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A cold-adapted lipase producing strain of mesophilic bacterium, named SYBC LIP-Y, was isolated from 
the decayed seeds of Ginkgo biloba L. by screening with plates containing Victoria Blue B and with the 
flask-shaking fermentation. It was identified as a novel Burkholderia species. The properties of its 
lipase after purification by PEG1000/ potassium phosphate aqueous two-phase system were 
characterized. The optimal pH and temperature of the enzyme was 10.0 and 30°C, respectively. About 
80% of the original activity is maintained by heating at 40°C for 60 min. The lipase could also retained 
70% of the maximal activity at the temperature of 0°C and suggested that it may be belonged to the 
cold-adapted lipase. Thus, it was proved to have good temperature stability and might have wide 
applicating fields. 
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INTRODUCTION 
 
Lipases (EC 3.1.1.3) catalyze a variety of chemical 
reactions which are found in a wide range including 
animals, plants and microorganisms (Jaeger and Eggert, 
2002). Among them, microbial enzymes are often more 
stable and their production is more convenient and safer 
(Wiseman, 1995).  

Microbial lipases have been a kind of favorable enzymes 
with their actual and potential applications in household 
detergents, synthesis of pharmaceuticals or agrochemicals, 
processing of fats and food ingredients, dairy and textile 
industries and production of surfactants (Gupta et al., 
2004). Margesin and Schinner, (1999) had defined the 
cold-adapted enzyme as enzymes in which  the  optimum  
 
 
 
*Corresponding author. E-mail: liaoxiangru@163.com, 
yu_jie_cai@yahoo.com.cn. Tel: +86-0510-85916372. Fax: +86-
0510 -8591 8516. 
 
Abbreviations: p-NP, p-nitrophenyl palmitate; PCR, 
polymerase chain reaction; HPLC, high performance liquid 
chromatography; ATPSs, aqueous two-phase systems; PEG, 
polyethylene glycol. 

temperature is about 30°C and high activity is retained at 
0°C. Cold-adapted lipases have attracted attention due to 
their low optimum temperature and high activity at low 
temperatures. The cold-adapted enzymes are expected 
to be applicable as additives to detergents used at low 
temperatures and biocatalysts for biotransformation of 
labile compounds at cold temperatures (Margesin and 
Schinner, 1994). 

Thermostability of lipases has been regarded as the 
most important factors affecting the application of lipase. 
However, cold-adapted enzymes from psychophiles are 
generally labile; they often rapidly lose their activity in 
vitro. But there were few reports about high production of 
cold-adapted lipase, and the cold tolerance of current 
cold-adapted lipase was found to be not stable. Only a 
few bacteria and yeast were exploited for the production 
of cold-adapted lipases (Joseph, 2006). Thus, to screen 
microorganism strains for production of thermostable 
cold- adapted lipases is one of the valid approaches that 
accelerates the study and application of lipases. 

In the investigation to screen lipolytic microorganisms, 
we obtained a unique mesophilic bacterial strain SYBC 
LIP-Y from the outer layer  of  decayed  seeds  of  Ginkgo  
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biloba L., which could secrete cold-adapted lipase with 
high thermostability, but its taxonomy needs further 
investigation and the factors that influence its lipase 
production remains also unclear. The purpose of this 
paper was to identify the strain, and to detect the influences 
of temperature and pH value in the lipase activity and 
stability. 
 
 
MATERIALS AND METHODS 
 
Sample collection and the screen of lipase producing bacteria 
 
The decayed seeds of G. biloba L. were collected from Huishan 
Mount in Wuxi of China. The enrichment medium containing (per 
liter): peptone 5 g, yeast extract 3 g, olive oil 40 ml. The preliminary 
screening medium contains (per liter): peptone 10 g, yeast extract 3 
g, NaCl 3 g, agar 20 g, olive oil 40 ml, Victoria Blue B 0.1 g, and 
Triton X-100 10 ml. The duplicate screening medium contains (per 
liter): peptone 10 g, yeast extract 5 g, NaCl 10 g, olive oil 40 ml and 
Triton X-100 10 ml. pH was adjusted to 7.2 using 1 M NaOH or 1 M 
HCl.  
 
 
Screening of lipase producing bacteria  
 
1.0 g sample was dissolved in 50 ml of enrichment medium and 
incubated for 48 h at 30°C and shaking (200 rpm). Then it was 
serially diluted (10-5 to 10-8) and the diluted samples were used to 
daub to the preliminary screening medium and incubated at 30°C 
for 24-72 h. Then the dominant organisms were isolated and 
individually diverted to the preliminary screening medium again and 
cultivated for 48 h. The colonies with clear hydrolysis zones were 
collected and inoculated to the duplicate screening medium and 
fermented at 30°C for 48 h at a stirring speed of 200 rpm followed 
by determination of the lipase activity. 
 
 
Measurement of lipase activity 
 
Regular lipase activity assay was performed using p-nitrophenyl 
palmitate (p-NP) as described by Margesin and Schinner (1999) 
with some modifications.  100 �l culture supernatant was added to 
3.9 ml 0.1 mmol/L Tris-HCl buffer (pH 9.0) containing 20 �mol of p-
nitrophenyl butyrate (p-NPB) as the substrate. The activity of the 
lipase samples was determined spectrophotometrically at 405 nm. 
One unit of lipase activity was defined as the amount of lipase 
releasing 1 �mol p-nitrophenol per min. 
 
 
Identification and characterization of lipase  
 
The morphological and physiological characterization of the strict 
aerobic thermophilic isolate SYBC LIP-Y was performed according 
to the methods described by Holt et al. (1994). 16 S rRNA gene of 
SYBC LIP-Y was amplified by polymerase chain reaction (PCR) 
with the following pair of primers: 16SF (5'-AGAGTTTGATCCTG 
GCTCAG-3') and 16SR (5'- AAGGAGGTGATCCAGCCGCA -3'). 
The PCR product was examined by electrophoresis and then 
isolated and sequenced on 1471 sequencer. The 16 S rDNA 
sequence was blasted in NCBI and high homologous sequences 
were searched. 

A loopful of well-grown cells was harvested and fatty acid methyl 
esters were prepared, separated, and identified using the Microbial 
Identification System. DNA G+C contents were determined by using 
an HPLC-based method, as described by Mesbah et al. (1989).  

 
 
 
 
Purification of lipase 
 
Aqueous two-phase systems (ATPSs) consist of two liquid phases 
that are immiscible beyond a critical concentration. It is produced 
when aqueous solutions of polymers and salts, such as PEG/ 
potassium phosphate, or two polymers, such as polyethylene glycol 
(PEG)/dextran are mixed. Lipases are usually purified with polymer/ 
polymer and polymer/salt ATPSs (Ooi et al., 2009).  

The lipase recovery was achieved in an ATPS at the concentration 
of 15% (w/w) PEG1000, 15% (w/w) potassium phosphate and pH at 
8.0. The phase system was prepared in 30 ml tubes by weighing a 
15% (w/w) PEG1000, a 15% (w/w) salt and a 20% (w/w) crude 
feedstock. Distilled water was then added to the system to obtain a 
final mass of 20 g. After thorough mixing by gentle agitation, the 
system was centrifuged at 4000×g for 10 min to induce phase 
separation. The lipase was in the top of phase. 
 
 
Effect of temperature on lipase activity and stability 
 
The optimum temperature for lipase catalyzation was determined 
using p-NPB as substrate at temperature from 0 to 70°C. For 
determination of temperature stability, the lipase solution was 
incubated at a certain range temperatures from 40 to 60°C followed 
by measurement of the residual activity. 
 
 
Effect of pH on enzyme activity and stability 
 
The optimal pH value for lipase activity was measured in Tris-HCl 
buffers range from pH 6.5 - 10.5. The pH stability of lipase was 
determined by incubating the enzyme in the above mentioned 
buffers range from pH 3.0 - 10.5 for 24 h and the residual activity 
was measured.  
 
 
RESULTS 
 
Isolation of high yield lipase producing strains 
 
55 strains were primarily isolated from samples by 
enrichment cultures at 30°C and among them, 16 isolates 
showed positive phenomena (Figure 1) on the preliminary 
screening medium. SYBC LIP-Y showed the highest 
lipase activity among all of the isolated bacteria. Since 
SYBC LIP-Y was inoculated into medium without olive oil; 
the lipase activity was very low, which suggested that 
olive oil be the inducer for SYBC LIP-Y to produce lipase. 
Lipases are by and large inducible enzymes generally 
produced in the presence of a lipid source such as an oil 
or triacylglycerols, tweens etc (Lotti et al., 1998; Bradoo 
et al., 1999; Rathi et al., 2001).  
 
 
Characterization of strain SYBC LIP-Y 
 
The morphological, physiological, and biochemical 
characteristics of SYBC LIP-Y are described as in Table 
1. The colonies of the candidate strain are light yellow, 
convex and circular with clear margins. Cells are 
approximately 0.4 �m wide and 1.2 �m long (Figure 2). 
The strain is gram-negative, strictly aerobic, rod-shaped 
and   non-motile.   It  positively   produces   catalase   and  



 
 
 
 

 
 
Figure 1. Colonies of Burkholderia sp. 
nov. SYBC LIP-Y cultivated in the plates 
containing Victoria Blue B. 

 
 
 
urease, but is negative for indole and H2S production and 
Voges-Proskauer test and methyl-red test. The organic 
compounds: D-fructose, D-glucose, D-mannitol, D-alanine, 
starch, sucrose, D-trehalose, citric acid, malonic acid, D-
sorbitol and inositol can be used as carbon source for cell 
proliferation of the strain. 

The phylogenetic tree (Figure 3) based on 16S rRNA 
gene sequences clearly indicated that strain SYBC LIP-Y 
was related to members of the genus Burkholderia. Strain 
SYBC LIP-Y showed the highest levels of sequence 
similarity (99%) with Burkholderia cepacia (GenBank 
accession number EF031062) and Burkholderia lata 
(AM905038). The main components of the cellular fatty 
acids of strain SYBC LIP-Y were C16 : 0 (22.15 %), C17 : 0 
cyclo (26.88 %), C19 : 0 cyclo w8c (11.04 %) and summed 
feature 2 (C 16:1 ISO I/ C 14:0 3-OH, 7.45 %). With regard to 
the fatty acid profile, both quantitative and qualitative 
differences were found between strain SYBC LIP-Y and 
the other Burkholderia species investigated; the 
proportion of C17 :0 cyclo as a major component was 
higher in strain SYBC LIP-Y (Table 2). In particular, the 
proportion of C 18 : 1 cyclo w8c and summed feature 3 in 
SYBC LIP-Y were lower than the other Burkholderia 
species. 

The DNA G+C content of strain SYBC LIP-Y was 56.4 
mol %, a value similar to that of B. cepacia C-1 (55.1 mol 
%) (Adjei and Ohta, 1999), but this was different from 
those of majority of the genus Burkholderia, for example, 
B. hospita LMG 20598T (62 mol %), Burkholderia terrae 
KMY02T (62 mol %) (Yang et al., 2006) and B. soli sp. 
nov. GP25-8T (Yoo et al., 2007). 

On the basis of its morphological, physiological and 
chemotaxonomic characteristics, together with data from 
16S rRNA gene sequence comparisons, it is proposed 
that strain SYBC LIP-Y represents a novel species in the 
genus Burkholderia, for which the name Burkholderia sp. 
nov. SYBC LIP-Y is proposed. 
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Table 1. Phenotypic characteristics of strain Burkholderia 
sp. nov. SYBC LIP-Y. 
 
Characteristic Result Characteristic Result 
Gram stain - D-glucose + 
Shape rod Sucrose  + 
Spore - D-trehalose + 
Catalase - Starch + 
Urease + Citric acid + 
V - P test - Malonic acid + 
M - R test - D-alanine + 
Indole test - D-sorbitol + 
H2S - Inositol + 
Gelatin + D-mannitol + 
D-fructose +   

 

+, Positive; - negative. 
 
 
 
Enzyme purification 
 
The enzyme was purified about 1.5-fold with a yield of 
53.7% after PEG1000/potassium phosphate aqueous 
two-phase system (Table 3). 
 
 
Effect of temperature on enzyme activity and stability 
 
Both the activity and stability of lipase from Burkholderia 
sp. nov. SYBC LIP-Y were influenced by temperature. 
The optimum temperature of Burkholderia sp. nov. SYBC 
LIP-Y lipase was 30°C. Lipase had 70 and 58.8% of the 
activity at 0 and 70°C (Figure 4a). The lipase used in the 
experiment was stable at the low temperature and 
showed a better temperature range for enzyme activity. 
The lipase could retain 80.7% of its activity after being 
incubated at 40°C for 60 min. It retained 42% of its 
activity at 60°C for 60 min (Figure 4b). 
 
 
Effect of pH on enzyme activity and stability 
 
Maximum lipase activity was obtained at pH 10.0, but its 
activity decreased at acidic pH values. The activity of 
enzyme was remained stable within a pH range of 3.0 - 
10.5 (Figure 5).  
 
 
DISCUSSION 
 
In this study, we have identified and isolated a novel cold-
adapted lipase producing strain, SYBC LIP-Y, from 
decayed seeds of G. biloba L. of Huishan Mount in Wuxi 
of China. It was identified as a Burkholderia species. The 
genus Burkholderia contains many species which are 
ubiquitous (Vandamme et al., 2002; Yang et al., 2006; 
Kim  and  Ahn,  2009).   Several   kinds   of   Burkholderia  
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Figure 2. The electronic microscope picture of the strain Burkholderia sp. nov. 
SYBC LIP-Y.  

 
 
 

 
 
Figure 3. The phylogenetic tree resulting from analysis of the 16S rDNA sequences of Burkholderia sp. nov. SYBC 
LIP-Y. (Numbers on nodes correspond to percentage bootstrap values for 1000 replicates) 

 
 
 
species with lipase producing ability have been identified 
and isolated from the nature (Park et al., 2007; Yeo et al., 
1998; Wei and Wu, 2008). Majority of the lipases of 
Burkholderia origin showed that they were thermophilic 
lipases. However, this is the first report of a Burkholderia 
strain which produce cold-adapted lipase. Cold-adapted 
microorganisms, which produce cold-adapted lipases, 
have been isolated mostly from the Antarctic and Polar 
Regions, which represents a permanently cold (0 ± 2°C) 
and constant temperature environment (Joseph et al., 
2007). The deep sea bacteria are other important 
sources of cold-adapted lipases. These microorganisms 
usually cultivated at ~5°C in laboratories (Gerday et al., 
2000). Mesophilic microorganism included Geotrichum 

sp. SYBC WU-3 (Cai et al., 2009), Serratia marcescens 
(Abdou, 2003) and Aspergillus nidulans (Mayordomo et 
al., 2000), can also secrete cold-adapted lipase. In this 
paper, we also demonstrated that SYBC LIP-Y can secrete 
cold-adapted lipase at 30°C.  

The enzyme from the strain Burkholderia sp. nov. SYBC 
LIP-Y retained 70% of its activity at 0°C. Compared with 
lipases from psychrotrophic and psychrophilic micro-
organisms, the lipase had better low temperate activity 
(Table 4). Optimum temperatures of lipases from Pseudo-
monas Lip35 (Yu et al., 2009) and Photobacterium 
lipolyticum M37 (Ryu et al., 2006) were lower than 30°C 
and their relative activities at low temperature were more 
than 75%. However, optimum temperatures of lipases 
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Table 2. Cellular fatty acid content (%) of strain Burkholderia sp. nov. SYBC LIP-Y and 
phylogenetically closely related Burkholderia species. 
 

Fatty acid 1 2 3 4 5 

Saturated      

C14 :0 5.41 4.80 5.10 4.60 3.90 
C16 :0  22.15 18.50 18.20 19.60 17.60 
C18 :0 3.90     

Hydroxy      

C16 : 0 2-OH 1.82 1.80 2.60 1.00 2.20 
C16 : 1 2-OH 1.01 1.50 2.10 1.60 1.80 
C16 : 0 3-OH 5.17 4.80 6.30 6.60 6.10 
C18 : 1 2-OH 2.63  1.10   

Cyclo      

C17 : 0 cyclo 26.88 10.40 4.80 4.00 12.60 
C18 : 1 cyclo w8c 6.51 30.00 33.90 28.50 28.90 
C19 : 0 cyclo w8c 11.04 3.50 4.40 1.20 7.10 

Summed features*      

2: iso - C 16:1 I/ C 14:0 3-OH 7.45 6.90 7.30 8.70 8.20 
3: C 16:1 w7c / iso - C 15:0 2-OH 4.10 17.80 13.20 22.60 10.20 

 

Strains: 1, Burkholderia sp. nov. SYBC LIP-Y; 2, B. hospita LMG 20598T (Yang et al., 2006); 
3, B. kururiensis LMG 19447 T; 4, B. phymatum STM815T; 5, B. tuberum STM678 T 
(Vandamme et al., 2002). Fatty acids that account for less than 1 % of the total are not 
shown. 

 
 
 

Table 3. Summary of purification procedure of lipase from Burkholderia sp. nov. SYBC LIP-Y. 
 

Purification 
steps 

Total protein 
(mg) 

Total activity 
(U) 

Specific 
activity (U/mg) 

Yield 
(%) 

Purification 
(fold) 

Culture filtrate 382 9129.4 23.90 100 1 
ATPSs 205 7377.3 35.91 53.7 1.5 

 
 
 

 
 
Figure 4. Effect of temperature on the activity (a) and stability (b) of the lipase from Burkholderia sp. nov. SYBC LIP-Y. 
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Table 4. Partial aspects of some cold-adapted lipases. 
 

Bacterium Source 
Optimum 
temp. (°C) 

Relative 
enzyme activity 

(%) 
References 

SYBC LIP-Y Decayed seed of Ginkgo biloba L. 30 70 (0°C) In this paper 
Pseudomonas sp. KB700A Subterranean environment 35 13 (0°C) Rashid et al., 2001 
Pseudomonas sp. B11-1 Alaskan soil 45 17 (0°C) Choo et al., 1998 
Pseudomonas Lip35 Refrigerator 20 90 (15°C) YU et al., 2009 
Serratia marcescens Raw milk 37 90 (5°C) Abdou, 2003 
Photobacterium lipolyticum M37 Marine habitat 25 75 (5°C) Ryu et al., 2006 
Pseudoalteromonas sp. wp27 Deep sea sediments 30 60 (4°C) Zeng et al., 2004 
Psychrobacter sp. Ant300 Antarctic habitat 35 30 (5°C) Kulakovaa et al., 2004 

 
 
 

 
 
Figure 5. Effect of pH on the activity (� ) and stability ( � ) of 
lipase from Burkholderia sp. nov. SYBC LIP-Y. 

 
 
 
from mesophilic microorganism S. marcescens (Abdou, 
2003) and Burkholderia sp. nov. SYBC LIP-Y was 37 and 
30°C, respectively. Their relative activities at low tempe-
rature were higher. 

The lipase could retain 80.7% of its activity after being 
incubated at 40°C for 60 min. It retains 42% of its activity 
at 60°C for 60 min. Lipase from Pseudomonas sp. 
KB700A (Rashid et al., 2001) will lost 70% of its activity 
at 60°C for 5 min; residual activity of lipase from 
Pseudomonas sp. B11-1 (Choo et al., 1998) is 0% after 
incubation at 60°C for 60 min; lipase from Pseudomonas 
Lip35 (Yu et al., 2009) retains 10% of its activity after 
incubation at 60°C for 5 min; both the lipases from 
mesophilic microorganism S. marcescens (Abdou, 2003) 
and Burkholderia sp. nov. SYBC LIP-Y retain 90% lipase 
activity when cultivated at 60°C for 5 min.  

The optimum pH was 10.0 and the enzyme showed 
stability at pH range 3.0 - 10.5. Majority of the lipases of 
Burkholderia origin showed alkaline pH optima and 
showed stability within wide pH range. Based on the 
results, we concluded that the lipase from mesophilic 
bacterium Burkholderia sp. nov. SYBC LIP-Y was cold-
adapted enzyme with better thermostability. It has the 
potential for industrial applications. It supposed that cold-
adapted enzymes produced by mesophilic micro-organisms 
may have higher thermostability than those by psychrophilic 
microorganisms. 
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