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In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular 
genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection 
(MAS). However, results have been modest. This has been due to several factors including absence of 
tight linkage QTL, non-availability of mapping populations and lack of substantial time needed to 
develop such populations. To overcome these limitations and as an alternative to planned populations, 
molecular marker- trait associations have been identified by the combination between germplasm and 
the regression technique. In the present preview, we first surveyed the successful applications of 
germplasm-regression-combined (GRC) molecular marker-trait association identification in plants; 
secondly, we described how to do the GRC analysis and its differences from mapping QTL based on a 
linkage map reconstructed from the planned populations; thirdly, we considered the factors that affect 
the GRC association identification, including selections of optimal germplasm and molecular markers 
and testing of identification efficiency of markers associated with traits; and finally we discussed the 
future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, 
especially in long-juvenile woody plants when no other genetic information such as linkage maps and 
Quantitative Trait Loci are available. 
 
Key words: Association analysis, marker assisted selection (MAS), molecular marker, quantitative trait, 
germplasm-regression. 

 
 
INTRODUCTION 
 
The improvement of quantitative traits (that is productivity, 
disease resistance, abiotic stress tolerance and/ or quality) 
has long intrigued plant breeders. Many desirable varie- 
ties and lines have been selected and bred by conven- 
tional breeding programs, such as systematic selection, 
cross and mutation breeding. With a pedigree breeding 
program, the breeder will cross two parents and practice 
selection until advanced-generation lines with  the  best 
 
 
 
Abbreviations: QTL, quantitative trait loci; MAS, marker 
assisted selection; GRC, germplasm-regression-combined; 
RAPD, random amplified polymorphic DNA; RFLP, restriction 
fragment length polymorphism; AFLP, amplified fragment length 
polymorphism; ISSR, inter-simple sequence repeats; SAMPL, 
selective amplification of microsatellite polymorphic loci; SSR, 
simple sequence repeat; SCAR, sequence characterized 
amplified region; SNP, single nucleotide polymorphism; PCR, 
polymerase chain reaction. 

phenotype for the quantitative trait under selection are 
identified. These lines will then be entered into a series of 
replicated trials to further evaluate the material with the 
goal of releasing the best lines as a cultivar. This conven- 
tional breeding program requires large inputs of labor, 
land and financial resources. For these reasons, plant 
breeders are motivated to identify promising lines as early 
as possible in the selection process. 

In the past 20 years, the major effort in breeding has 
changed from traditional phenotypic-pedigree-based 
selection systems to molecular genetics with emphasis on 
quantitative trait loci (QTL) identification and marker 
assisted selection (MAS). MAS, which uses DNA markers 
to select optimal genotypes, is an excellent tool for selec- 
ting beneficial genetic traits that are difficult to measure, 
that exhibit low heritability and/or are expressed late in 
development (Ribaut and Hoisington, 1998; Davies et al., 
2006; Wilde et al., 2007; Ender et al., 2008; Knoll and 
Ejeta, 2008), as well as for assessing the genetic potential  
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of specific genotypes prior to phenotypic evaluation 
(Gebhardt et al., 2004). Molecular markers linked with 
QTL/major genes for traits of interest are being routinely 
developed in many crops and trees, using materials 
derived from planned crosses such as F1s (trees), F2s 
(progeny from F1 selfing), BCs (back crossed progeny), 
BILs (F2 selfed and back-crossed progeny), RILs (pro- 
geny from F2 selfing) and NILs (F2 back-crossed and 
selfed progeny). Some of these markers have been 
successfully applied in some plants breeding programs 
(Collard and Mackill, 2008) by Marker-assisted back- 
crossing (Helguera et al., 2003; Benchimol et al., 2005) 
and pyramiding (Ashikari et al., 2005; Zhang et al., 2006; 
Barloy et al., 2007) and some will be hopefully used in 
future MAS (Ren et al., 2005; Song et al., 2007; Hansen 
et al., 2008). 

However, results of MAS/QTL have been modest 
(Kearsey and Farquhar, 1998; Collard and Mackill, 2008; 
Hospital, 2009), especially as there are still few reports on 
success stories in long-juvenile woody plants. This may 
be because (i) in linkage-based QTL analyses, non-avail- 
ability of mapping populations (only few genotypes that 
are used as parents of mapping populations may not be 
effective in different backgrounds (Liao et al., 2001; 
Steele et al., 2006)), lack of substantial time needed to 
develop such, and planned populations (especially for 
long-juvenile woody plants) are major limitations in the 
identification of molecular markers for specific traits; (ii) 
the success of MAS/QTL largely depends on the extent of 
genetic linkage between markers and relevant QTL loci 
(Virk et al., 1996; Misztal, 2006), but the absence of tight 
linkage is in mostly linkage-based studies (Thomas, 2003); 
(iii) the existence of QTL × environment interactions 
(Bouchez et al., 2002). In order to overcome these limita- 
tions and as an alternative to planned populations, mole- 
cular marker-trait association identifications have been 
conducted through the combination between the present 
germplasm and the regression technique (Wright and 
Mowers, 1994; Yonash et al., 2000; Chatterjee and 
Pradeep, 2003; Chatterjee and Mohandas, 2003; 
Pradeep et al., 2007; Srivastava et al., 2007) and increa- 
singly adopted in many plants (Maureira-Butler et al., 
2007). The germplasm-regression-combined (GRC) asso- 
ciation studies not only allow mapping of genes/QTLs with 
higher level of confidence, but also allow detection of 
genes/QTLs, which will otherwise escape detection in 
linkage-based QTL studies based on the planned 
populations. 

In the present preview, we first surveyed the successful 
applications of GRC molecular marker-trait association 
identification in plants and then describe how to conduct 
this analysis and the difference from mapping QTL based 
on a linkage map reconstructed from the planned popu- 
lation. We then considered the factors that affect GRC 
association identifications, including selection of optimal 
germplasm and molecular markers and testing of markers 
associated with desirable traits. In the end, we discussed  

 
 
 
 
briefly the future prospects of GRC marker-trait asso- 
ciation analysis used in plant MAS/QTL breeding pro- 
grams, especially in long juvenile and long-lived woody 
plants when no other genetic information such as linkage 
maps and Quantitative Trait Loci are available. 
 
 
EXEMPLIFICATIONS OF GRC MARKER-TRAIT 
ASSOCIATION IDENTIFICATION 
 
Use of GRC analysis to identify the associations of mole- 
cular markers with desirable traits is increasingly being 
used in crops and woody plants with great success, such 
as Asia rice (Virk et al., 1996), wheat (Roy et al., 2006), 
tea (Mishra and Sen-Mandi, 2004), Alfalfa (Obert et al., 
2000; Maureira-Bulter et al., 2007), mulberry (Vijayan et 
al., 2006; Kar et al., 2008), coconut (Shalini et al., 2007), 
birch (Wang, 2007; Wang et al., 2008; Xia et al., 2008), 
oat (Achleitner et al., 2008) and sea buckthorn (Ruan et 
al., 2009) (Table 1). These studies suggested that asso- 
ciations between DNA fragments and quantitative traits 
(QTLs) can be detected without the necessity of deve- 
loping the planned mapping populations and recon- 
structing the linkage map. 

Traits in these studies shown in Table 1 include yield 
and quality traits, disease and pest resistance, and 
drought tolerance. Molecular markers used in these 
studies involve random amplified polymorphic DNA 
(RAPD), restriction fragment length polymorphism (RFLP), 
amplified fragment length polymorphism (AFLP), inter- 
simple sequence repeats (ISSR), selective amplification 
of microsatellite polymorphic loci (SAMPL) and simple 
sequence repeat (SSR). The mostly regressive methods 
used in the GRC association identifications are multiple 
regression analysis (MRA), also including single linear 
regression analysis and general and mixed linear model. 
Sampling accessions with different phenotypic traits 
shown in Table 1 are selected from (i) different genotypes 
of one species growing in different regions, (ii) different 
genotypes of multiple species and (iii) different individuals 
and clones of the same genotype of one species. 
 
 
HOW TO DO GRC MARK-TRAIT ASSOCIATION 
IDENTIFICATION  
 
The linkage-based QTL development is the selection of 
two parents that differ markedly in a particular quantitative 
character and then the determination of associations bet- 
ween markers and that character in F2 or backcross 
progeny (Figure 1). In contrast, the GRC marker develop- 
ment is based on the phenotypic evaluation for traits of 
germplasm and associations between DNA fragments 
and traits can be detected without the construction of 
linkage-map based on the planned mapping populations 
(Figure 1). The time and cost used in the GRC analysis 
are significantly lower than that of the linkage-based QTL  



Ruan        575 
 
 
 
Table 1. Molecular marker-trait association identifications by the combination between germplasm and regression technique in plants. 
 
Plants Traits Materials Markers Regres

sion 
Markers associated with 
traits 

References 

Asian rice  
(Oryza 
sativa) 

Culm length (CL) and number 
(CN), days to flowering (DF), 
grain width (GW), and panicle 
(PL) and leaf length (LL) 

48 accessions 
from the South 
and Southeast 
Asia 

RAPD MRA 12 markers associated with 
CL, 12 for CN, 29 for DF, 32 
for GW, 25 for PL and 16 for 
LL 

Virk et al., 
1996 

Alfalfa  
(Medicago 
sativa L.) 

Resistant and susceptible 
downy mildew 

36 resistant 
plants from 
UC-143, and 36 
susceptible 
plants from 
UC-123 

AFLP χ2 
analysi
s 

Two markers associated with 
resistance and 2 for susceptibility 

Obert et al., 
2000 

Tea 
(Camellia) 

Drought tolerance 29 
Darjeeling-grow
n clones 

RAPD MRA OPAH02 associated with high 
activity of drought 
tolerance-specific isozymes at 
99.9% confidence level 

Mishra and 
Sen-Mandi, 
2004 

Bread wheat 14 agronomic traits including 
plant height (PH), days to 
flowering (DF), days to maturity 
(DM), tiller number (TN), flag leaf 
area (FLA), peduncle (PL) and 
spike length (SL), spikelets (SP) 
and florets (FL) and grain (GR) 
per spike, biological yield (BY), 
grain yield (GY), harvest index 
(HI) and 1000-grain weight (GW) 

55 accessions / 
genotypes from 
the Directorate 
of Wheat 
Research, 
Karnal, India 

SSR (S), 
SAMPL 
(A) and 
AFLP (F) 

SLA 
and 
MRA 

One S and two F markers 
associated with PH; six S, three 
A and four F for DF; three S and 
one A for DM; one S, two A and 
three F for TN; four S, three A 
and one F for FLA; two S and 
one F for PL; one A and two F for 
SL; four S and five F for SP; two 
S, one A and seven F for FL; two 
S, one A and six F for GR; one S 
and three F for BY; three S and 
one F for GY; four S, one A and 
one F for HI; two F for GW 

Roy et al., 
2006 

Mulberry  
(Morus 
indica L.) 

Leaf yield attributing traits 
including weight of 100 leaves 
(WL), branches internodal 
distance (BID), leaf yield (LY), 
chlorophyll (CH), protein (PR), 
moisture (MO) and total shoot 
length (TSL) 

44 genotypes 
collected from 
different parts of 
Kerala 

ISSR MRA Seven markers associated 
with WL, seven for BID, three 
for LY, three for CH, five for 
PR, two for MO and five for 
TSL 

Vijayan et 
al., 2006 

Alfalfa  
(Medicago 
sativa) 

Forage yield and fall growth A C0 population 
generated from 
the Peruvian × 
WISFAL 
population for 
several 
generations 

RFLP 
and SSR 

MRA Five markers associated with 
forage yield and seven markers 
for fall growth 

Maureira-Bu
lter et al., 
2007 

 
 
 
development. 

Well then, how do we conduct the GRC marker-trait 
association identification? We should first select optimal 
accessions from germplasm and evaluate the phenotypic 
values of interesting traits per accession and then amplify 
each accession using optimal molecular marker. After 
then, we do marker-trait association identification by the 
GRC analysis and then test identification efficiency of 
markers associated with traits (see below). In this process, 
marker-trait associations may be screened using the MRA 
approach: each quantitative trait is treated as a depen- 
dent variable and the various marker genotypes (scored 
as 1 for presence and 0 for absence) as independent 

variables. The analysis is based on the model:  
 
Y = a + b1m1 + b2m2 + ··· + bjmj + ··· bnmn + d + e  
 
which relates the variation in the dependent variable (Y = 
accession means for a quantitative trait) to a linear 
function of the set of independent variables mj, repre- 
senting the markers. The bj terms are the partial regres- 
sion coefficients that specify the empirical relationships 
between Y and mj; d represents the accessions residual 
which is left after regression and e is the random error of 
Y that includes environmental variation (Virk et al., 1996; 
Kar et al., 2008). F-values with P-values between  0.045  
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Table 1. Continued 
 
Plants Traits Materials Marker

s 
Regressi
on 

Markers associated with 
traits 

References 

Coconut  
(Cocos 
nucifera L.) 

Mite resistance (MR) 40 mite-resistant 
and -susceptible 
genotypes from 
different parts of 
south India  

RAPD 
and 
SSR 

SLA and 
MRA 

SLA: nine SSR and four 
RAPD markers associated 
with MR; MRA: six SSR and 
three RAPD markers 
associated with MR, a 
combination of three SSR 
and two RAPD with 100% 
association with MR 

Shalini et al., 
2007 

Birch  
(Betula 
platyphylla) 

Fiber length (FL) 100 individuals SSR, 
RAPD 
and 
ISSR 

MRA Four SSR markers 
associated with FL, PB15 
of them could identify as 
high as 75% long fiber 
individuals; Identification 
efficiencies of two SCAR 
markers transferred from 
RAPDBFLI-16 and ISSRBFLI-3 

markers associated with FL 
were > 92% for long-fiber 
length and 76% for 
short-fiber length 
respectively 

Wang, 2007; 
Wang et al., 
2008; Xia et al., 
2008 

Oat  
(Avena 
sativa L.) 

Agronomic traits (grain and 
groat yield, panicle 
emergence, plant height and 
lodging) as well as kernel 
quality traits (kernel and test 
weight, screening and groat 
percent) 

One hundred 
and fourteen 
varieties of 
worldwide origin 

AFLP GLM and 
MLM 

23 AFLP markers with 
many of these affecting 
multiple traits 

Achleitner et 
al., 2008 

Mulberry  
(Morus ssp.) 

Protein content 18 selected 
accessions from 
M. indica, M. 
alba and M. 
laevigata 

ISSR MRA Four markers associated 
with protein content 

Kar et al., 2008 

Sea 
buckthorn 
(Hippophae 
L.) 

Resistance and susceptibility 
to dried-shrink disease (DSD) 

52 accessions 
from H. 
rhamnoides and 
H. salicifolia 

ISSR MRA Four markers associated 
with DSD-resistance; four 
for DSD-susceptibility 

Ruan et al., 
2009 

 

RAPD: Random amplified polymorphic DNA; MRA: multiple regression analysis; AFLP: amplified fragment length polymorphism; SSR: simple 
sequence repeat; SAMPL: selective amplification of microsatellite polymorphic loci; SLA: single linear regression analysis; ISSR: inter-simple sequence 
repeats; RFLP: restriction fragment length polymorphism; GLM: general linear model; MLM: mixed linear model. 
 
 
 
and 0.099 were used to enter and remove independent 
variables from the regression equation, respectively (Affifi 
and Clark, 1984; Roy and Bargmann, 1957). R2 denotes 
the square of r, the correlation coefficient. Selected mar- 
kers should be further tested with linear curve fitting, using 
linear models for confirming the significance of β-statistics 
for each band identified by MRA. Beta can be defined as 
standardized regression co-efficient = BSx/Sy, where B is 
the regression coefficient or slope and Sx and Sy are the 
standard deviations of independent (x) and dependent (y) 
variables (Affifi and Clark, 1984; Kar et al., 2008; Ruan et 
al., 2009). This method provides maximum likelihood esti- 
mates of relationships between individual quantitative 
traits and various markers, and has been successfully 

used in some studies shown in Table 1. 
 
 
FACTORS THAT AFFECT GRC MARKER-TRAIT 
ASSOCIATION IDENTIFICATION 
 
The success of MAS/QTL basked on linkage map is 
determined by availability of mapping populations and 
tight linkage between markers and QTLs. Therefore, the 
essential validation of the GRC marker-trait association 
identifications should largely depend on the selection of 
optimal germplasm materials and molecular markers and 
the test of identification efficiency of markers associated 
with traits. First, we should know how to  select  optimal 
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Mapping population 
parental selection and hybridization 

Mapping QTL 
linkage map construction; 

phenotypic evaluation for trait (s); 
 QTL analysis 

QTL validation 
confirmation of QTL position-effect; 
QTL validation in independent populations; 
testing in different genetic backgrounds; 

fine mapping 

Marker validation 
testing of markers in important 

breeding materials; 
Identification of ‘tool box’ of 

polymorphic markers 

Marker-assisted 
selection 

Germplasm 
phenotypic trait(s) 

evaluation 

GRC analysis 
accessions selection; 

marker-trait association 
identification 

Marker validation 
testing of markers in germplasm 

and important breeding materials; 
validation of markers with high 

identifying rate 

 
 
Figure 1. Comparison in marker developments between linkage-based (solid 
arrowheads, cited from Collard and Mackill, 2008) and germplasm-regression 
combined (dashed arrowheads) marker-trait association identification. 

 
 
 
germplasm as sampling accessions in the GRC asso- 
ciation analysis. Based on the schemes of MAS reviewed 
by Kearsey and Farquhar (1998), Asins (2002), Collard et 
al. (2005), Mohler and Singrun (2005), Holland (2007), 
Collard and Machill (2008), Hospital (2009) and this paper, 
ideal accessions used in GRC marker-trait association 
identification should have (i) obviously phenotypic 
difference in interesting traits, (ii) widely genetic diversity 
and (iii) optimal genetic background. If there are obvious 
differences in phenotypic traits among different individuals 
belonging to one genotype or different genotypes of one 
species, which grow in the same or different regions, 
these samples are suitable for the GRC analysis, but we 

should pay attention to intraspecific genetic diversity. This 
sampling strategy was used in some GRC association 
studies (Virk et al., 1996; Roy et al., 2006; Vijayan et al., 
2006; Shalini et al., 2007; Wang, 2007; Achleitner et al., 
2008). On the other hand, accessions from different spe- 
cies belonging to the same genus in some studies (Kar et 
al., 2008; Ruan et al., 2009) were used for the GRC analy- 
sis. In this case, optimal genetic background should be 
noticed to avoid the frequency of specific alleles in 
multiple germplasms that may be too low to detect their 
effects (Maureira-Bulter et al., 2007). 

Secondly, we should know how to select optimal 
molecular markers in the GRC association analysis.  
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Traditionally, morphological markers have general 
demerits that reduce their usefulness. These include 
delay of marker expression that results in late develop- 
ment of the organism, dominance, deleterious effects, 
pleiotropy, confounding effects of genes that are un- 
related to the gene or trait of interest, but which also affect 
the morphological marker (epistasis), rare polymorphism 
and highly influencing environmental conditions. To avoid 
problems specific to morphological markers, molecular 
markers with various qualities have been developed 
(Teixeira da Silva et al., 2005). They are highly poly- 
morphic, with simple inheritance (often co-dominant), and 
occur abundantly throughout the genome; they are easy 
and fast to detect, have minimum pleiotropic effect and 
detection that is not dependent on the developmental 
stage of the organism. Well then, what markers are opti- 
mal for MAS? Important properties of ideal molecular 
markers associated with traits of interest should include (i) 
easy recognition of all possible phenotypes (homo and 
heterozygotes) from all different alleles, such as 
sequence-related amplified polymorphism (SRAP) and 
SSR markers, (ii) measurable differences in expression 
between trait types and/or gene of interest alleles, early in 
the development of the organism, (iii) no effect on the trait 
of interest that varies depending on the allele at the 
marker loci, (iv) low or null interaction among the markers 
allowing the use of many at the same time in a 
segregating population and (v) abundance in number and 
high polymorphism. 

However, so far, most types of molecular markers (for 
example RFLP, RAPD, ISSR, AFLP and SRAP), though 
nowadays PCR-based, are still too impractical to be used 
in large-scale MAS schemes due to the complexity of the 
assay preventing the appropriate automation, insufficient 
robustness or inadequate level of detected polymorphism 
(Koebner and Summers, 2003). The most widely used 
markers in major cereals are SSR markers (Collard and 
Mackill 2008), which are highly reliable (that is repro- 
ducible), have co-dominant inheritance, relatively simple 
and cheap to use and generally highly polymorphic; but 
SSR markers require a substantial investment of time and 
money to develop and plants with developed SSR 
markers are still very limited, especially for orphan crops 
and long-juvenile woody species. Due to high polymorphic 
information content, sequence-tagged site (STS), 
sequence characterized amplified region (SCAR) that are 
derived from specific DNA sequences of markers (for 
example RAPD, RFLP, AFLP, ISSR and SRAP) and 
single nucleotide polymorphism (SNP) markers, are pre- 
sently the most appropriate marker class for MAS 
(Sanchez et al., 2000; Sharp et al., 2001; Mohler and 
Singrun, 2005; Collard and Mackill, 2008). For orphan 
crops and woody species that have no genetic information 
used to develop STS and SNP markers, SCAR marker 
still will be a potential marker for their MAS in the future. 

Finally, the testing of identification efficiency of markers 
associated traits is one key step for  the  MAS.  Identi-  

 
 
 
 
fication percentages of two SCAR markers transferred 
from ISSRBFLI-3 and RAPD BFL-16 that are associated with 
fiber birch length were 76 for short fiber (Xia et al., 2008) 
and over 92% for long fiber in birch (Wang et al., 2008), 
respectively. In four SSR markers associated with fiber 
birch length of birch, PB15M3 could identify as high as 
75% long fiber individuals (Wang, 2007).  
 
 
FUTURE PROSPECTS 
 
Although the extent of MAS use will depend on available 
resources and may be delayed in less-developed coun- 
tries, the greater adoption of MAS in the future is inevi- 
table (Collard and Mackill, 2008), especially for orphan 
crops and long-juvenile woody plants. The cost of geno- 
typing (an example of a molecular marker assay) is 
reducing while the cost of phenotyping is increasing 

particularly in developed countries, thus increasing the 
attractiveness of MAS as the development of the tech- 
nology continues. MAS will then increasingly be applied to 
obtain improved efficiency and effectiveness in the 
selection of genotypes with traits that are difficult and 
expensive to phenotype, for the pyramiding of disease 
resistance genes in single genotypes and for the carefully 
directed choice of parental lines in crossing programs 
allowing a controlled combination of alleles targeted for 
selection (Mohler and Singrun, 2005). 

The tight linkage between markers with genes/QTLs is 
critical to the success of MAS. Identification of genes/ 
QTLs at distances over 2 cM from the closest markers is 
hardly suitable either for MAS or for identification/cloning 
of functional genes (Mohler and Singrun, 2005), however, 
in some cases, recombination occurs between the marker 
and genes/QTL due to loose linkage (Collard and Mackill, 
2008). In addition, even as Virk et al. (1996) suggested 
that since the success of MAS programs depends exclu- 
sively on the extent of genetic linkage between markers 
and the relevant loci such as QTL, there is no reason why 
the same principles cannot be applied to either natural 
populations or genetic resources generally, assuming that 
similar associations are observed between marker loci 
and the various allelomorphic forms of QTLs and that the 
basis of these is in fact genetic linkage. Therefore, the 
GRC molecular marker-trait association identification will 
provide several potentials for the improvement of quanti- 
tative traits in orphan crops and long-juvenile woody 
plants, including marker-assisted evaluation of breeding 
material or germplasm, early selection of desirable traits 
and effective selection of putative parents for producing 
populations to map QTLs for a particular trait or cloning 
particularly functional genes.  

First of all, use of new crops and woody plants, which 
can grow in the areas of mounting water scarcity, environ- 
mental degradation, increasing pollution and inevitable 
emergence of new biotypes of pathogens and pests, is 
increasing, accompanying the requirement of  increased  



 
 
 
 
crop production from a rising global population but the 
declining rate of increase in crop yields (Collard and 
Mackill, 2008). However, the linkage-based identification 
of markers associated with genes/QTLs often needs to be 
too long-time for these orphan crops and woody plants 
with high heterozygosity. For example, in general at least 
9 - 10 years are required for mulberry to express all its 
traits to its full potential (Vijayan et al., 2006). Meantime, 
selection of individual genotypes for mapping of traits in 
bi-parental populations will have sampled only a small 
portion of the resident variation within the original germ- 
plasm and may have reduced the odds of finding regions 
affecting the traits of interest (Maureira-Bulter et al., 2007). 
Hence, for orphan crops and long-juvenile woody plants 
with strong tolerance to harsh environments, in which 
most of them have no genetic information such as linkage 
maps and Quantitative Trait Loci, marker-assisted evalua- 
tions of breeding material or germplasm by the GRC 
association studies should allow MAS to become more 
widely applicable for their breeding programs, especially 
for screening germplasm with desirable traits. 

Secondly, the early selection of desirable traits that is 
expressed late in plant development, like fruit and flower 
features or adult characters with a juvenile period, so that 
it is not necessary to wait for the organism to become fully 
developed before arrangements can be made for propa- 
gation. For long juvenile and long-lived woody plants with 
heterozygosity, progeny selection is always a difficult 
process as the expression of most of the agronomical 
traits varies according to the stages of development 
(Vijayan et al., 2006). Hence, the GRC molecular marker- 
traits association identification could be of great use for 
the breeder to identify promising seedling/hybrids at an 
early stage of these plants. For example, sea buckthorn is 
highly heterozygous and has a juvenile period from 3 - 5 
years. Dried-shrink disease (DSD) is a dangerous patho- 
gen that destroys this species and halts commercial 
production, but it is always a difficult process for sea buck- 
thorn to select materials with DSD-resistance in conven- 
tional breeding programs. This is because DSD infects 
plants that are a minimum of three years old, whereas all 
plants infected by DSD are more than 3 years old and in 
general at least 3 - 5 years are required for the sea buck- 
thorn plant to express symptom of DSD to its full potential 
(Ruan et al., 2008). The QTL linkage map is unknown for 
sea buckthorn, thus construction of mapping populations 
(even F1 crosses) is time-consuming and labor-intensive. 
Hence, the ISSR markers associated with DSD resistance 
identified by GRC analysis (Ruan et al., 2009) could be 
used to eliminate futureless seedling/hybrids at an early 
stage: if the markers associated with high disease index 
were identified in the seedlings, it should fall into disuse to 
prevent great environmental and commercial loss 
because of the death of sea buckthorn plantations from 
DSD-infection.  

Finally, if genetic linkage is the main cause of the asso- 
ciations, then one benefit of obtaining information  about  
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molecular markers and quantitative traits could be for use 
in more efficiently selecting putative parents for producing 
populations to map QTL for a particular trait and for 
cloning particularly functional genes. For example, map- 
ping population used to map QTL of DSD-resistance in 
sea buckthorn may be constructed by selection parents 
which genomes cover the molecular markers associated 
with DSD-resistance and susceptibility respectively. 

In conclusion, the apparent advantages of the GRC 
marker-trait association identification are (i) that this could 
allow the detection of QTL that varies across a wide spec- 
trum of biodiversity rather than just between two planned 
parental genotypes; (ii) that QTL for any quantitative trait 
can be studied in the same investigation and (iii) that this 
requires less inputs of time, labor and financial resources, 
compared to the linkage-based QTL identification. The 
GRC marker-trait association identification will play an 
import role in plant MAS/QTL breeding programs, espe- 
cially in orphan crops and long-juvenile woody plants with 
heterozygosity when no other genetic information such as 
linkage maps and Quantitative Trait Loci are available. 
However, in this review we also do not try to minimize 
successes of molecular genetics by laying emphasis on 
quantitative trait loci (QTL) identification based on the 
linkage-map, in which many major genes have been 
identified and successfully used in the MAS for the 
improvements of quantitative traits in major crops 
(Hansen et al., 2008; Hospital, 2009; Jannink et al., 2009).  
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