
 
African Journal of Biotechnology Vol. 9(23), pp. 3359-3367, 7 June, 2010     
Available online at http://www.academicjournals.org/AJB 
ISSN 1684–5315 © 2010 Academic Journals  
 
 
 
 
Full Length Research Paper 
 

Phylogenetic relationships of eleven Kobresia 
accessions from the Tibetan plateau 

 
Peizhi Yang1, Hongmei Zheng1, Steven Larson2, Yanjun Miao1 and Tianming Hu1* 

 
1Department of Grassland Science, College of Animal Science and Technology, Northwest Agriculture and Forestry 

University, Yangling, Shaanxi, 712100, P.R. China. 
2Forage and Range Research Laboratory, Utah State University, USDA-ARS, Logan, Utah, 84322-6300, USA. 

 
Accepted 14 May, 2010 

 
In the past, identification of the genus Kobresia was mostly dependent on morphological 
characteristics. This study used random amplified polymorphic DNA (RAPD), sequences of nrDNA ITS, 
cpDNA trnT-L-F spacer and cpDNA ndhF to assess the phylogenetic relationships among the 
accessions of Kobresia plants collected from the Tibetan plateau. In the dendrograms, Kobresia 
macrentha (L) species formed a separate clade suggesting a remote relationship with other accessions. 
These trees showed that species found in similar habitats or having similar adaptations tended to 
cluster together. Thus, the genetic variation and adaptation seen in these Kobresia accessions may be 
due to their remote geographic and high altitudinal position in the Tibetan plateau. This study 
highlights the importance of molecular analysis in understanding the genetic diversity and structure of 
Kobresia accessions, and contributes to the knowledge of conservation of genetic resources. 
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INTRODUCTION 
 
The Tibetan plateau is the highest plateau in the world 
and is often called 'the third pole'. It is an important part 
of the global terrestrial ecosystem on the Eurasian 
continent and a key region for flora genetic resources that 
influence ecosystems and evolutionary processes (Chang, 
1983). Two third of the plateau area, about 1.5 million 
km2, is grassland (Sun and Zheng, 1998). The native alpine 
steppe meadow is characterized by the dominance of sedges 
and grasses (Zhou and Deng, 2001). Kobresia species 
from sedges are perennial herbs and are the primary types of 
vegetation distributed in the Tibetan plateau. These species 
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not only have the good nutritional quality preferred for 
livestock, but also maintain important ecological functions 
in the regional ecosystems. The genus Kobresia Willd. 
belongs to the tribe Cariceae in the family Cyperaceae. This 
genus has about 70 species all over the world, of which 
59 were found in China (Zhou and Deng 2001). The 
genus conserves water resources, regulates river systems 
and regional climates and supports regional biodiversity.  

The primary threats to Kobresia's habitat on the Tibetan 
plateau are hydrologic alterations, overgrazing and sod 
removal for construction. These have resulted in vast 
areas of "black soil" and have been correlated with global 
climate change (Sun and Zheng, 1998). In addition, lack of 
information on the species' population genetics, adaptation 
and dispersal biology adds to the potential severity of 
impact on Kobresia by these threats. This study addresses 
phylogenetic relations of 11 Kobresia accessions collected 
in this region in order to have a better understanding of 
the genetic diversity and provide information necessary 
for appropriate management of these plants in the future.  

Diversity of Kobresia species has been studied in 
relatively few areas of the Tibetan plateau because of its 
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Table 1. Populations of Kobresia from Tibetan plateau of China in this study. 
 

Species Origin Altitude (m) Longitude and latitude Habitat 
K. royleana (N) B. Langkazi 4455 28°59�11N    90°26�04E Alpine steppe 
K. macrentha Boeck. Langkazi 4455 28°59�11N    90°26�04E Alpine meadow 
K. littledalei C. B. Clarke Langkazi 4455 28°59�11N    90°26�04E Alpine meadow 
K. royleana (N) B Naqu 4456 31°26�34N    92°16�32E Alpine steppe 
K. prattii C. B. Clarke Dangxiong 4278 30°29�35N    91°05�58E Alpine steppe 
K. caillifolia Decne Dangxiong 4278 30°29�35N    91°05�58E Alpine meadow 
K. littledalei C. B. Clarke Naqu 4456 31°26�34N    92°16�32E Marshy meadow 
K. littledalei C. B. Clarke Dangxiong 4278 30°29�35N    91°05�58E Marshy meadow 
K. humilis C. A. Mey Naqu 4456 31°26�34N    92°16�32E Alpine steppe 
K. humilis C. A. Mey Dangxiong 4278 30°29�35N    91°05�58E Alpine steppe 
K. pygmaea C. B. Clarke Naqu 4456 31°26�34N    92°16�32E Alpine meadow 

 
 
 
harsh conditions (Wang, 2001; Sun and Zhu, 2000). The 
knowledge about patterns of natural Kobresia accession 
distribution on the Tibetan plateau and their correlation 
with environmental factors is very limited. In the past, the 
phylogenetic relationship of Kobresia species was 
studied mainly based on morphological characteristics. 
However, discrepancies exist among these studies. The 
discrepancies probably occur because morphological 
characters are easily influenced by environmental changes 
(Reznicek, 1990; Muasya et al., 1998; Starr et al., 2004).  

A few molecular studies have been done on genetic 
relationships of Cariceae genera or species within Carex 
(Starr et al., 1999; Yen and Olmstead, 2000; Roalson et 
al., 2001), but lesser molecular studies within species of 
Kobresia was done (Zhang, 2006). Thus, molecular markers 
which are not sensitive to environmental conditions are 
needed. Molecular studies of these species will provide 
greater insight into their degree of genetic diversity and 
understanding of how they are able to thrive in a harsh 
environment.  

Random amplified polymorphic DNA (RAPD) and 
amplified fragment length polymorphism (AFLP) are 
frequently used to effectively assess genetic diversity 
within and among accessions and to determine accession 
structure, even without any prior knowledge of the genome 
of the species (Vos et al., 1995; Hansen et al., 1999; Luo 
et al., 2007). In a previous study, population diversity of 
11 Kobresia was estimated by using RAPD, yielding 
limited information (Zheng et al., 2009). We believe that 
additional studies are needed, such as comparisons of 
DNA sequences among these accessions, in order to 
better understand the phylogentic relationship among 
these accessions. RAPD analysis can be combined with 
the comparative study of nucleotide sequences to get a 
better resolution of the phylogenetic relationships of the 
Kobresia species (Blattner et al., 2001; Gehrig et al., 
2001). NrITS, cptrnT-L-F spacer and cpndhF have 
proven to be informative markers for revealing phylo-
genetic relationships at species levels through maximum 

parsimony-based analyses (Olmstead and Palmer, 1994; 
Cerbah et al., 1998; Wen, 2000; Gehrig et al., 2001).  

The main objective of the present study was to clarify 
the phylogenetic relationships of 11 Kobresia accessions 
collected from the Tibetan plateau using RAPD markers 
and the comparative analysis of the chloroplast DNA 
trnT-LF spacer, chloroplast DNA ndhF gene and nrDNA 
ITS gene sequences. 
 
 
MATERIALS AND METHODS 
 
Plant materials and DNA extraction 
 
Eleven plant accessions representing seven different species were 
sampled from Tibet alpine during September, 2006. Details on 
these genotypes including geographic origin and geographic infor-
mation system (GIS) data are provided in Table 1. Sampling 
vouchers were deposited at the Northwest Agriculture and Forest 
University Herbarium.  

Genomic DNA of each accession was extracted from a pool of 20 
plants using the modified cetyl trimethylammonium bromide (CTAB) 
method (Doyle and Doyle 1987). DNA concentration was measured 
using a UV spectrophotometer, and concentrations were adjusted to 
50ng/µl for polymerase chain reaction (PCR) analysis. 
 
 
PCR reaction and sequencing  
 
These DNA samples were used for RAPD analysis and sequence 
amplification using PCR. RAPD PCR program used was: 1 cycle at 
94°C for 3 min; 40 cycles at 94°C for 1 min, 37°C for 30 s, 72°C for 
1 min, and was followed by a final extension at 72°C for 7 min. 
The entire ITS was PCR amplified using ITS-5a (Stanford et al., 
2000) and ITS-4 (White et al., 1990) primers. The whole chloroplast 
ndhF gene was amplified with PCR primers ndhF-F1318 and ndhF-
R2110, ndhF-F1 and ndhF-R972, ndhF-F803 and ndhF-R1603 
(Olmstead and Sweere, 1994), and the same ndhF primers used for 
PCR were used for sequencing. 

The chloroplast trnL intron was PCR amplified using the trnL c 
and d primers (Taberlet et al., 1991). Likewise, the chloroplast trnL-
trnF intergenic spacer and chloroplast trnT-trnL intergenic spacer 
region were amplified using the trnL e and trnF f, trnT a and trnL b 
primers, respectively.  



 
Yang et al.        3361 

 
 
 

Table 2. Primers and their polymorphic loci in analyzing genetic variations of 11 accessions of Kobresia. 
 

Primers Sequences 5'-3' No. of  polymorphic bands Polymorphism (%) 
S01 CCACCACGAC 16 72.3 
S02 AGACGGCTCC 19 86.36 
S03 ACCCGACCTG 13 59.09 
S04 GTTTCGCTCC 10 45.45 
S05 TGCTCTGCCC 15 68.18 
S06 AGGGAACGAC 22 100 
S07 GTAAACCGCC 19 86.36 
S08 AGTCCGCCTG 19 86.36 
S09 GAGAGGCTCC 21 95.45 
S10 GGCGTATGGT 16 72.73 
Average  17 67.33 

 
 
 

PCR products were purified using the Quickstep 296-well PCR 
purification kit (Edge Biosystems, Gaithersburg, MD). According to 
the protocol (Applied Biosystems, Foster City, CA), bidirectional 
sequencing were performed in a 10 µl reaction volume: BigDye 
terminator v3.1 cycle sequencing RR-100 reagent 0.5 µl, BigDye 
terminator v3.1 5X sequencing buffer 2 µl, 2 µM/l primer 1 µl and 
purified PCR product 0.5µl. The same primers were used for PCR 
amplification. Products from the sequencing reactions were purified 
using the Performa DTR V3 96-Well short plate kit (Edge 
Biosystems, Gaithersburg, MD). Aqueous elutes were fractionated 
on an ABI3730 (Applied Biosystems, Forest City, CA) capillary 
electrophoresis instrument by the Center for Integrated BioSystems 
at Utah State University. 

All sequencing PCR amplifications were performed under the 
following conditions: 1 cycle at 94°C for 90 s; 5 cycles at 94°C for 
30 s, 55°C for 30 s (temperature decreased by 1°C for each cycle), 
72°C for 1 min; 30 cycles at 94°C for 30 s, 50°C for 30 s and 72°C 
for 1 min; this was followed by a final extension at 72°C for 7 min. 
 
 
Data analysis 
 
RAPD polymorphic bands were scored by quantity one software; 
each allele was scored as present (1) or absent (0) for each loci. 
The percentage of polymorphic loci, Nei's gene diversity index (Nei 
and Li, 1979) and Shannon's information index (Lewontin, 1972) 
gene flow (Nm) were calculated using PopGene32 (Yeh et al., 
1997). The numerical taxonomy and multivariate analysis system 
(NTSYSpc 2.1) was constructed with unweighted pair group 
method arithmetic average (UPGMA) dendrograms of RAPD, the 
Mantel (1967) test statistic (Z) infer correlation of AFLP and RAPD 
using the Mxcomp procedure of NTSYS-pc (Rohlf, 1998). 
Significance tests for these correlations were determined by 
comparing observed values to values obtained by 1000 random 
permutations (Smouse et al., 1986). Therefore, the upper-tail 
probability (p) that 1000 random Mantel test-statistic (Z) values are 
(by chance) less than observed values of Z, equals 0.002 or greater. 
 
 
Sequence and phylogenetic analysis 
 
Sequencher version 4.1.4 (Genes Code, Ann Arbor, MI.), was used 
to assemble, inspect and edit the forward and reverse sequences. 
The sequences of the two regions examined were combined and 
aligned by Clustal W (Thompson et al., 1994), with final manual 
adjustment. Parsimony analysis was performed using PAUP*4.0b10 

(Swofford, 1998). Ambiguous base pairs were treated as missing by 
default and were not used in the analysis. Heuristic parsimony 
searches involving 100 replications were conducted using simple 
sequence addition, tree bisection and reconnection (TBR) branch 
swapping, MaxTrees un-limited and Multrees option in effect. 
Branch support was evaluated as bootstrap percentages (BP) from 
100 bootstrap replicates (Felsenstein, 1985) in PAUP*. A partition 
homogeneity test (Farris et al., 1995) with 1,000 replicates was 
conducted with PAUP. 
 
 
RESULTS 
 
RAPD 
 
Ten primers were identified out of the 110 primers (Table 
2). RAPD markers, which amplified 170 polymorphic 
bands, showed high level of polymorphism by the poly-
morphism information content (PIC) value ranging from 
45.45 (primer S04) to 95.45% (primer 09) with an 
average of 67.33% across the germplasm assayed.  

A matrix of the Jaccard's coefficients of similarity based 
on the data of RAPD markers was calculated between 
accessions as shown in Table 3. Pairwise comparisons 
among different accessions yielded values ranging from 
0.509 (between accessions Kobresia macrentha (L) and 
Kobresia humilis (D)) to 0.832 (between accessions 
Kobresia littled (L) and Kobresia royleana (N)). The 
overall mean similarity coefficient for all possible pairwise 
comparisons was 0.451.  

The eleven accessions can be classified into four major 
genetic groups when genetic similarity is 0.66 (Figure 1). 
K. littled (L), K. littled (N), K. littled (D), K. royleana (N), 
Kobresia prattii (D) and K. royleana (L) cluster together, 
and K. cailli (D), K. humilis (N) and K. humilis (D) are in 
one group, and accessions K. macretha (L) and Kobresia 
pymaea (N) do not group with any of the others.  

The mean Nei's gene diversity index (H) of all accessions 
was 0.2221, the Shannon's information index (I) was 
0.3592, indicating that genetic diversity of Kobresia is very 
rich. The gene differentiation (GST) values (0.2056) showed  
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Table 3. Matrix of Jaccard’s coefficients of similarity between 11 accessions of Kobresia. 
 

Species 
K- royleana 

(L) 
K. macren 

(L) 
K. littledal 

(L) 
K. oylean 

(N) 
K. pratti 

(D) 
K. caillifol 

(D) 
K. littledal 

(D) 
K. littledal 

(N) 
K. humilis 

(N) 
K. humilis 

(D) 
K. pygma 

(N) 
K. royleana (L) 
K. macren (L) 
K. littledal (L) 
K. roylean (N)  
K. prattii (D) 
K. caillifoli (D) 
K. littledal (D) 
K. littledal (N) 
K. humilis (N) 
K. humilis (D) 
K. pygma (N) 

1.000 
0.630 
0.688 
0.717 
0.630 
0.556 
0.665 
0.671 
0.624 
0.624 
0.659 

 
1.000 
0.734 
0.694 
0.642 
0.624 
0.642 
0.624 
0.601 
0.509 
0.555 

 
 

1.000 
0.832 
0.780 
0.659 
0.734 
0.740 
0.624 
0.590 
0.636 

 
 
 

1.000 
0.751 
0.653 
0.728 
0.746 
0.653 
0.607 
0.607 

 
 
 
 

1.000 
0.624 
0.723 
0.740 
0.613 
0.578 
0.590 

 
 
 
 
 

1.000 
0.624 
0.642 
0.734 
0.688 
0.595 

 
 
 
 
 
 

1.000 
0.821 
0.647 
0.601 
0.590 

 
 
 
 
 
 
 

1.000 
0.688 
0.653 
0.642 

 
 
 
 
 
 
 
 

1.000 
0.780 
0.595 

 
 
 
 
 
 
 
 
 

1.000 
0.642 

 
 
 
 
 
 
 
 
 
 

1.000 
 
 
 

C o e ff i c i en t  0 .6 1  0 .6 8  0 .7 6  0 .8 3  

 K . ro y le a n a (L )   

 K . l it t l e d ( L )   

 K . ro y le a n a (N )   

 K . p ra t t i i ( D )  

 K . L it t le d ( N )  

 K . l it t l e d ( D )   

 K . m a cr e n th a ( L ) 

 K . C ai l l i (D )   

 K . h u m i l is ( N )   

 K . h u m i l is ( D )   

 K . p y g m a e a( N )   

 
 
Figure 1. Genetic similarity among Kobresia accessions revealed by UPGMA cluster analysis based on RAPD Data. 
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K.royle(N) 

K.littl(L) 

K.littl(D) 
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K.humil(N) 

K.caill(D) 

K.pygma(N) 

K.littl(N)

87 

76 

79 

 
 
Figure 2. The most parsimonious tree based on nrITS sequence. 

 
 
 

Table 4. Sequence characteristics of cpDNA and ITS sequences. 
  

Sequence characteristic ITS cpndhF cptrn 
Length (nucleotides) range (bp) 426 - 730 1223 - 2067 1366 - 2237 
Aligned length 764 2550 3057 
Parsimony informative site 97 37 107 
Parsimony uninformative site 219 71 979 
Tree length 462 123 1196 
Consistency Index 0.8896 0.9187 0.9741 
Retention index  0.6890 0.8113 0.7817 

 
 
 
that most of the genetic variability resided among indivi-
duals within accessions, whereas, only 20.56% resided 
among accessions. The expected heterozygosity was 
calculated as total genetic diversity (Ht) and genetic 
diversity within all analyzed accessions (Hs). The whole 
material of Ht was 0.3068, Hs was 0.2437, while the gene 
flow (Nm) was found to be 1.9316. 
 
 
Sequence results 
 
The internal transcribed spacers (ITS) tree was divided 
into three clades with some internal nodes that lack 
bootstraps. The peculiar species K. macrentha (L) and K. 
royleana (N) separately form one clade, and another 
clade is formed by the rest of the species (Figure 2).  

The characteristics of cpndhF genes are shown in 
Table 4. The parsimonious tree suggests that there are 
three primary clades: Kobresia caillifolia (D) and K. 
humilis (D) composing one clade, another clade 
containing only K. macrentha (L), while the rest of the 
species form the third clade (69% BS) (Figure 3). 

The sequence characteristics for the region cptrnT-L-F 
are described in Table 4. The trnT-trnF region sequences 
form three clades (Figure 4): Kobresia pygmaea (D) and 
K. macrentha (L) formed one clade with a weak BP value; 
Kobresia littledalei (N), K. littledalei (D) and K. prattii (D) 
cluster together with a moderately supporting value (86% 
BS); the rest of the species form a very weakly supported 
group (59% BS). Within the clade, very good BP values 
support subgroup K. royleana (L) and K. royleana (N) 
(99% BS), K. humilis (N) and K. humilis (D) (96% BS).  
 
 
Analysis using combined sequences 
 
In the partition homogeneity test, there was no significant 
incongruence among cpDNA sequences (P > 0.05). To 
obtain more information from the sequences, the two 
data sets were combined and analyzed. Heuristic 
parsimony searches for the combined cpndhF and 
cptrnT-trnF data sets yielded one tree, of which 144 were 
parsimony informative (length = 1328; CI = 0.96; RI=0.74). 

The   strict   consensus   tree  (Figure 5)  showed  3  main  
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   K.pygma(D) 

K.pratt(D) 
K.littl(D) 

K.littl(N) 

K.royle(L) 

K.royle(N) 

K.caill(D) 

K.humil(D) 

99 

69 

85 

 
 
Figure 3. The most parsimonious tree based on cpndhF sequence 

 
 
 

61 

94 

86 

99 

94 
59 

K.macre(L) 
K.pygma(N)

K.caill(D) 

K.littl(L) 

   K.humil(N) 

K.humil(D) 

K.royle(L) 

   K.royle(N) 

K.littl(D) 

  K.littl(N)  
 
Figure 4. The most parsimonious tree based on cptrnT-L-F sequence. 

 
 
 
clades. The first clade (67% BS) consisted of K. littledalei 
(L), K. pygmaea (N), K. humilis (N), K. humilis (D) and K. 
caillifolia (D). Within this clade, K. humilis (N) and K. 
humilis (D) formed a strongly supported (100% BS) 
group. The second moderate clade (72% BS) was 
divided into two parts, a strong clade (99% BS) 
containing K. royleana (L) , K. royleana (N), and a 
moderate clade (82% BS) including K. prattii (D), K. 
littledalei (D) and K. littledalei (N). K. macrentha (L) 
formed an upper cluster by itself and is remote from other 
species.  

DISCUSSION  
 
Sequences 
 
Kobresia is a wind pollinated plant which has reduced 
floral structures that eliminate many "key" characters that 
are useful in elucidating phylogenetic relationships. Thus, 
each accession as shown in the dendrogram may be 
comprised of several more or less different genotypes. 
Whether these differences stem from sexual recom- 
bination or from mutations still needs to be determined. 
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K.macre(L) 
K.pratt(D)

K.littl(D)
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K.caill(D)
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82 

98 

99 

100 

 
 
Figure 5. The most parsimonious tree based on cpndhF and cptrnT –trnF sequence. 

 
 
 

All accessions of the same species cluster together 
except K. littledale (L) supported by cpDNA sequence. 
Accessions that are separated by great distances with 
different environment conditions may have influenced the 
genotype. It is also possible due to misidentification, 
since GenBank blast showed that K. littledale (L) is 
similar to Festuca based on cpndhF and cptrn intron 
sequences (Table 5). Festuca is a grass that is different 
from Carex or Kobresia. Generic delimitation within 
Kobresia is based largely on the morphology of the inflo-
rescence structure. Blurring of the generic boundaries 
becomes a problem for some taxa having morphological 
characters that are interpreted as intermediate. 

The structure of the combined analysis strict consensus 
tree (Figure 5) is most similar to the cpndhF strict con-
sensus tree in terms of internal branch structure. CpDNA 
dendrograms are mostly congruent with the ITS tree. The 
primary difference between the results is that the acces-
sions K. royleana (L) and K. royleana (N) cluster together 
in the cptrnT-L-F and cpndhF gene analysis, whereas, 
the nrITS analysis places two accessions separately. 
Nuclear DNA is biparentally inherited and chloroplastic 
DNA is maternally inherited, so the difference most likely 
results from a hybridization or allopolyploidization process 
as more than two species often coexist in the same 
ecological niche. Growing evidence shows that ITS poly-
morphism or incomplete homogenization is useful for 
understanding the origin of hybrids and polyploidy species 
(Bailey et al., 2003, Liu et al., 2006). 
 
 
RAPD  
 
Our study revealed that the genetic diversity  of  Kobresia  

accession levels from RAPD (H = 0.2221 and I = 0.3592) 
was relatively lower than the levels reported using AFLP 
(H = 0.2430 and I = 0.4012) in a previous study (Zheng et 
al., 2009). The Mantel test showed a significant 
correlation between the RAPD and AFLP-based genetic 
similarity (r = 0.65528, p=0.002), and was found to be 
very useful for genetic diversity study in Kobresia. 

A percentage of polymorphic bands (PPB) around 50% 
is usually regarded as high genetic diversity (Ma et al., 
2000). The resulting polymorphic locus obtained from this 
study revealed by RAPD (67.33%) is lower than that 
revealed by AFLP (93.96%) for Kobresia accessions. 
Both AFLP and RAPD showed a relatively high level of 
genetic diversity. Kobresia species are perennial herbs. 
In order to adapt to low temperatures, short growing 
seasons and low rainfall on the Tibetan plateau (Zhou 
and Deng, 2001), the recruitment of sexual progeny is 
extremely rare and propagation occurs predominantly 
through clonal growth. Studies suggest that even low 
rates of seedling recruitment are sufficient in maintaining 
high levels of genetic diversity (Soane and Watkinson, 
1979; Watkinson and Powell, 1993; Zhou and Deng, 
2001). Sexual reproduction may be a possible 
explanation for the relatively high genetic diversity in 
these clonal plants (Torimaru et al., 2003).  

The Kobresia mean Nei's gene diversity index (H) was 
0.2221, and the Shannon's information index (I) was 
0.3592. This indicates that the genetic diversity of 
Kobresia is very rich. Nybom and Bartish (2000) reported 
an average RAPD-based GST value of 0.23 for some 
long-lived perennials and seed wind species. The value 
(0.2056) is lower than average, and shows that only 
20.56% resided among accessions.  

Assessment of genetic variability and its  partitioning  is  
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Table 5.  The results of GenBank blast. 
 

Species ITS (Max Identity %) ndhF (Max Identity %) 
K. royleana (L) Unicinia multifaria (100) Kobresia nepalensis (98) 
K. macren (L) Fimbristylis microcarya (100) Scirpus microcarpus (98) 
K. littledal (L) Schoenoxiphium filiforme (96) Festuca subverticillate (96) 
K. roylean (N)  Carex nigricans (97) Kobresia nepalensis (98) 
K. prattii (D) Uncinia phleoides (100) Kobresia nepalensis (99) 
K. caillifoli (D) Carex maritime (97) Kobresia nepalensis (98) 
K. littledal (D) Schoenoxiphum lanceum (97) Kobresia nepalensis (99) 
K. littledal (N) Kobresia sibirica (98) Kobresia nepalensis (99) 
K. humilis (N) Carex maritime (100) ------ 
K. humilis (D) Carex incurviformis (97) Kobresia nepalensis (98) 
K. pygma (N) Kobresia sibirica (98) Kobresia nepalensis (99) 
   TrnT-Lintergenic spacer TrnL-F intergenic spacer 
K. royleana (L) Kobresia myosuroides (98) Carex supina (98) 
K. macren (L) Kobresia myosuroides (98) Blysmus compressus (88) 
K. littledal (L) Carex bohemica (100) Kobresia capillifolia (94) 
K. roylean (N)  Kobresia myosuroides (98) Kobresia simpliciuscula (98) 
K. prattii (D) ---------- Kobresia simpliciuscula (97) 
K. caillifoli (D) Kobresia myosuroides (98) Kobresia sibirica (97) 
K. littledal (D) Carex tomentosa (100) Kobresia myosuroides (99) 
K. littledal (N) Carex aurea (100) Carex elvnoides (97) 
K. humilis (N) Carex bohemica (100) Carex ovalis (98) 
K. humilis (D) Carex bohemica (100) Carex ovalis (98) 
K. pygma (N) Kobresia myosuroides (98) Kobresia myosuroides (98) 

 
 
 
a major concern of the study involved in for example, life 
history traits, breeding system, successional status, or 
conservation genetics. This study is similar to previous 
studies that have demonstrated that the vagility of pollen 
and seeds is highly associated with the development of 
genetic structure (Zhou and Deng, 2001; Zhao et al., 
2006). 
 
 
Conclusion 
 
The marker RAPD was found equally informative and 
useful for a better understanding of the genetic variability 
and genomic relationships between accessions. In the 
dendrograms, K. macrentha (L) species formed a particular 
clade, and species inhabiting similar habitats or having 
similar adaptations tended to be together. These trees 
show that the genetic variation differences and adapta-
tions may possibly be taking place in these Kobresia 
accessions because of mutations or drift effects due to 
their remote geographic and high altitudinal position in 
the Tibetan plateau. 

Finally, this study highlights the importance of molecular 
analysis in understanding the genetic diversity and 
structure of Kobresia accessions, and contributes to the 
knowledge of genetic resource conservation. 
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