Full Length Research Paper

Ribosomal DNA internal transcribed spacer 1 and internal transcribed spacer 2 regions as targets for molecular identification of medically important Zanthoxylum schinifolium

Sun Yan-Lin ${ }^{1}$, Park Wan-Geun ${ }^{2}$, Kwon Oh-Woung ${ }^{3}$ and Hong Soon-Kwan ${ }^{1,4 *}$
${ }^{1}$ Department of Bio-Health Technology, Kangwon National University, Chuncheon, Kangwon-Do, 200-701, Korea.
${ }^{2}$ Department of Forest Resources, Kangwon National University, Chuncheon, Kangwon-Do, 200-701, Korea.
${ }^{3}$ Korea Forest Seed and Variety Center, Suanbo, Chungju, Chungcheongbuk-Do, 380-941, Korea.
${ }^{4}$ Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Kangwon-Do, 200-701, Korea.

Accepted 28 June, 2010

Abstract

Molecular approaches are now being developed to provide a more rapid and objective identification compared to traditional phenotypic methods. Nuclear ribosomal DNA (nrDNA) targets, especially internal transcribed spacer 1 and 2 (ITS1 and ITS2), have been widely used for molecular identification of some plants and fungi. We therefore conducted an investigation in the identification of the fifth medically important Zanthoxylum schinifolium ecotypes using the common primers of the ITS region. About 620 bp fragments were obtained and the sequences of the polymerase chain reaction (PCR) products were tested. The sequence length, G+C content (\%), DNA alignment and pariwise nucleotide comparisons demonstrated 98.8 to 100% sequence identities in the total ITS region, 98.3 to 100% identities in the ITS1 region and 99.5 to 100% in the ITS2 region. Comparative analysis using GenBank reference data showed that the exclusive reported data showed 100% identities with BEMR, CWDO, HCDC, JDGG and GJGD in the ITS1 region and 100\% identities with thirteen ecotypes except BEMR and GRDG in the ITS2 region. The fifth different ecotypes were classified into five groups and the identification of medically important Z. schinifolium was highly improved due to the augmentation of our current ITS sequences.

Key words: Zanthoxylum schinifolium, molecular identification, phylogenetic relationship, ribosomal DNA, ITS1, ITS2.

INTRODUCTION

Zanthoxylum schinifolium is an aromatic plant, native to warm temperate and subtropical areas in the world, especially in Asia (Yang, 2008). Its pericarps and leaves are widely used as a pungent condiment and seasoning in some East Asian countries such as China, Korea and

[^0]Japan (Paik et al., 2005). Its fruits have also been used as drugs in traditional Chinese medicine for epigastric pain (Yang, 2008) and invigorants for circulation of blood (Cui et al., 2009). Previous studies have reported that Z. schinifolium is rich in coumarins, alkaloids, triterpenoids, steroids and flavonoids (Cheng et al., 2002) and the essential components showed several biological activities such as antiplatelet aggregation (Chen et al., 1995), inhibitory activities (Jo et al., 2002), antioxidant and anticancer activities (Chon et al., 2009) as well as antiinflammatory activities (Cao et al., 2009). However, to the best of our knowledge, there is little to investigate about the identification of this species, especially using molecular approaches.

Table 1. Voucher information, abbreviation and GenBank accession numbers of the sequenced specimens.

Voucher collection	Abbreviation	Accession number
Boeun-Gun Maro-Myeon	BEMR	GU247226
Changwon-Si Dong-Eup	CWDO	GU247227
Eumseong-Gun Soi-Myeon	ESSI	GU247228
Geochang-Gun Namsang-Myeon	GCNS	GU247229
Gochang-Gun Sinlim	GCSL	GU247230
Goheung-Gun Doyang-Eup	GHDY	GU247231
Gangjin-Gun Gundong-Myeon	GJGD	GU247232
Gangneung-Si Gangdong-Myeon	GNGD	GU247233
Goryeong-Gun Deokgok-Myeon	GRDG	GU247234
Hapcheon-Gun Bongsan-Myeon	HCBS	GU247235
Hongcheon-Gun Duchon-Myeon	HCDC	GU247236
Jinan-Gun Bugwi-Myeon	JABG	GU247237
Jindo-Gun Gogun-Myeon	JDGG	GU247238
Wonju-Si Hojeo-Myeon	WJHJ	GU247239
Yeongdeok-Gun Changsu-Myeon	YDCS	GU247240

Traditional classification based on morphological characteristics may not distinguish some species to obstruct species identification and it require a long time (Klich, 2002). In addition, molecular approaches based on DNA sequences were found to provide more reliable and faster species identifications than traditional methods (Hinrikson et al., 2005). Therefore, traditional classification method has not met current identification need and rapid molecular approaches are required for development.
Various rRNA gene regions as targets for the molecular identification have been investigated (Iwen et al., 2002), including the ribosomal total internal transcribed spacer (ITS), ITS1 and ITS2 regions between the small- and large-subunit rRNA genes (White et al., 1990). Sequence diversity in the ribosomal regions has been investigated using polymerase chain reaction (PCR) amplification followed by fragment length analysis (Walsh et al., 1995; Turenne et al., 1999), DNA probe hybridization (Meletiadis et al., 2003), or DNA sequence analysis (Schmidt and Rath, 2003). However, molecular identification approaches especially using the ribosomal ITS1 and ITS2 regions as targets were widely used in fungi, and few studies were obtained from molecular identification in plants. Therefore, we investigated the classification of fifth different ecotypes using the ribosomal ITS1 and ITS2 regions as targets for the molecular identification. We acquired DNA sequence information concerning the ITS1 and ITS2 regions for each ecotype and conducted the sequence length, $\mathrm{G}+\mathrm{C}$ content (\%), DNA sequence alignments, pariwise nucleotide sequence analysis and comparative GenBank database searches.

MATERIALS AND METHODS

Plant materials

Fifth different ecotypes of Z. schinifolium were collected from various areas of South Korea. The voucher data for all ecotypes, abbreviations and GenBank accession numbers are summarized in Table 1.

PCR amplification of the ribosomal ITS1 and ITS2 regions

Genomic DNAs were extracted using the modified sodium dodecyl sulfate (SDS) method (Möller et al., 1992). Common ITS primer sets ITS5, 5'-GAA AGT AAA AGT CGT AAC AAG G-3' and ITS2, 5'GCT GCG TTC TTC ATC GAT GC-3' and ITS3, 5'-GCA TCG ATG AAG AAC GCA GC-3' and ITS4, 5'- TCC TCC GCT TAT TGA TAT GC-3' were used to amplify ribosomal ITS1 and ITS2, respectively (White et al., 1990). Common ITS primer sets ITS5 and ITS4 were used to amplify ribosomal total ITS region. PCR amplification was conducted using this set of primers with the following program: 35 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 1 min , annealing at $55^{\circ} \mathrm{C}$ for 1 min and a final extension step at $72^{\circ} \mathrm{C}$ for 1.5 min . All PCR products were purified before DNA sequence analysis using a QIAquick PCR Purification Kit (QIAGEN, Cat. No., 28104, Korea) according to the manufacturer's instructions. Purified PCR products were then sequenced at SolGent ASSA Service (Korea).

Sequence analysis

Analogue was detected with the basic local alignment search tool (BLAST) on the server on national center for biotechnology information (NCBI) (http://www.nncbi.nih.gov). The sequences of fifth different ecotypes were analyzed using DNAMAN 5.0.

Jaccard coefficients used to represent identity among the ecotypes were calculated by similarity coefficient $\left[\mathrm{Sj}=\mathrm{a} /\left(\mathrm{a}+\mathrm{u}^{\circ} \mathrm{C}\right)\right]$. In the total

Table 2. Symmetric matrix of Jaccard coefficients (\% identity) in total ITS regions between fifth different ecotypes of medically important Z. schinifolium.

Fifth ecotypes	BEMR	CWDO	ESSI	HCBS	HCDC	JABG	JDGG	GCNS	GCSL	GHDY	GJGD	GNGD	GRDG	WJHJ	YDCS
BEMR	100														
CWDO	99.6	100													
ESSI	99.6	99.6	100												
HCBS	99.6	99.9	99.7	100											
HCDC	99.4	99.6	99.7	99.7	100										
JABG	99.6	99.9	100	100	99.9	100									
JDGG	99.6	99.1	99.3	99.3	99.3	100	100								
GCNS	99.4	99.4	99.9	99.6	99.9	99.9	99.1	100							
GCSL	99.4	98.8	98.8	99	99.3	99.9	99.6	99.1	100						
GHDY	99.6	99.1	99.6	99.3	99.3	100	99.1	99.4	98.8	100					
GJGD	99.4	99	99.1	99.1	99.3	99.9	99.9	99.1	99.7	99	100				
GNGD	99.4	99.7	99.6	99.9	99.9	99.9	99.1	99.7	99.1	99.1	99.1	100			
GRDG	99.6	99.6	99.3	99.4	99.3	99.6	99.1	99.1	98.8	98.8	99	99.3	100		
WJHJ	99.6	99.4	99.3	99.6	99.3	100	99.1	99.1	98.8	99.7	99	99.4	99	100	
YDCS	99.6	99.1	99.1	99.3	99.3	100	99.7	99.1	99.7	99.1	99.9	99.1	99.1	99.1	100

ITS region, ITS1 and ITS2 region, ' 1 ' was used for base variation and ' 0 ' was used for no variation; 'a' represents the number of the same bases and ' u ' represents the number of different bases between the two ecotypes.

RESULTS

Symmetric matrix of Jaccard coefficients of the ribosomal ITS regions

The results of symmetric matrix of Jaccard coefficients of total ITS regions showed 98.8 to 100% identity (Table 2), of which ITS1 ribosomal region played a more positive role than ITS2 ribosomal region. The greatest identity in nucleotide sequence appeared between Z. schinifolium JABG and ESSI, HCBS, JDGG, GHDY, WJHJ and YDCS (100% identity) and the sequence of JABG compared with that of CWDO, HCDC, GCSL, GJGD and GNGD was also very similar, showing 99.9\%
identity (Table 2). However, GCSL and CWDO, ESSI, GHDY, GRDG and WJHJ had the highest dissimilarity in the total ITS sequence, with 98.8% identity.
In ribosomal ITS1 region, symmetric matrix of Jaccard coefficients was found to have 98.3 to 100% sequence identity (Table 3). The most dissimilarity in ribosomal ITS1 region (98.3% identity) was found between GRDG and BEMR, CWDO, HCDC, JDGG and GJGD. Other ecotypes in Z. schinifolium such as ESSI, HCBS, JABG, GCNS, GCSL, GHDY, GNGD, WJHJ, YDCS and GRDG showed 100% similarity in the sequence of ribosomal ITS1 region and BEMR, CWDO, HCDC, JDGG and GJGD also showed very high similarity (100% identity) between each other but were likely to differ with ESSI and those parallel ecotypes.
On the other hand, symmetric matrix of Jaccard coefficients of the ribosomal ITS2 region showed
relatively simple results (Table 4). Sequence identities among nearly all fifth different ecotypes showed absolutely single sequence, in representative of the sequence of BEMR and GRDG. BEMR and GRDG had 99.5% sequence identity with all other ecotypes but 100% sequence identity with each other, indicating that the ITS2 region showed were highly conserved among Z. schinifolium and less advantageous in molecular identification than the ITS1 region.

Total ITS, ITS1 and ITS2 sequence length analysis and $G+C$ content among Z. schinifolium

The total ITS region ranged in overall length from 618 to 620 bp (Table 5) and the difference was mainly affected by the ITS1 region. ITS2 ribosomal region showed absolutely identical sequence length,

Table 3. Symmetric matrix of Jaccard coefficients (\% identity) in ITS1 regions between fifth different ecotypes of medically important Z. schinifolium.

Fifth ecotypes	BEMR	CWDO	ESSI	HCBS	HCDC	JABG	JDGG	GCNS	GCSL	GHDY	GJGD	GNGD	GRDG	WJHJ	YDCS
BEMR	100														
CWDO	100	100													
ESSI	98.7	98.7	100												
HCBS	98.7	98.7	100	100											
HCDC	100	100	98.7	98.7	100										
JABG	98.7	98.7	100	100	98.7	100									
JDGG	100	100	98.7	98.7	100	98.7	100								
GCNS	98.7	98.7	100	100	98.7	100	98.7	100							
GCSL	98.7	98.7	100	100	98.7	100	98.7	100	100						
GHDY	98.7	98.7	100	100	98.7	100	98.7	100	100	100					
GJGD	100	100	98.7	98.7	100	98.7	100	98.7	98.7	98.7	100				
GNGD	98.7	98.7	100	100	98.7	100	98.7	100	100	100	98.7	100			
GRDG	98.3	98.3	99.6	99.6	98.3	99.6	98.3	99.6	99.6	99.6	98.3	99.6	100		
WJHJ	98.7	98.7	100	100	98.7	100	98.7	100	100	100	98.7	100	99.6	100	
YDCS	98.7	98.7	100	100	98.7	100	98.7	100	100	100	98.7	100	99.6	100	100

Table 4. Symmetric matrix of Jaccard coefficients (\% identity) in ITS2 regions between fifth different ecotypes of medically important Z. schinifolium

Fifth ecotypes	BEMR	CWDO	ESSI	HCBS	HCDC	JABG	JDGG	GCNS	GCSL	GHDY	GJGD	GNGD	GRDG	WJHJ	YDCS
BEMR	100														
CWDO	99.5	100													
ESSI	99.5	100	100												
HCBS	99.5	100	100	100											
HCDC	99.5	100	100	100	100										
JABG	99.5	100	100	100	100	100									
JDGG	99.5	100	100	100	100	100	100								
GCNS	99.5	100	100	100	100	100	100	100							
GCSL	99.5	100	100	100	100	100	100	100	100						
GHDY	99.5	100	100	100	100	100	100	100	100	100					
GJGD	99.5	100	100	100	100	100	100	100	100	100	100				
GNGD	99.5	100	100	100	100	100	100	100	100	100	100	100			
GRDG	100	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	100		
WJHJ	99.5	100	100	100	100	100	100	100	100	100	100	99.5	99.5	100	
YDCS	99.5	100	100	100	100	100	100	100	100	100	100	99.5	99.5	100	100

Table 5. Total ITS, ITS1 and ITS2 sequence length analysis among fifth different ecotypes of medically important Z. schinifolium.

Ecotypes	Size of total ITS region $\mathbf{a}^{\mathbf{(b p})}$	Size of ITS1 region $\mathbf{(b p)}$	Size of ITS2 region $\mathbf{(b p)}$
BEMR	620	236	219
CWDO	620	236	219
ESSI	619	235	219
HCBS	619	235	219
HCDC	620	236	219
JABG	619	235	219
JDGG	620	236	219
GCNS	619	235	219
GCSL	618	234	219
GHDY	619	235	219
GJGD	620	236	219
GNGD	619	235	219
GRDG	619	235	219
WJHJ	619	235	219
YDCS	619	235	219

${ }^{\text {a }}$ Total ITS regions of fifth different ecotypes included the ITS1 and ITS2 region and 5.8 S rRNA gene that exhibited a conserved length of 165 bp between ITS1 and ITS2 region in all ecotypes.

Table 6. G+C content (\%) of total ITS, ITS1, 5.8S rRNA and ITS2 region among fifth different ecotypes of medically important Z. schinifolium.

Ecotypes	G+C content (\%)			
	Total ITS region (\%)	ITS1 region (\%)	5.8S rRNA (\%)	ITS2 region (\%)
BEMR	65.00	67.80	53.94	70.32
CWDO	65.16	67.80	53.94	70.78
ESSI	64.78	66.81	53.94	70.78
HCBS	64.78	66.81	53.94	70.78
HCDC	65.16	67.80	53.94	70.78
JABG	64.78	66.81	53.94	70.78
JDGG	65.16	67.80	53.94	70.78
GCNS	64.78	66.81	53.94	70.78
GCSL	65.05	67.52	53.94	70.78
GHDY	64.78	66.81	53.94	70.78
GJGD	65.16	67.80	53.94	70.78
GNGD	64.78	66.81	53.94	70.78
GRDG	64.62	66.81	53.94	70.32
WJHJ	64.78	66.81	53.94	70.78
YDCS	64.78	66.81	53.94	70.78

with 219 bp in all ecotypes (Table 5). The intervening part, 5.8S rRNA gene, exhibited a conserved length of 165 bp in all ecotypes investigated in this study (data to be shown in DNA alignment part). Therefore, ITS1 ribosomal region which showed less than 2 bp differences among all different ecotypes, mostly worked on the
variant of the total ITS sequence length. Among them, GCSL had the shortest sequence length and BEMR, CWDO, HCDC, JDGG and GJGD had the longest sequence length.
The $\mathrm{G}+\mathrm{C}$ content (\%) in the total ITS region ranged from 64.62 to 65.16% (Table 6). The contents (\%) of $G+$

C ranged from 66.81 to 67.80% and 70.32 to 70.78% in the ITS1 and ITS2 region, respectively. However, 5.8 S rRNA showed the constant $G+C$ content of 53.94% (Table 6). Among them, GRDG had the lowest $G+C$ content (\%) in the total ITS, ITS1 and ITS2 regions; CWDO, HCDC, JDGG and GJGD had the highest G + C content (\%) in the total ITS, ITS1 and ITS2 regions.

DNA alignment of ITS1 and ITS2 ribosomal regions among Z. schinifolium

To discriminate the fifth different ecotypes properly, DNA alignments of the total ITS, ITS1 and ITS2 ribosomal regions were conducted to identify areas which displayed the dissimilarity in sequences. The 18 S rRNA gene existing in the front of 5 ' end of the total ITS ribosomal region and the 28 S rRNA gene existing in the back of 3 ' end of the ITS region were highly conversed among the fifth different ecotypes of Z. schinifolium, and the same results were obtained from the 5.8 S rRNA gene intervening between the ITS1 and ITS2 ribosomal regions (Figure 1). The 5.8 S rRNA gene started at a triplet code, AAC and ended at a triplet code, GCA, labeled with red fonts (Figure 1), showing 100% sequence identity in the total size of 165 bp among these ecotypes. The ITS1 ribosomal regions displayed the first nucleotide deletion at the 4th bp site among ESSI, HCBS, JABG, GCNS, GCSL, GHDY, GNGD, GRDG, WJHJ and YDCS ecotypes (Figure 2). And the second nucleotide deletion occurred successively at 15 th bp site, but only GCSL showed this nucleotide deletion. In the ITS2 ribosomal region, the sequences had the same size of 219 bp , but a variety of sequence was obtained at 207th bp site (Figure 3). BEMR and GRDG exhibited nucleotide ' T ' instead of ' C ' in all other ecotypes.

Comparative GenBank analysis of total ITS, ITS1, and ITS2 ribosomal sequences

To determine the differences between our sequences and existing sequences in public database, comparative sequence analysis of the ITS1 and ITS2 ribosomal regions were conducted with BLAST searches of the NCBI GenBank database. For internal transcribed spacer sequences in Z. schinifolium, only two items, DQ225846 and DQ225861, were obtained and recited as ITS1 complete sequence and ITS2 partial sequence, respectively. Three ITS1 sequences showing diversity in our results (BEMR, GCSL and GRDG) were selected and compared with the existing ITS1 sequence (DQ225846), while two ITS2 sequences showing diversity in our results (BEMR and GCSL) were used to compare with the existing ITS2 sequence (DQ225861). The BEMR ecotype had the identical sequence in the ITS1 region compared with existing sequence (Figure 4), and GCSL and GRDG
also showed relatively high similarity in sequence, having 98.7 and 98.3% identity, respectively. Comparing with the existing sequence in the ITS2 region, the BEMR ecotype showed 99.5% sequence identity (Figure 5); GCSL had an absolutely identical sequence with the existing sequence (DQ225861), although these sequences in our results were shorter than the existing one.

DISCUSSION

Phylogenetic relationship in fungal pathogens and plants were mainly based on systematic studies, including morphology and molecular biology. Traditional methods have been found to have localization in species identification, and better methods are required to be exploited to meet the needs of more refined species confirmation. Several studies based on molecular identification have been investigated in some plant species such as Sorghum (Dillon et al., 2001; Dillon et al., 2004; Price et al., 2005). Dillon et al. (2001) had attempted to determine the phylogenetic relationships between 25 Sorghum species using the ribosomal ITS1 and ndhF, and obtained two distinct lineages. Price et al. (2005) combined sequence analysis of ITS1 and ndhF with chromosome number and 2C DNA content to evaluate the phylogenetic relationships between 25 sorghum species.
Simple sequence repeat (SSR) markers were used to characterize diversity in 28 Eritrean sorghum landraces and a high level of diversity was observed, indicating that SSR markers could be effective in species identification. In the present work, we investigated the identification among fifth different ecotypes of Z. schinifolium based on the sequence analysis of ITS1 and ITS2 regions. The ecotypes differ in their physiologies according to the ecological distributions (Yaun and KuĖpfer, 1995; Moore and Chisholm, 1999). Ecotypes also showed gene diversity due to the adaptability of environment and many years of natural evolution. The ITS region exhibits between highly conserved 18 S and 28 S rRNA genes which provides advantages for primer design and PCR amplification (Ebach and Holdrege, 2005). In addition, the ITS ribosomal region exhibits a great deal of length and sequence variation, it has frequently been used to identify species (Moore et al., 1998; Moritz and Cicero, 2004). Therefore, to better understand the phylogenetic relationships among these ecotypes, further molecular genetic research is necessary.

The emergence of sequence identification with a BLAST similarity search connected to public databases (Altschul et al., 1997) has resolved several experimental and taxonomic constraints. Thus, other molecular identification such as ndhF and EST should be done to explore the possibility of the multiple variety of sequence. To our knowledge, studies of molecular identification using the ITS region as markers in plants is far lesser than those in fungal and bacterial groups. This work not only provides

BEMR	GTGACTGCGGAGGTCATTGTCGAAACCTCTGCAAGAGCAGAACGACCCGCGAA
CWDO	GTGACTGCGGAGGTCATTGTCGAAACCTCTGCAAGAGCAGAACGACCCGCGAA
ESSI	GTGACTGCGGAGGTCATTGTCGAA-CCTCTGCAAGAGCAGAACGACCCGCGAA
HCBS	GTGACTGCGGAGGTCATTGTCGAA-CCTCTGCAAGAGCAGAACGACCCGCGAA
HCDC	GTGACTGCGGAGGACATTGTCGAAACCTCTGCAAGAGCAGAACGACCCGCGAA
JABG	GTGACTGCGGAGGTCATTGTCGAA-CCTCTGCAAGAGCAGAACGACCCGCGAA
JDGG	GNTGACTGCGGAGGTCATTGTCGAAACCTCTGCAAGAGCAGAACGACCCGCGAA
GCNS	GTGACTGCGGAGGACATTGTCGAA-CCTCTGCAAGAGCAGAACGACCCGCGAA
GCSL	AGTGACTGCGGAGGACATTGTCGAA-CCTCTGCA-GAGCAGAACGACCCGCGAA
GHDY	GTGACTGCGGAGGTCATTGTCGAA-CCTCTGCAAGAGCAGAACGACCCGCGAA
GJGD	GTGACTGCGGAGA-CATTGTCGAAACCTCTGCAAGAGCAGAACGACCCGCGAA
GNGD	GTGACTGCGGAGGACATTGTCGAA-CCTCTGCAAGAGCAGAACGACCCGCGAA
GRDG	GTGACTGCGGAGGTCATTGTCGAA-CCTCTGCAAGAGCAGAACGACCCGCGAA
WJHJ	GTGACTGCGGAGGTCATTGTCGAA-CCTCTGCAAGAGCAGAACGACCCGCGAA
YDCS	AGTGACTGCGGAGGTCATTGTCGAA-CCTCTGCAAGAGCAGAACGACCCGCGAA *********** ********** ******** ******************
BEMR	CTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
CWDO	CTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
ESSI	СTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
HCBS	СTСGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
HCDC	СTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
JABG	CTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
JDGG	СTСGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
GCNS	CTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
GCSL	СTСGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
GHDY	CTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
GJGD	СTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
GNGD	СTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
GRDG	СTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
WJHJ	CTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG
YDCS	СTCGTGATCACACTAGCGGGGGGCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTG ***
BEMR	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
CWDO	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
ESSI	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
HCBS	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
HCDC	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
JABG	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
JDGG	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
GCNS	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
GCSL	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
GHDY	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
GJGD	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
GNGD	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
GRDG	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
WJHJ	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
YDCS	TGGGACTCCTCCCGTTCCCCGCGGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAA
BEMR	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
CWDO	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
ESSI	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
HCBS	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
HCDC	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
JABG	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
JDGG	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
GCNS	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
GCSL	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
GHDY	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
GJGD	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
GNGD	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
GRDG	GGAAATCTAACGAGAGAGCACGCTCTCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
WJHJ	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT
YDCS	GGAAATCTAACGAGAGAGCACGCTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGT

Figure 1. DNA alignment of the total ITS ribosomal region among fifth different ecotypes of medically important Z. schinifolium. To illustrate the sequence divergence, the boundary parts of 5.8 S rRNA gene were labeled with red fonts.

BEMR	СGССТTСтTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
CWDO	СGССТTСTTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
ESSI	СGССТTCTTTCACTCTATCTGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
HCBS	СGССТTСТTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
HCDC	СGССТTСTTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
JABG	СGССТTСTTTCACTCTATCTGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
JDGG	СЄССТTСТTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
GCNS	СGССТTСТTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
GCSL	СGССТTСTTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
GHDY	СЄССТTСТTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
GJGD	СGССТTСTTTCACTCTATCTGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
GNGD	СGССТTСТTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
GRDG	СGССТTСТTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
WJHJ	СGССТTСTTTСАСТСТАТСТGAAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCG
YDCS	СЄССТтСТТТСАСТСТАТСТ
BEMR	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
CWDO	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
ESSI	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
HCBS	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
HCDC	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
JABG	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
JDGG	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
GCNS	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
GCSL	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
GHDY	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
GJGD	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
GNGD	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
GRDG	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
WJHJ	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
YDCS	ATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGA
BEMR	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
CWDO	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
ESSI	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
HCBS	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
HCDC	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
JABG	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
JDGG	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
GCNS	GTСтTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
GCSL	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
GHDY	GTСТTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
GJGD	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
GNGD	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
GRDG	GTСтTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
WJHJ	GTCTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
YDCS	GTСTTTGAACGCAAGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTC
BEMR	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
CWDO	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
ESSI	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
HCBS	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
HCDC	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
JABG	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
JDGG	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
GCNS	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
GCSL	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
GHDY	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
GJGD	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
GNGD	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
GRDG	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
WJHJ	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC
YDCS	ACGCATCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGC

Figure 1. Continued.

BEMR	CTCCCGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
CWDO	СTСССGTGCGCTCСССGСTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
ESSI	СTСССGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
HCBS	СTСССGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
HCDC	СTСССGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
JABG	СTСССGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
JDGG	СTCCCGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
GCNS	СТСССGTGCGCTССССGСТСGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
GCSL	СTСССGTGCGCTCCCCGСTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
GHDY	СTCCCGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
GJGD	CTCCCGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
GNGD	CTCCCGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
GRDG	СTСССGTGCGCTCCCCGСTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
WJHJ	CTCCCGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
YDCS	СTCCCGTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGC
BEMR	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
CWDO	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
ESSI	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
HCBS	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
HCDC	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
JABG	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
JDGG	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
GCNS	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
GCSL	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
GHDY	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
GJGD	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
GNGD	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
GRDG	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
WJHJ	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
YDCS	GACGATCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTC
BEMR	GAGACTCAGGGACCCTGACGCTCCGCGCGAGTGGCGCTCGCATCGCGACCCCAGGTCAGG
CWDO	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
ESSI	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
HCBS	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
HCDC	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
JABG	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
JDGG	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
GCNS	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
GCSL	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
GHDY	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
GJGD	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
GNGD	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
GRDG	GAGACTCAGGGACCCTGACGCTCCGCGCGAGTGGCGCTCGCATCGCGACCCCAGGTCAGG
WJHJ	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG
YDCS	GAGACTCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGG ******************************* ***********************************)
BEMR	CGGGATTACCCGCTGAGTTTAAGCATACTA
CWDO	CGGGATTACCCGCTGAGTTTAAGCATATCAAAAGGCCGGAGGAA--
ESSI	CGGGATTACCCGCTGAGTTTAAGCATATCAATAAGGCGGAGGA---
HCBS	CGGGATTACCCGCTGAGTTTAAGCATATCAATAGGCCGGAGGAAA-
HCDC	CGGGATTACCCGCTGAGTTTAAGCATATCAATAAGCCGGAGGA--
JABG	CGGGATTACCCGCTGAGTTTAAGCATATCAATA
JDGG	CGGGATTACCCGCTGAGTTTAAGCATATCAATAAGCGGAGGAA-
GCNS	CGGGATTACCCGCTGAGTTTAAGCATATCAATAAGGCGGAGGAA--
GCSL	CGGGATTACCCGCTGAGTTTAAGCATATCAATAAGCGAAGGAA-
GHDY	CGGGATTACCCGCTGAGTTTAAGCATATCAATAAGGCGGGAGGAAA
GJGD	CGGGATTACCCGCTGAGTTTAAGCATATCAATAAGCGGAGGAA---
GNGD	CGGGATTACCCGCTGAGTTTAAGCATATCAATAGNCCGGAGGAAA-
GRDG	CGGGATTACCCGCTGAGTTTAAGCATATCAAAANGCGGGAGGA---
WJHJ	CGGGATTACCCGCTGAGTTTAAGCATATCAATAGGCCGGGAGGAAA
YDCS	CGGGATTACCCGCTGAGTTTAAGCATATCAATAAGCGGAGGAA---

Figure 1. Continued.

BEMR	TCGAAACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
CWDO	TCGAAACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
ESSI	TCG-AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
HCBS	TCG-AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
HCDC	TCGAAACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
JABG	TCG-AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
JDGG	TCGAAACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
GCNS	TCG-AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
GCSL	TCG-AACCTCTGCA-GAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
GHD	TCG-AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
GJGD	TCGAAACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
GNGD	TCG-AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
GRDG	TCG-AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
WJHJ	TCG-AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
YDCS	TCG-AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGGGCGC
BEMR	GСтTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
CWDO	GСтTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
ESSI	GСTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
HCBS	GCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
HCDC	GCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
JABG	GCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
JDGG	GСTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
GCNS	GCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
GCSL	GСTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
GHDY	GCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
GJGD	GCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
GNGD	GCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
GRDG	GСTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
WJHJ	GCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
YDCS	GCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGCGGGG
BEMR	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
CWDO	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
ESSI	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
HCBS	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
HCDC	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
JABG	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
JDGG	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
GCNS	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
GCSL	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
GHDY	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
GJGD	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
GNGD	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
GRDG	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCT
WJHJ	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
YDCS	GCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACGCTCC
BEMR	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTСТTTCACTCTATCTGA
CWDO	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
ESSI	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTСтTTСАСТСТАТСТGA
HCBS	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
HCDC	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
JABG	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
JDGG	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
GCWS	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
GCSL	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
GHDY	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
GJGD	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
GWGD	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
GRDG	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
WJHJ	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
YDCS	CGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA

Figure 2. DNA alignment of the ribosomal ITS1 region among fifth different ecotypes of medically important Z. schinifolium. To illustrate the sequence divergence, the nonidentical parts in the ITS1 region were labeled with red fonts.

BEMR	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
CWDO	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
ESSI	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
HCBS	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
HCDC	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
JABG	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
JDGG	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
GCNS	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
GCSL	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
GHDY	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
GJGD	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
GNGD	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
GRDG	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
WJHJ	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
YDCS	TCGTTGCCCCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCC
BEMR	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
CWDO	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
ESSI	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
HCBS	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
HCDC	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
JABG	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
JDGG	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
GCNS	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
GCSL	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
GHDY	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
GJGD	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
GNGD	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
GRDG	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
WJHJ	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
YDCS	GTGCGCTCCCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGA
BEMR	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
CWDO	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
ESSI	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
HCBS	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
HCDC	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
JABG	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
JDGG	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
GCNS	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
GCSL	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
GHDY	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
GJGD	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
GNGD	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
GRDG	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
WJHJ	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
YDCS	TCGGTGGTGAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGAC
BEMR	TCAGGGACCCTGACGCTCCGCGCGAGTGGCGCTCGCATC
CWDO	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
ESSI	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
HCBS	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
HCDC	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
JABG	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
JDGG	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
GCNS	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
GCSL	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
GHD	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
GJGD	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
GNGD	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
GRDG	TCAGGGACCCTGACGCTCCGCGCGAGTGGCGCTCGCATC
WJHJ	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
YDCS	TCAGGGACCCTGACGCTCCGCGCGAGCGGCGCTCGCATC
	************************ *******

Figure 3. DNA alignment of the ribosomal ITS2 region among fifth different ecotypes of medically important Z. schinifolium. To illustrate the sequence divergence, the nonidentical parts in the ITS1 region were labeled with red fonts.

ITS1	GGATCGCGGCGACGCGGGCGGTTCGCTGCCTGCGACGTCGCGAGAAGTCCACTGAACCTT
BEMR	
GCSL	
GRDG	
ITS1	ATCATTTAGAGGAAGGAGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATC
BEMR	
GCSL	
GRDG	
ITS1	ATTGTCGAAACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGG
BEMR	TCGAAACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGG
GCSL	TCG AACCTCTGCA－GAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGG
GRDG	TCG AACCTCTGCAAGAGCAGAACGACCCGCGAACTCGTGATCACACTAGCGGGGG
ITS1	GCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGC
BEMR	GCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGC
GCSL	GCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGC
GRDG	GCGCGCTTCGCGGCCGCTCCCCCACGTCTCCGCGGGTGTGGGACTCCTCCCGTTCCCCGC
ITS1	GGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACG
BEMR	GGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACG
GCSL	GGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACG
GRDG	GGGGGCGGATAACGAACCCCCGGCGCGGAATGCGCCAAGGAAATCTAACGAGAGAGCACG
ITS1	CTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
BEMR	CTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
GCSL	CTCCCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
GRDG	СТСTCGGGGCCCCGGACACGGTGTGCTCCGGGACGCGTCGCCTTCTTTCACTCTATCTGA
ITS1	AACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCG
BEMR	
GCSL	
GRDG	－
ITS1	ATACTTGGT
BEMR	－－－－－－－－－
GCSL	－
GRDG	－－ーーー－ー－－

Figure 4．Comparative GenBank analysis of the ITS1 ribosomal sequences with BEMR，GCSL and GRDG．ITS1 sequence investigated in this study is the existing ITS1 sequence of Z ．schinifolium in GenBank，and accession no．is DQ225846．

ITS2	AGTTGCGCCCCAAGCCTTTAGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATCGTTGCC	
BEMR		TCGTTGCC
GCSL		TCGTTGCC
ITS2	CCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCCGTGCGCTC	
BEMR	CCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCCGTGCGCTC	
GCSL	CCGCCCCACCCCCGCCCGGGGGCTTGGCGGCGAGGGCGGATAATGGCCTCCCGTGCGCTC 	
ITS2	CCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGATCGGTGGT	
BEMR	CCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGATCGGTGGT	
GCSL	CCCGCTCGCGGTTGGCCCAAATTCGAGTCCCCGGCGACCGGAGCCGCGACGATCGGTGGT ＊＊＊）	
ITS2	GAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGACTCAGGGAC	
BEMR	GAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGACTCAGGGAC	
GCSL	GAAAACAAACCTCTCGAACACACGTCGCGTGCCCGGCTCTCCGTTTCGAGACTCAGGGAC ＊＊）	
ITS2	ССTGACGCTCCGCGCGAGCGGCGCTCGCATCGCGACCCCAGGTCAGGCGGGATTACCCGC	
BEMR		
GCSL	CCTGACGCTCCGCGCGAGCGGCGCTCGCATC ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊	
ITS2	TGAGTTTAAGCATATCAATA	
BEMR		
GCSL	－－－－－－－－－－－－－－－－－－－－	

Figure 5．Comparative GenBank analysis of the ITS2 ribosomal sequences with BEMR and GCSL．ITS2 sequence investigated in this study is the existing ITS2 sequence of Z ．schinifolium in GenBank，and accession no．is DQ225861．
more resources of ITS sequence in Z. schinifolium, but distinguishes five groups from the fifth different ecotypes, which makes it possible to elucidate the phylogenetic relationships of Z. schinifolium species.

ACKNOWLEDGMENT

This work was supported by Nutraceutical Bio Brain Korea 21 Project Group.

REFERENCES

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
Cao LH, Lee YJ, Kang DG, Kim JS, Lee HS (2009). Effect of Zanthoxylum schinifolium on TNF- α-induced vascular inflammation in human umbilical vein endothelial cells. Vasc. Pharmacol. 50: 200207. doi: 10.1016/j.vph.2009.01.008.

Chen IS, Lin YC, Tsai IL, Teng CM, Ko FN, Ko FN, Ishikawa T, Ishii H (1995). Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry. 39: 1091-1097.
Cheng MJ, Yang CH, Lin WY, Lin WY, Tsai LL, Cheng IS (2002). Chemical constituents from the leaves of Zanthoxylum schinifolim. J. Chin. Chem. Soc. 49: 125-128.
Chon SU, Heo BG, Park YS, Kim DK, Gorinstein S (2009). Total phenolics level, antioxidant activities and cytotoxicity of young sprouts of some traditional Korean salad plants. Plant Food Hum. Nutr. 64: 25-31. doi: 10.1007/s11130-008-0092-x.
Cui HZ, Choi HR, Choi DH, Cho KW, Kang DG, Lee HS (2009). Aqueous extract of Zanthoxylum schinifolium elicits contractile and secretory responses via β_{1}-adrenoceptor activation in beating rabbit atria. J. Ethnopharmacol. 126: 300-307. doi: 10.1016/j.jep.2009.08.025.

Dillon SL, Lawrence PK, Henry RJ (2001). The use of ribosomal ITS to determine phylogenetic relationships within Sorghum. Plant Syst. Evol. 230: 97-110. doi: 10.1007/s006060170007.
Dillon SL, Lawrence PK, Henry RJ, Ross L, Price HJ, Johnston JS (2004). Sorghum laxiflorum and S. macrospermum, the Australian native species most closely related to the cultivated S. bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Plant Syst. Evol. 249: 233-246. doi: 10.1007/s00606-004-0210-7.
Ebach MC, Holdrege C (2005). DNA barcoding is no substitute for taxonomy. Nature. 434: 697. doi: 10.1038/434697b.
Hinrikson HP, Hurst SF, Lott TJ, Warnock DW, Morrison CJ (2005). Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. J. Clin. Microbiol. 43: 2092-2103.
Iwen PC, Hinrichs SH, Rupp ME (2002). Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med. Mycol. 40: 87-109.
Jo YS, Huong DT, Bae K, Lee MK, Kim YH (2002). Monoamine oxidase inhibitory coumarin from Zanthoxylum schinifolim. Planta Med. 68: 84-85.
Klich MA (2002). Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
Meletiadis J, Melchers WJ, Meis JF, Van Den Hurk P, Jannes G, Verweij PE (2003). Evaluation of a polymerase chain reaction reverse hybridization line probe assay for the detection and identification of medically important fungi in bronchoalveolar lavage fluids. Med. Mycol. 41: 65-74.

Möller EM, Bahnweg G, Sandermann H, Geiger HH (1992). A simple and efficient protocol for the isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic acids Res. 20: 6115-6116.
Moore LR, Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol. Oceanogr. 44: 628-638.
Moore LR, Rocap G, Chisholm SW (1998). Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature. 393: 464467. doi: 10.1038/30965.

Moritz C, Cicero C (2004). DNA barcoding: Promise and pitfalls. PLoS Biol. 2: 1529-1531. doi: 10.1371/journal.pbio. 0020354.
Paik SY, Koh KH, Beak SM, Paek SH, Kim JA (2005). The essential oils from Zanthoxylum schinifolium pericarp induce apoptosis of HepG2 human hepatoma cells through increased production of reactive oxygen species. Biol. Pharm. Bull. 28: 802-807. doi: 10.1248/bpb.28.802.

Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005). Genome evolution in the genus Sorghum (Poaceae). Ann. Bot. 95: 219-227. doi: 10.1093/aob/mci015.
Schmidt D, Rath PM (2003). Faster genetic identification of medically important aspergilla by using gellan gum as gelling agent in mycological media. J. Med. Microbiol. 52: 653-655.
Turenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM (1999). Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J. Clin. Microbiol. 37: 1846-1851.
Walsh TJ, Francesconi A, Kasai M, Chanock SJ (1995). PCR and signle-strand conformational polymorphism for recognition of medically import opportunistic fungi. J. Clin. Microbiol. 33: 3216-3220.
White TJ, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (ed). PCR protocols-a guide to methods and applications. Academic Press, San Diego, Calif.
Yang XG (2008). Aroma constituents and alkylamides of red and green Huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium). J. Agric. Food Chem. 56: 1689-1696. doi: 10.1021/jf0728101.
Yaun YM, KuÈpfer P (1995). Molecular phylogenetics of the subtribe Gentianinae (Gentianaceae) inferred from the sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA. Plant Syst. Evol. 196: 207-226.

[^0]: *Corresponding author. E-mail: soonkwan@kangwon.ac.kr. Tel: +82 33250 6476. Fax: +82 332506470 .

 Abbreviations: nrDNA, Nuclear ribosomal DNA; ITS, internal transcribed spacer; PCR, polymerase chain reaction; BLAST, basic local alignment search tool; NCBI, National Center for Biotechnology Information; SSR, simple sequence repeat.

