organic matter, the enzymes are 
mostly protected by soil colloids and generally have a 
long half-life. This and much of similar work (Jenkinson 
and Powlson, 1976), supports this idea that the MBP and 
phytase activity are much more sensitive indicators of 
changing soil conditions than its acid phosphatase 
activity, so that the MBP and  phytase  activity  can  serve  
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as early warning of such changes. 

In conclusion this study showed that correlation coef-
ficient between available and microbial P was negative 
and significant in a sewage sludge treated calcareous 
soil. Phytase, alkaline and acid phosphatases activities 
were increased more than 3 times after addition of sew-
age sludge to soil, however the increase of phytase 
activity were higher than the increase of the other soil 
properties. Soil microbial P and the activity of alkaline 
phosphatase, acid phosphatase and phytase were 
significantly higher in soil incubated in SA and lower in 
soil incubated in PWP. Although microbial P and phos-
phomonoesterase activities were higher in soil with 
higher water potentials but available P was higher in soil 
with lower soil water potentials.        
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