PROMOTING ACCESS TO AFRICAN RESEARCH

African Journal of Biotechnology

The AJOL site is currently undergoing a major upgrade, and there will temporarily be some restrictions to the available functionality.
-- Users will not be able to register or log in during this period.
-- Full text (PDF) downloads of Open Access journal articles will be available as always.
-- Full text (PDF) downloads of subscription based journal articles will NOT be available
We apologise for any inconvenience caused. Please check back soon, as we will revert to usual policy as soon as possible.





Enhanced fodder yield of maize genotypes under saline irrigation is a function of their increased K accumulation and better K/Na ratio

I Rajpar, I Jandan, Z ul-Hassan, GM Jamro, AN Shah

Abstract


Poor quality irrigation water adversely affects the growth and yield of crops. This study was designed to evaluate the growth, fodder yield and ionic concentration of three promising maize (Zea mays L.) genotypes under the influence of varying quality irrigation water, with different salinity levels. The genotypes, such as EV-1097, Kisan and Akbar were irrigated with usable (electrical conductivity, EC 1.5 dS m-1), marginal (EC 3.0 dS m-1), poor (EC 4.5 dS m-1) and very poor (EC 7.0 dS m-1) quality irrigation
water. The increasing adverse effects on various growth and yield variables of all three genotypes were observed with the increasing water salinity. Also, soil EC, SAR and ESP values increased linearly with increasing salinity levels of irrigation water. Poor quality irrigation water affected all the growth
variables and yield of maize. Increasing concentrations of sodium and chloride ions, coupled with decreasing concentration of potassium, in flag leaf of maize was observed in response to increasing salinity of irrigation water. The genotypic variation among the three maize genotypes to saline water irrigation was in order of EV-1097 > Kisan > Akbar. The better fresh fodder yield of maize genotypes under poor quality irrigation water was a function of their enhanced accumulation of potassium (K) and better K/Na ratio. The study concluded that, the genotype EV-1097 is a better choice for the maize growers under saline water irrigation condition.

Key words: Maize (Zea Mays L.), fodder yield, saline irrigation, K accumulation, K/Na ratio.




AJOL African Journals Online