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Livestock producers face a number of challenges including pressure from the public to be good 
environmental stewards and adopt welfare-friendly practices. However, environmental stewardship and 
animal welfare may have excitingly conflicting objectives. Examples include pasture-based dairy and 
beef cattle production where high-fiber diets increase methane emissions compared with grain feeding 
practices in confinement. Livestock account for 35-40% of global anthropogenic emissions of methane, 
via enteric fermentation and manure, which together account for about 80% of the agricultural 
emissions. Recent estimates indicate that the methane emissions from African cattle, goats, and sheep 
are likely to increase from their current level of about 7.8 million tons of methane per year in 2000 to 
11.1 million tons per year by 2003, largely driven by increase in livestock numbers. This paper therefore 
reviews certain areas of CH4 emissions from ruminants, highlights on how some novel feed additives 
can decrease CH4 emissions from ruminants; and how some plants secondary metabolites might act as 
a selective inhibitor of methanogens. An enteric methane emission (which is one of the greenhouse 
gases) represents an economic loss to the farmer where feed is converted to CH4 rather than to product 
output. As developing countries are now responsible for almost three-quarters of such emissions, this 
has important implications in terms of mitigation strategies, because these countries are presently 
outside the remit of the Kyoto Protocol. 
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INTRODUCTION  
 
Livestock producers face a number of challenges inclu-
ding pressure from the public to be good environmental 
stewards and adopt welfare-friendly practices. They often 
implement practices beyond those required from a regul-
atory stand-point to meet the demands of consumers. 
Ruminant livestock has been recognized as a major 
contributor to greenhouse gases (Steinfeld et al., 2006). 
Livestock account for mainly 80% of all emissions from 
the agricultural sector. Emissions into the air by any 
animal production system can be problematic in terms of 
pollutants and toxicity and in terms of odour and the 
perception of air quality by human neighbours.The three 
major greenhouse gases are carbondioxide, methane 
and nitrous oxide. Methane has a positive radiative  force  
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on the climate; the global warming potential of methane is 
21-times that of CO2 over 100 years (UNFCCC, 2007), 
albeit it is much shorter-lived in the atmosphere. It also 
has serious impact on high atmosphere ozone formation. 
It is important to reduce methane production from the 
rumen, because methanogenesis corresponds to 2-12% 
of dietary energy loss (Czerkawski, 1969) as well as con-
tributing to global warming. Enteric methane emissions 
represent an economic loss to the farmer where feed is 
converted to CH4 rather than to product output (CCTP, 
2005). Livestock accounts for 35-40% of the global an-
thropogenic emissions of methane, via enteric fermenta-
tion and manure (Steinfeld et al., 2006). Recent esti-
mates by Herrero et al. (2008) indicate that methane 
emissions from African cattle, goats and sheep are likely 
to increase from their current level of about 7.8 million 
tons of methane per year in 2000 to 11.1 million tons per 
year   by  2030;  largely  driven  by  increase  in  livestock  
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numbers. Again, there are considerable differences in 
methane emission per tropical livestock unit (TLU, 250 kg 
body weight), depending on the production system and 
diet, from 21 (less productive systems) to 40 (more pro-
ductive systems) kg per TLU per year. Developing 
countries are responsible for almost three-quarters of the 
enteric methane emissions. Developing countries are 
now responsible for almost three-quarters of the enteric 
methane emissions which have important implications in 
terms of mitigation strategies. 

This paper therefore, reviews certain aspects of enteric 
methane emissions from ruminants, how some novel 
feed additives can decrease CH4 emissions from rumi-
nants and how some plants secondary metabolites can 
act as a selective inhibitor of methanogens. 
 
 
METHANOGENIC ARCHAEA 
 
The methanogenic archaea constitute a large and diverse 
group of Archaea (Boone et al., 1993). Methanogenic 
species were cultured from the rumen for enumeration 
and isolation of methanogens (Table 1). They have 
unique features that separate them from bacteria and the 
eukaryotes (Balch et al., 1979; Woese et al., 1990). The 
methanogens are the only recognized ruminal microbes 
belonging to the Archaea and are an integral part of the 
rumen microbial ecosystem (Hungate, 1966; Miller, 1995; 
Wolin, 1979). By scavenging hydrogen gas, metha-
nogens play a key ecological role in keeping the partial 
pressure of hydrogen low so that fermentation can 
proceed efficiently (Wolin, 1982; Wolin et al., 1997). 
Although about 70 methanogenic species belonging to 21 
genera have been identified from anaerobic environ-
ments, and a range of different methanogens co-exist in 
the rumen (Jarvis et al., 2000; Sharp et al., 1998; Tajima 
et al., 2001; Whitford et al., 2001), to date only seven 
ruminal species have been isolated and purified. The 
population densities of methanogens in the rumen appear 
to be influenced by diet and in particular by the fibre 
content of the diet (Kirchgessner et al., 1995). Sheep and 
cattle fed diets rich in concentrates contained 10

7
-10

8
 and 

10
8
-10

9 
cfu ruminal methanogens/g, respectively (Morvan 

et al., 1996; Leedle and Greening, 1988). The metha-
nogens classified as archaea have a distinctly different 
cell wall structure from true rumen bacteria (Woese et 
al.1990).  
 
 
METHANE MITIGATION STRATEGIES 
 
Enteric methane emissions by ruminants are more amen-
able to mitigation. Enteric methane emissions is a major 
source of greenhouse gas in agriculture, and is formed in 
the rumen through a process called enteric fermentation. 
During   this   normal   digestive   process,   hydrogen   is 
released by other microbes during fermentation of  forage  

 
 
 
 
and is used by methanogenic archaea (that is methano-
gens) to convert carbon dioxide to methane. The majo-
rities (80%) of all emissions come from ruminants; 
because this methane comes from point sources and is 
related to poor nutrition and livestock numbers, a range 
of mitigation options are available (Joblin, 1996). Metha-
ne emitted from grazing animals can now be accurately 
measured (Lassey et al., 1997), so mitigation strategies 
can be tested and monitored in the field.  

Although a number of enteric methane mitigation stra-
tegies exist, following Clemens and Ahlgrimm (2001), 
such strategies can be broadly divided into ‘preventive’ 
and ‘end of pipe’ options. Preventive measures tend to 
reduce carbon/nitrogen inputs into the system of animal 
husbandry, generally through dietary manipulation, and 
while a reduction in the volume of CH4 emitted per animal 
may result, this is often secondary  to the primary object-
tive of improved productive efficiency (Ulyatt and Lassey 
2000; GIA 2008). More intensive feeding regimes can 
have a marked impact on CH4 emissions (Lerner and 
Matthews, 1988), while carefully tailored feed and forage 
management practices can equally result in substantive 
cuts in enteric methane production. Van Caeseele 
(2002), for example, cites research suggesting that high 
quality forage can reduce per capita emissions by up to 
50%; cattle grazing on mixed alfalfa-grass pasture pro-
duce lower emissions per head than those grazing on 
grass-only pasture and rotational grazing are superior to 
continuous grazing vis-à-vis methane production. 

Moss (1992) found that augmenting the volume of 
starches (rumen resistant) in the diet curtailed CH4 dis-
charges, while Grainger et al. (2008) suggested that 
whole cottonseed appears to be a promising dietary 
supplement in methane emission mitigation. Equally, 
improving metabolic efficiency through the enforced 
ingestion of growth promoting hormones produces com-
parable reductions in methane releases (Bauman et al., 
1985), although the effect may only be temporary as 
there is evidence to suggest that the rumen ecosystem 
adapts to new feed environment. Onanong et al. (2009) 
established that the roughage-to-concentrate ratios, as 
well as the supplementation of soapberry fruit-mango-
steen peel pellets containing condensed tannins and 
saponins, caused changes in ruminal microorganisms 
and their fermentation end-products. This led to the 
decrease in methane production. 

Microbial-intervention strategies have the advantage 
over improved nutrition strategies in that they do not 
require a reduction in animal numbers to achieve a 
reduction in methane emissions. Also, they can be used 
in conjunction with improved-nutrition strategies. Potential 
intervention sites for methane mitigation have been 
identified (Joblin 1996), and outlined in Figure 1. Apart 
from being effective, methane mitigation strategies must 
be suitable for on-farm application. The strategies should 
be safe, practicable, leave no residues in meat and milk, 
be cost effective and be applicable to grazing animals.  
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Table 1. Methanogenic species cultured from the rumen. 
 

Genus and species Morphology Host Reference 

Methanobacterium 

 

Long rods, filaments Bovine, ovine 

 

Jarvis et al. (2000), Oppermann et al. (1957), 

G. N. Jarvis and K. N. Joblin unpublished data 

formicicum Gram variable   

bryantii Gram variable Bovine P. Evans and K. N. Joblin, unpublished data 

Methanobrevibacter 

 

Coccobacilli 

 

Bovine, ovine, 

 

Smith and Hungate (1958), G.N. Jarvis and K.N.  

Joblin, unpublished data     

ruminantium Gram +ve Corvine  

smithii Gram +ve Ovine K. N. Joblin and D. M. Pacheco, unpublished 
data 

Methanomicrobium Motile curved rods   

mobile Gram –ve Bovine Jarvis et al. (2000), Paynter and Hungate (1968) 

Methanosarcina 

barkeri 

Pseudosarcina 

 

Caprine, bovine 

Bovine 

Beijer (1952), Patterson and Hespell (1979)  

Jarvis et al. (2000)  

Methanoculleus 

olentangyi 

Irregular cocci   

Gram –ve 

Cervine G. N. Jarvis, L. C. Skillman and K. N. Joblin, 

unpublished data 
 

+ve, positive; -ve, negative. 
 
 
 

Formation of Methane by Microbes in the rumen 
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Figure 1. Schematic outline of steps involved in methane formation in the rumen and potential 

intervention sites for lowering methane emissions (Joblin, 1999). 
 
 
 

Potential intervention sites  for  methane  mitigation  have 
been identified (Joblin, 1996) and these include interven-
tions to decrease the hydrogen upon which methanogens 
feed, the development of alternative hydrogen sinks 

(Joblin, 1999), the administration of anti-methanogens, 
and the removal of protozoa. The ‘end of pipe’ options 
which is equally called the ‘novel feed additives’ option  is 
used  to  reduce  or  inhibit  the  production   of   methane  
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(methanogenesis) from ruminants. Such options include 
the application of ionophores, propionate enhancers, me-
thane oxidizers, halogenated methane analogues, defau-
nating agents, and probiotics as feed additives (Moss et 
al., 2000; Mc Allister and Newbold, 2008), although con-
cerns have been expressed that the volumes required to 
effectively curb emission levels are likely to prove toxic to 
the animal, interfere materially with digestive processes 
and/or be uneconomic to apply (Ulyatt and Lassey, 
2000). A different strategy, highlighted by Shu et al. 
(1999) and Baker (cited by Moss et al., 2000), involves 
immunizing livestock using anti-methanogenic vaccines, 
although such research is currently in its infancy. Kamra 
et al. (2008) reported in vitro studies of plant extracts 
having anti-methanogenic or anti-protozoal activities. 
Also, Wood et al. (2009) reported in vitro studies of using 
encapsulated fumaric acid in ruminal fluid of sheep to 
suppressed methane formation by 19%, and 76% 
decrease in trial with growing lambs. Plant extracts rich in 
saponins and tannins have been established to have anti-
methanogenic activity. 
 
 

RECOMMENDATIONS 
 

There has been minimal adaptation of practices to speci-
fically reduce methane emissions from livestock and to 
safeguard the environment. The following recommenda-
tions will go a long way to drastically reduce enteric 
methane emissions from ruminants: 
 
High-grain diets: Feeding of high-grain diets to reduce 
methane emissions and increase animal production effi-
ciency, without contributing to the animal health problems 
that are typically associated with high-grain diets is 
recommended. 

Ruminal fermentation time: Methane is released from 
the rumen where feed is fermented in an anaerobic envi-
ronment. The shorter the period of time feed remains in 
the rumen, the less carbon is converted to methane. 
Residence time in the rumen can be shortened by 
increasing the digestibility of feed grains or forages and 
by feeding on concentrated supplements. 

Alternate hydrogen acceptors: Addition of unsaturated 
edible oils in feed may be used to reduce methane emis-
sions by sequestering hydrogen making it unavailable for 
methanogens. 

Improvement in production efficiency: Any practice that 
increases productivity per animal reduces methane emis-
sions. Animal technologies that increase productivity 
include genetic improvement of animal performance, 
genetic improvement of pasture and other feedstuffs 
potential, improved animal feed-handling practices, im-
proved pasture nutritional and water management, and 
early marketing of animals. 

Modification of bacteria in the rumen: Alteration of 
ruminal   microbes  may  lead  to  significant  reduction  in 
methane emissions;  however,  considerable  research  is 

 
 
 
 
needed to genetically produce microbes that can com-
pete with natural microbes for sustained time periods. 

Plant extracts (saponins and tannins) used as novel 
feed additives are able to decrease the number of 
hydrogen producers such as protozoa in the rumen. This 
is a promising way for the future. 

Fumarate and malate (dicarboxylic acids) stimulate 
hydrogen use for propionate synthesis at the expense of 
methane in the rumen. These products naturally found in 
plants open promising perspective. Dietary encapsulated 
fumaric acid decrease methane formation by 76% in the 
trial with growing lambs. This is also are very promising 
findings that should be explored by feed manufacturers 
and livestock farmers.  
 
 
CONCLUSION 
 
Essentially, we must be aware of the fact that any lives-
tock production system that meets the goals of social 
responsibility in terms of animal welfare or other societal 
concerns may also have some negative impacts on the 
environment that must be recognized in order to be 
addressed. The manipulation of the ruminal fermentation 
has tremendous potential for improving animal physio-
logy, nutrition and subsequently, production. It is impor-
tant to reduce the enteric methane emissions from rumi-
nants, because methanogenesis corresponds to dietary 
energy loss as well as contributes to global warming.  
Therefore, in considering ethical animal production prac-
tices, special consideration needs to be given to the 
impacts of the system on the environment. 
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