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Due to the difficulties in the measurement of biochemical variables in fermentation process, soft-
sensing model based on radius basis function neural network had been established for estimating the 
variables. To generate a more efficient neural network estimator, we employed the previously proposed 
quantum-behaved particle swarm optimization (QPSO) algorithm for neural network training. The 
experiment results of L-glutamic acid fermentation process showed that our established estimator could 
predict variables such as the concentrations of glucose, biomass and glutamic acid with higher 
accuracy than the estimator trained by the most widely used orthogonal least squares (OLS). According 
to its global convergence, QPSO generated a group of more proper network parameters than the most 
popular OLS. Thus, QPSO-RBF estimator was more favorable to the control and fault diagnosis of the 
fermentation process, and consequently, it increased the yield of fermentation. 
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INTRODUCTION 
 
In industrial production through fermentation, the main 
effect variables include physical variables (the tempe-
rature of fermentor, pH value, mixing speed, ventilation 
rate, etc.) and biochemical variables (the remaining sugar 
concentration, the concentration of product, urea fed-batch, 
etc.). The physical variables could be measured online 
and, in turn, automatically controlled by distributed control 
system (DCS). The biochemical variables are closely 
related to metabolism and growth of microbe, and play an 
important role in the control or optimization fermentation. 
Due to the fact that there is no available commercial 
sensor to measure them, the only way to acquire the 
information about such biochemical variables is, in most 
practical application at present, the laboratory biochemical 
analyses offline (Gonzalez, 1999). However, the whole 
process of offline analyses generally takes a long time, so 
that  it  makes  it  impossible   to   meet   the   demand  of 
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optimization control and fault diagnosis in line with the 
growth states of microbes, especially for real-time control.  

Soft-sensing method is an efficient way by which the 
variables to be estimated are calculated through the 
available information about other variables (Tham et al., 
1991). Using modeling fermentation process by soft-
sensor, we can estimate the variables (the products 
concentration, biomass, the remaining sugar, etc.) online 
using the acquired information about other measurable 
variables (agitation rate and ventilation rate, etc.). Neural 
network (NN) is an important soft-sensing modeling 
approach for industrial fermentation process (Cinar, 2005; 
Desai et al., 2005; Dutta et al., 2004; Pai et al., 2008; 
Patnaik, 1997; Sahinkaya et al., 2007). When neural net-
work is used for process modeling, it must be trained on 
training data to obtain a group of optimized network para-
meters. Thus, an efficient algorithm is the key to neural 
network design. Most existing training algorithms for 
neural network are based on local optimization techni-
ques, by which the solution may be stuck into local optima 
or suboptima and thus, lead the network to low estimation 
accuracy  (Marquez  et  al.,  1992;  Meireles et al., 2003).  
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Figure 1. The topology structure of the established RBF NN 
estimator for biochemical variables in glutamic acid fermentation 
process. 
 
 
 

In this study, radius basis function (RBF) NN was 
employed to soft-sense the biochemical parameters of 
glutamic acid fermentation. To enhance the estimation 
accuracy, we used our previously proposed quantum
behaved particle swarm optimization (QPSO) method 
(Sun et al., 2004, 2005) as the training algorithm for RBF
based soft-sensor (RBF NN estimator). The experiment 
results suggest that QPSO could generate a RBF NN 
estimator that can predict the biochemical variables 
accurately. 
 
 
MATERIALS AND METHODS 
 
Organism, media and culture conditions 
 
Corynebacterium glutamicum UV18 was a stock culture of the 
Laboratory of Biochemistry, School of Biotechnology, Jiangnan 
University, Wuxi, Jiangsu province, China. 

The seed culture medium contained (per liter): 50 g glucose
urea, 3 g Na2HPO4 and 3 ml corn steep liquor. The ini
adjusted to 6.8 with NaOH after autoclaving at 120 for 15 min, 
whereas urea was sterilized by membrane filter (0.2 �m).

The production medium contained (per liter): 50 g glucose, 6 g 
urea, 3 g Na2HPO4, 2 g KCl, 1 g MgSO4H2O, 0.01 g MnSO
thiamine-HCl and 5 �g biotin. Biotin, thiamine-HCl and urea were 
sterilized by membrane filter (0.2 �m), whereas glucose and mine
rals were sterilized separately by autoclaving at 15 psi (121°C) for 
15 min. Fermentation was carried out in 30 L fermenter
with a dissolved oxygen (DO) analyzer and a pH controller.
 
 
Analytical methods 
 
The pH value and dissolved oxygen concentration were measured 
online by pH electrode and O2 electrode, respectively. The growth 
was monitored by measuring the optical density (OD) at 600 nm 
with a UV–Vis spectrophotometer. The biomass concentration was 
transformed from OD value according to the standard curve. The 
glucose  concentration was measured by dinitrosalicylic colorimetric 
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method (Miller, 1959). The glutamic acid concentration was mea
sured by the automatic amino acid analyzer (Hitachi L

The acquired data was filtered to 21 sets of representative data 
divided into 294 groups, 224 of which were employed as training 
data (training set) for RBF NN estimator training, and the other 70 
were used as testing data to test the estimation accuracy of the 
trained estimator. Before the training and testing, the data was 
preprocessed by linear transformation to fall into the allowable 
scope of the process unit of RBF NN. The final 
transformed after training and testing.
 
 
Soft-sensing model with RBF 
 
In this study, the glutamic acid fermentation process was modelled 
with RBF NN. RBF NN was structured by embedding radial basis 
function in a two-layer feed-forward neural network. Such a network 
was characterized by a set of inputs and a set of outputs. In bet
ween the inputs and outputs, there is a layer of processing units 
called hidden units. A distinguished feature of RBF NN was that it 
could be trained directly through sample data without prior know
ledge about the model of the process. It got the relationship 
between input and output by treating the objective as a “black box”. 
Theoretically, given sufficient input
network can approximate infinitely the actual mapping relationship 
between input and output sample (Schilling

Figure 1 shows the topology structure of the RBF NN estimator 
established for estimation of the biochemical variables. The inputs 
of the network included the glucose concentration S(
concentration X(t), glutamic acid concentration P(
time t and DO Q(t). The outputs of the network were S(
and P(t+n) at time t+n. In order to use the RBF NN estimator in 
estimation, we needed to specify the hidden unit activation function, 
the number of processing units, a crite
and in turn, a training algorithm for finding the parameters of net
work. In our RBF NN estimator, Gaussian basis function was 
adopted. Thus, if we had at hand a set of input
optimize the network parameters in order to fit the network outputs 
to the given inputs. The fit was evaluated by means of a cost 
function, usually assumed to be the mean square error. The pro
cess of optimizing the network parameters was called network 
training.  

The neuron number of the hidden layer, that is, the cluster 
number of training set, must be determined before the parameter 
selection of RBF NN estimator. In this study, we adopted an efficient 
method; rival penalized competitive learning (RPCL) (Xu
1993), to decide the cluster number. If the neuron numbers of the 
hidden layer has been decided, the performance of RBF depends 
on the selection of the network parameters. There were three types 
of parameters in the RBF NN estimator with Gaussian basis 
functions: RBF centers (hidden layer neurons), widths of RBFs 
(standard deviations in the case of a Gaussian RBF) and output 
layer weights. Different strategies exist for training of RBF neural 
network models. Orthogonal least squares (OLS) using Gram
Schmidt algorithm is the most popular for RBF NN training (Chen
al., 1991; Gomm and Yu, 2000). However, together with other 
training algorithm, OLS cannot guarantee the search of the global 
optimal solution of the training problem.
 
 
QPSO-RBF algorithm 
 
To obtain a more efficient RBF NN estimator, we used our 
previously proposed QPSO as the training algorithm for the RBF 
NN estimator. QPSO algorithm, like particle swarm optimization 
(PSO), which was originally introduced by Kennedy and Eberhart in 
1995 (Clerc, 1999; Kennedy et al., 1995; Shi and Eberhart, 1999), 
simulates  the  knowledge  evolvement 
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QPSO, each individual was treated as an infinitesimal particle in the 
n-dimensional space. The position vector of the particle 

)](,),(),([)( 21 kXkXkXkX iniii �=  represents a candidate solution 
for the optimization problem. The update equation for the position is 
as follows: 
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Where, ϕ  and u are two different random numbers uniformly 
distributed on [0, 1] and k is the iteration number. Vector 
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 is the best previous position (the 

position giving the best objective function value) of particle i known 
as the personal best position (pbest); vector 
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 is the position of the best particle 

among all the particles in the population and is known as the global 

best position (gbest). jC  is defined as the mean of the personal 
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Parameter α is called contraction-expansion (CE) coefficient, which 
could be tuned to control the convergence speed of the algorithms. 
For more detailed information about QPSO, one may refer to 
literatures such as Sun et al. (2004, 2005). 
When training the RBF NN estimator by QPSO, a decision vector 
represents a particular group of network parameters. Therefore, a 
component of the position corresponds to a network parameter and 
a RBF NN was structured according to the particle’s position vector. 
Training the corresponding network by inputting the training 
samples, we could obtain an error value as the objective function 
computed by the following formula: 
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Where, 
)(, jjs xy
and

)(, jjs xg
 are the actual response (output) and 

network’s predicted response (output) at output unit s on jx
, 

respectively. Q is the number of the training sample and c is the 
number of output units. The particle was evaluated by the obtained 

error value, by which it could be determined whether iP  and gP

need to be updated. The goal of training RBF NN with QPSO was 
to minimize the error function (2) to generate a group of optimal 
network parameters. 
The stop criterion of the algorithm was terminated after executing a 
pre-specified number of iterations. The following is the procedure of 
training RBF NN by QPSO algorithm: 
 
 
QPSO-RBF procedure 
 
Step 1: Initialize the population by randomly generating the position 

vector iX
 of each particle and set iP = iX ; 

Step 2: Structure a RBF neural network by treating the position 
vector of each particle as a group of network parameters; 
Step 3: Training each RBF network on the training set; 
Step 4: Evaluate the fitness value of each particle by formula (2), 

update  the  personal  best  position iP  and  obtain  the global best 
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position gP
 across the population; 

Step 5: If the stop criterion is met, go to step 7; or else go to step 6; 
Step 6: Update the position vector of each particle according to 
Equation (1); 

Step 7: Output the gP
 as a group of optimized parameters. 

 
The algorithm was achieved by using the Matlab. 
 
 
RESULTS AND DISCUSSION 
 
The QPSO and OLS algorithms were used for RBF NN 
estimator training and testing. When QPSO was used, 20 
particles and 50 iterations were employed for the training. 
The trained BRF NN estimators were called QPSO-RBF 
and OLS-RBF, respectively. The estimation curves and 
relative estimation errors for the biochemical variables 
are recorded in Figures 2, 3 and 4. The relative estima-
tion errors averaged over the time horizon are listed in 
Table 1. 

The results showed that QPSO-RBF estimator estimated 
the biochemical variables with higher accuracy (or lower 
relative error) than OLS-RBF. The advantage of QPSO 
over OLS algorithm is that QPSO algorithm is a global 
convergent search technique (Sun et al., 2005). Due to 
the multimodality of the RBF NN training problem, QPSO 
can find out the global optimal of the problem more easily 
than OLS algorithm. It has also been indicated that 
QPSO has fast convergence speed and lower computa-
tional time consumption than PSO and the genetic 
algorithm (GA) (Sun et al., 2005). 

The results from this study are valuable in fermentation 
production of glutamic acid. The difficulties in online mea-
surement of many variables, particularly biochemical 
variables, were unfavorable to the operations on the 
variables, fault diagnosis and process control. The soft-
sensing model based on RBF NN is an efficient tool for 
this problem, because it could monitor the process 
efficiently and effectively, and thus make fault diagnosis 
and control possible. However, given the RBF NN model, 
to find out a group of optimal parameters for the neural 
network was of much significance to the estimation 
accuracy which the RBF NN estimator could reach. This 
study showed that QPSO algorithm is a promising tool for 
this task. 
 
 
Conclusion 
 
We used the QPSO to design the RBF NN estimator for 
biochemical variables in glutamic acid fermentation 
process. Thanks to its global convergence, QPSO could 
generate a group of more proper network parameters 
than the most popular OLS. Thus, QPSO-RBF estimator 
could estimate the biochemical variables with higher 
accuracy than OLS-RBF estimator and thus, was more 
favorable to the control, fault diagnosis of the fermen-
tation process, and consequently increased the output of 
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Figure 2. Estimation curves and relative estimation errors for the glucose concentration generated by QPSO

 
 
 

 
Figure 3. Estimation curves and relative estimation errors for the biomass concentration 

Estimation curves and relative estimation errors for the glucose concentration generated by QPSO-RBF and OLS-RBF. 

Estimation curves and relative estimation errors for the biomass concentration generated by QPSO-RBF and OLS-RBF. 
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Figure 4. Estimation curves and relative estimation errors for the glutamic acid concentration generated by QPSO
 
 
 

Table 1. Relative estimation error average over time.
 
Item 
Glucose concentration
Biomass 
Glutamic acid concentration

 
 
 
glutamic acid. 
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