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The soluble extracellular domain of tumor necrosis factor (TNF)-related apoptosis-inducing ligand 
(sTRAIL) can, as the whole length TRAIL protein, bind with its receptors and specifically induce the 
apoptosis of cancer cells; therefore, it has been developed as a potential therapeutic agent for various 
cancer treatments. As it has become an attractive technology for foreign protein production, especially 
for production of biopharmaceuticals, chloroplast engineering was applied in this study to express 
human sTRAIL protein in tobacco. Two transplastomic lines were obtained. Southern blot showed that 
sTRAIL gene was inserted into the right site of the tobacco chloroplast genome. RT-PCR results also 
confirmed that the foreign gene is transcribed in both lines. However, western blot showed that only 
one line accumulated sTRAIL protein stably, while the other line lost the ability to accumulate this 
protein after several rounds of subcultures. The possible reason for this unexpected phenomenon is 
discussed.  
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INTRODUCTION 
 
Tumor necrosis factor (TNF)-related apoptosis-inducing 
ligand (TRAIL), a new member of the TNF superfamily, 
was discovered by Wiley et al. (1995). It is a type II 
transmembrane protein. Its extracellular domain, 114-281 
amino acids of carboxylic terminal, is the soluble part of 
TRAIL (sTRAIL). sTRAIL is capable of inducing apoptosis 
in tumor cells but not in normal cells (Ashkenazi et al., 
1999). As a result of the selective apoptotic activity, 
TRAIL is regarded as a promising anti-cancer therapy 
that is currently in phase II clinical trials (Holoch and 
Griffith, 2009). Recombinant human TRAIL (rhTRAIL) 
shows encouraging results on Hodgkin's lymphoma in 
phase Ia trial (Herbst et al., 2006) and also affected the 
non-Hodgkin's lymphoma in phase Ib trial (Yee et al., 
2007). Therefore, production of sTRAIL by recombinant 
bio-technique in bacterial (Lin et al., 2007), yeast (Xu et 
al., 2003), animal (Walczak et al., 1999),  and  recently  in  
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plant cells, has been investigated. 
Plants can be developed as efficient bioreactors to 

produce pharmaceutical proteins. By "molecular farming", 
as it is called, people can manufacture pharmaceutical 
proteins in large scales with low cost. Proteins 
accumulated in plants are easy for storage and transport, 
and most importantly without the danger of contamination 
by human pathogens (Daniell, 2006). With the develop-
ment and improvement of chloroplast transformation, 
“molecular farming” is becoming more and more 
attractive and prospective. Some plant-derived pharma-
ceutical proteins have been under-going clinical trials 
(http://www.molecularfarming.com). Chloroplast transfor-
mation provides a lot of advantages over traditional 
nuclear transformation, such as high level expression of 
foreign proteins (Oey et al., 2009) due to high polyploidy, 
absence of gene silence and position effects via 
homologous recombination (Daniell et al., 2002), multi-
gene expression by polycistronic way (Zhou et al., 2007) 
and highly transgene containment due to chloroplast 
maternal inheritance (Ruf et al., 2007; Daniell, 2007). To 
date, many foreign genes have been expressed 
successfully   in    plant   chloroplast   and   they   showed  



 
 
 
 
biological activity, such as human somatotropin (hST) 
(Staub et al., 2000), human interferon gamma (INF-γ and 
INF-α2b) (Leelavathi and Reddy, 2003; Arlen et al., 2007) 
and proteins which are important in cancer therapy.  

We have previously expressed sTRAIL in 
Chlamydomonas reinhardtii, in that it is a unicellular alga 
(Yang et al., 2006). Although C. reinhardtii has been 
successfully used for expression of several foreign 
proteins, the level of protein accumulated in its 
chloroplast is generally much lower than that in tobacco, 
which is the most widely used higher plant in protein 
expression with about 70% of total soluble proteins in 
some cases (Oey et al., 2009).  

In this study, sTRAIL was expressed in tobacco 
chloroplast, and, to our knowledge, it is the first time to 
express this biopharmaceutical protein in a higher plant.  
 
 
MATERIALS AND METHODS 

 
Construction of transformation vector 
 
Plasmid pTRAIL carrying sTRAIL gene was provided by Prof. 
Dexian Zheng (Chinese Academy of Medical Sciences and Peking 
Union Medical College, China). The sequence of sTRAIL gene was 
amplified from pTRAIL vector by PCR with primers pTup1 5´-
CCCAAGCTTGATGGTGAGAGAAAGAGGTC-3´ and pTdn15´-

ACGCGTCGACGTCTTAGCCAACTAAAAAGGCCC-3´, restriction 
sites of Hind III and Sal I are underlined. The 509 bp PCR product 
was cloned into PMD-19 simple T-vector (Takara, Dalian, China) for 
sequencing. The cloned sTRAIL fragment was excised by Hind III 
and Sal I from T-vector and ligated into 16APT (provided by Prof. 
Guifang Shen, Biotechnology Research Institute, Chinese Academy 
of Agricultural Sciences), which contains tobacco Prrn promoter, 
psbA terminator and Prrn-aadA-TpsbA expression cassette, to 
generate plasmid p16APT-sT. The part containing expression 

cassettes of aadA and sTRAIL gene was digested from 16APT-sT 
with BamH I and ligated into Bgl II site, between the homologous 
sequences rp12-trnH-psbA and trnK of pTRV (also provided by 
Prof. Guifang Shen), to construct chloroplast expression vector 
pTRV-sT.  

 
 
Plant material and chloroplast transformation 

 
Tobacco, Nicotiana tabacum L. cv. Petit Havana, kindly provided by 
Prof. Bock of Max Planck Institute of Molecular Plant Physiology, 
was grown in sterile conditions on MS medium (Murashige and 
Skoog, 1962) at 25°C under a 16 h light and 8 h dark cycle, and 
subcultured every 3 to 4 weeks. Young leaves were used for 
bombardment with DNA-coated 0.6 µm gold particles by PDS-
1000/He Biolistic Particle Delivery System (Bio-Rad). After 
bombardment, leaves were cut into small pieces and cultured on 

RMOP (Zoubenko et al., 1994) medium containing 500 mg/L 
spectinomycin. Nine rounds of selection and regeneration were 
performed for homoplasmy. Positive shoots were rooted on MS 
medium containing 3% (w/v) sucrose, 0.6% (w/v) agar and 500 
mg/L spectinomycin.  

 
 
PCR analysis 

 
The total DNA was extracted from spectinomycin-resistant plants 
and wild type  tobacco  with  CTAB  extraction  buffer  as  described 
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previously (Doyle and Doyle,  1990).  PCR  reaction was  performed 
using primer pairs, specific for the foreign gene sTRAIL with Taq 
polymerase (TaKaRa, Dalian, China) according to standard 
procedure.  
 
 
Southern blot 
 

Plastid DNA was extracted as described previously (Gong et al., 
1994). 3 µg DNA per sample digested with BamH I and Not I was 
separated on a 0.7% (w/v) agarose gel and transferred to Hybond-
N+ nylon membranes (Amersham, Buckinghamshire, UK). DNA 
probe (0.6 kb), which is a part of trnK gene, was amplified by PCR 
with P3F (5´-TAAACAAGTAAAGACCCCTC-3´) and P3R (5´- 

TTAGTAAACCGGTTTGGTCC-3´). The probe was labeled with α-
[32P]-dCTP (50 µCi) by using Random Primer DNA Labeling Kit 
(TaKaRa, Dalian, China). Hybridization was performed according to 
standard molecular cloning protocol (Sambrook and Russell, 2001). 
 
 
Semi-quantitative RT-PCR analysis 
 

Total RNA was extracted with TRNzol extraction buffer (TIANGEN 

Biotech., Beijing, China) following the protocol. cDNA synthesized 
by M-MLV (Promega) was used as template for PCR to amplify 
sTRAIL gene with specific primers. RNA without reverse 
transcription treatment was used as the template of the negative 
control. Primers NtrefF(5’-AGGAACCCAGAGGAGATT-3’) and 
NtrefR (5’-ACAGTTGGGACTCGGAAA-3’) were used for amplifying 
NtGAPDH (glyceraldehyde-phosphate dehydrogenase) gene which 
was used to calibrate the cDNA (accession no. AJ133422). 
 
 

Western blot analysis 
 
Total soluble proteins (TSP) from transformed and untransformed 
leaves (100 mg) were extracted following the method of Oey et al. 
(2009). Transplastomic lines from the 9th round regeneration and 
two rounds of shoot tip subculture after the 9th round regeneration 
were used for protein accumulation detection. Protein 

concentrations were determined with the Bradford assay according 
to the procedure of Sambrook and Russell (2001). However, 40 µg 
TSP per sample was separated on 15% SDS-containing 
polyacrylamide gels for 30 min at 100 V, and then for 3 h at 150 V. 
The separated proteins were transferred to a methanol-treated 
PVDF membrane (Millipore) by electro blotting at 100 mA for 1 h. 
The PVDF membrane was blocked with 5% milk in TBST buffer for 
1 h at room temperature. The blocked membrane was incubated at 

room temperature in TBST solution containing a 1:1000 dilution of 
commercially available rabbit anti-TRAIL polyclonal antibodies 
(Sigma) for 2 h. The membrane was washed with TBST for 15 min 
four times, and then incubated with 1:5000 TBST dilution of 
horseradish peroxidase (HRP)-conjugated goat anti- rabbit IgG 
(Santa Cruz Biotechnology) for 1 h. After it was washed with TBST 
as previously described, the membrane was incubated with Pro-
light HRP lighting substrate (TIANGEN Biotech., Beijing, China). 
Fluorescence signal was explored to X-ray films (FUJIFILM) and 

the hybridization band was confirmed by both pre-stained marker 
and western blot marker. 
 
 
ELISA quantification of sTRAIL 
 

Samples for ELISA analysis were prepared from wild type tobacco 
and transformed lines as described by Youm et al. (2010). Total 
soluble proteins were diluted with extraction buffer and quantified by 

a commercially available enzyme-linked immunosorbent assay 
(ELISA) kit (R & D system) according to the manufacturer’s  
protocol.
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Figure 1. Construction of chloroplast transformation vector pTRV-sT. 
 

 
 

RESULTS 
 
Construction of chloroplast transformation vector  
 
Chloroplast transformation vector was constructed as 
described in previously. As shown in Figure 1, sTRAIL 
encoding sequence was under the control of 16S rRNA 
strong promoter Prrn. It was seen that rbcL Shine-
Dalgarno (SD) sequence and psbA terminator TpsbA 
were used for gene expression regulation (Shan et al., 
1999), while aadA was used as a selection marker. 
Sequences of rpl2-trnH-psbA (2.2 kb) and trnK (1.0 kb) 
were used as flanking sequences (Zou et al., 1998) to 
target the expression cassette that will be integrated into 
chloroplast genome via homologous recombination.  
 
 
Regeneration of transplastomic tobacco and DNA 
integration detection 
 
After bombardment to the tobacco leaves with the 
chloroplast vector pTRV-sT and culture of leaf pieces on 
RMOP medium containing 500 mg/L spectinomycin, eight 
resistant lines were obtained. These lines were propa-
gated and subjected to PCR-identification using sTRAIL-
specific primers. The expected DNA fragment (509 bp) 
was amplified by PCR only from DNA samples of T3 and 
T8 lines (Figure 2), which indicated that these plants 
were transformed by sTRAIL encoding sequence. 

For achieving the homoplasmy of transgene, nine 
ounds of regeneration were performed. DNA was then 
extracted from the transformed plants and wild type 
tobacco and was used for detecting the integration of 
sTRAIL encoding sequence in the chloroplast genome 
and homoplasmy of the transplastomic plants. The results 

(Figure 3a and b) showed that after digestion of the DNA 
by BamH I and Not I restriction enzymes, the predicted 
2.7 kb DNA fragment was present in chloroplast genome 
DNA preparation from the transformed tobacco, which 
indicated that the sTRAIL encoding sequence was 
inserted into the right site of the tobacco chloroplast 
genome. In addition, the 4.8 kb fragment resulted from 
the digestion of wild type chloroplast genome DNA by 
BamH I, and was only detected in chloroplast genome 
DNA preparation from the wild type plants but not from T3 
and T8 plants, which suggested that transplastomic lines 
all finished as homoplasmy after nine rounds selection 
and plant regeneration.  
 
 
Semi-quantitative RT-PCR analysis 
 
Semi-quantitative RT-PCR analysis was carried out to 
test the transcript accumulation of sTRAIL gene. No DNA 
contamination was found in RNA samples from the 
transgenic plants (Figure 4d). As a result, these RNA 
samples were used in RT-PCR analysis with sTRAIL 
gene specific primers. GAPDH (glyceraldehydes-phos-
phate dehydrogenase) gene was used as a standard 
(Figure 4b) to calibrate the cDNA. The results showed 
that sTRAIL gene was transcribed in transplastomic lines 
and the transcription level was almost the same (Figure 
4a). 
 
 
Expression of sTRAIL protein 
 
The accumulation of sTRAIL protein was analyzed by 
western blot. At the beginning of the 9th round homo-
genization,    sTRAIL   protein   was    detected    in   both  
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Figure 2. PCR analysis of sTRAIL insertion. Lane 1, Negative 

control using water as template; lane 2,positive control of pTRV-
sT; lane 3, wild type tobacco; lanes 4 and 5, transformed tobacco 
lines T3 and T8; Lane M, marker trans 2K plus. 

 
 
 

 
 
Figure 3. Southern blot analysis. (a) Scheme of the foreign gene integration in the chloroplast genome, in which a part of the 

trnK sequence (0.6 kb) was used as the hybridization probe represented with black bar; (b) result of the southern blot analysis. 
Lane 1, Wild type tobacco; Lanes 2 and 3, transgenic lines T3 and T8. Chloroplast genome DNA was digested together with 
BamH I and Not I before separation by electrophoresis. 
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Figure 4. Semi-quantitative RT-PCR analysis of sTRAIL in transplastomic 

lines. (a) RT-PCR analysis. Lane 1, Negative control using water as 
template; Lane 2, positive control using pTRV-sT as template; Lane 3, wild 
type tobacco; Lanes 4 and 5, transgenic lines T3 and T8; (b) GAPDH gene 
used as reference gene for internal calibration; (c) The results of 
electrophoresis of total RNA; (d) PCR analysis using total RNA as template. 

Lanes 1 and 2,transgenic lines T3 and T8; Lane M, DNA marker trans2k 
plus.  

 
 
 

transgenic lines (Figure 5a). However, it was surprisingly 
found that after two rounds of shoot-tip subculture of 
these homogenized plants, sTRAIL could only be 
detected in line T3, but not in T8 plants (Figure 5b). 
Interestingly, the accumulation of sTRAIL in T3 plants 
increased obviously. The ELISA assay showed that 
sTRAIL protein in the TSP of these T3 plants was about 
0.9% (Figure 5c). 
 
 
DISCUSSION  
 
In this study, sTRAIL protein was successfully expressed 
in tobacco chloroplast and the highest accumulation level 
was estimated as about 0.9% of TSP, which is about 30 
folds higher than that expressed via the targeting expres-
sion way with chloroplast transit peptide (Wang et al., 
2010). The expression level was also generally higher 
than that accumulated in transgenic Chlamydomonas 
(Yang et al., 2006).  

Two different transplastomic lines were obtained in this 
study, and both showed efficient transcription of sTRAIL 
(Figure 4). However, T8 plants failed to produce sTRAIL 
protein after subculture of the shoot tips compared with 
T3 plant (Figures 5a and b). From the semi-quantitative 
RT-PCR analysis, it was seen that the transcription level 
of sTRAIL in two transplastomic lines was almost the 

same. One possible reason could be that in T8 plants, the 
translation of sTRAIL protein was poorly affected. It is 
well known that SD sequence is a key element for protein 
translation both in prokaryotes and in chloroplasts of 
plants. In this study, the SD sequence of rbcL gene was 
constructed at an upstream of sTRAIL. This SD sequence 
has been reported to be efficient for controlling protein 
translation (Svab and Maliga, 1993; Machin et al., 2004) 
and the efficiency was also verified in the study’s T3 
plants. Nevertheless, the engineered SD sequence in T8 
plants might have gotten a modification during the 
subculture. For example, it might have had a sponta-
neous mutation within the sequence. It is also possible 
that this sequence changed through recombination with 
another SD within the native tobacco chloroplast 
genome. Tobacco chloroplast genome possesses about 
122 genes (Shinozaki et al., 1986) and the SD 
sequences for these genes are not identical, rather their 
translation efficiency is different. Recombination of 
sequences within insertions of transformed chloroplast 
with native sequences was previously reported by Staub 
and Maliga (1992) and Iamtham and Day (2000). How-
ever, the mechanisms underlying it are not clear and 
should be intensively investigated in the future.  

It was observed that the T3 and T8 plants had different 
phenotypes (Figure 6). Leaves of T3 plants are pale 
green, chlorotic  and  biomass-reduced,  while  T8  plants  
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Figure 5. sTRAIL protein expression analysis. (a) and (b) Western blot analysis of sTRAIL 

protein expression in transgenic lines at early stage of the 9th round regeneration and after 
two rounds of shoot tip subculture of the 9th round regenerated plants; Lane WT, wild type 
plant; (c) ELISA assay of sTRAIL protein expressed in transplastomic lines after two rounds 
of shoot tip subculture of the 9th round regenerated plants. Values are averages of three 

experiments with standard deviations. 
 
 
 

looked almost like the wild type except for some small 
pale green sectors. In animals, it has been confirmed that 
sTRAIL induces the death of cancer cells (Ashkenazi et 
al., 1999). Therefore, sTRAIL protein might also be toxic 
to plants, and its accumulation within chloroplast could 
affect the physiology of plants severely. The accumulation 
of recombinant protein can bring a toxic effect (Tregoning 
et al., 2003; Hennig et al., 2007; Scotti et al., 2009). If this 
is the case, the expression of sTRAIL in other genotypes 
of tobacco may be an alternative way to eliminate such 
effect and increase the protein accumulation (McCabe et 
al., 2008). Furthermore, there might be a need to try 
other higher plants, in a larger range, such as 
Arabidopsis thaliana, Oryza sativa, Solanum tuberosum, 

Medicago truncatula, Lactuca saiva and Glycine max.  
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Figure 6. Phenotype of the transplastomic tobacco line T3 (a) and 
line T8 (b). 
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