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CYP450 plays an important role in physiological metabolism. A CYP4G25 gene of P450 family was 
cloned from Antheraea pernyi using reverse transcriptase-polymerase chain reaction (RT-PCR) and 
rapid amplification of cDNA end (RACE-PCR). Sequence analysis revealed that this gene was 2112 bp 
long and has 97.5% identity with Antheraea yamamai CYP4G25. Semi-quantitative polymerase chain 
reaction (PCR) showed that the expression of A. pernyi CYP4G25 was found in various tissues with no 
significant changes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 
western blot analysis demonstrated that a 63.6 KD recombinant protein was successfully expressed in 
Escherichia coli cells and its expression was not remarkably changed under induction by different 
isopropyl-β-D-thiogalactopyranoside (IPTG) concentration.  
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INTRODUCTION 
 
Cytochrome P450s are involved in the metabolism of 
hormone, fatty acid, steroid, drug insecticide and 
phytotoxin (Mansuy et al., 1998; Hannemann et al., 2007; 
Isin et al., 2007; Hassanin et al., 2009). Mammal P450s 
play a dominant role in clearing ingested compounds and 
controlling the systemic levels of chemical substrates 
(Ding and Kaminsky, 2003; Bowles et al., 2006), and 
plant P450s are essential for the biosynthesis of many 
compounds including phenylpropanoids, lipids, phyto-
hormones and carotenoids (Schuler and Werk, 2003; 
Inoue, 2004). For insects, P450s have extensive physio-
logical functions in growth, development and reproduction 
through the biosynthesis or catabolism of key hormones 
like juvenile hormone (JH) and 20-hydroxyecdysone 
(20E) (Feyereisen, 1999; Chavez et al., 2000;  Warren  et 
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al., 2002; Gilbert et al., 2004; Helvig et al., 2004; Ono et 
al., 2006). Some P450s are found to be related with the 
behavioral phenotypes, insecticide metabolism or 
inactivation of plant toxins (Dierick and Greenspan, 2006; 
Wang et al., 2008; Che-Mendoza1 et al., 2009; Ai et al., 
2010). For example, Drosophila CYP6G1 and CYP4E2 
genes are related with dichlorodiphenyltrichloroethane 
(DDT) resistance (Daborn et al., 2002), while housefly 
CYP6D1, CYP6A1 and CYP6Z1 genes are involved in 
pyrethroid and organophosphate resistance (Andersen et 
al., 1994; Kasai and Scott, 2000; Nikou et al., 2003). Up 
to now, lots of P450 genes have been isolated from more 
than 40 insect species (Chung et al., 2009), however, the 
exact roles of P450s in various animals remain to be 
explored.  

Chinese oak silkmoth Antheraea pernyi is a kind of silk-
producing insects and has excellent economical values 
(Huang et al., 2002; Zhou and Han, 2006). In this study, a 
novel cytochrome P450 gene was identified from A. 
pernyi and its expression and biological function were 
also investigated. 
 

 
MATERIALS AND METHODS 

 
The experimental insect Chinese oak silkworm variety (Keqing) was 
introduced from  the  Sericultural  Research  Institute  of  Shandong  
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Table 1. The primers used for PCR. 
 

Primer number Primer sequence 

F1 (-72--51) 5’- TAAAACGTAGGTTGTCGGAGTC -3’ 
R1 (448-468) 5’- ATTCAAGTGAAATGTGGGTGC -3’ 
F2 (162-183) 5’- ACCACTACCGATAATAGGAAAC -3’ 
R2 (983-1003) 5’- CAAGGAGTAAGTCAAGGAAAG -3’ 
F3 (976-996) 5’- CGCCTAGCTTTCCTTGACTTA -3’ 
R3 (1361-1381) 5’- GACGACGATGGAGTTTGTATG -3’ 
F4 (1363-1382) 5’- TACAAACTCCATCGTCGTCC -3’ 
R4 (1818-1839) 5’- GTACTTTCCCAAAACTATCACC -3’ 
RC5 (386-406) 5’- TAAGAAGTCCGTTACCGAGCC -3’ 
RC3 (1364-1384) 5’- ACAAACTCCATCGTCGTCCCG -3’  

 
 
 

and reared on the leaves of oak.  
 
 
Total RNA extraction and cDNA synthesis  
 
Total RNA was extracted with TRIzol

TM
 Reagent (Transgene) 

according to the manufacture’s instructions. The RevertAid™ H 
Minus First Strand cDNA Synthesis Kit was used to synthesize 
cDNAs for reverse transcriptase-polymerase chain reaction (RT-
PCR). For rapid amplification of cDNA end (RACE-PCR), the cDNA 
was synthesized using SMART™ RACE cDNA Amplification Kit 
(Clontech) according to the manufacturer’s instructions. 
 
 
Cloning and sequencing of Ap-CYP4G25 

 
Oligonucleotide primers (Table 1) were designed by Primer premier 
5.0 software according to P450 sequences from Antheraea 
yamamai and other insects. RT-PCR was performed at 94°C for 5 
min, followed by 35 cycles of 94°C for 30 s, 55°C for 40 s, 72°C for 
1 min and a final step of 72°C for 10 min. The forward primer RC3 
and the reverse primer RC5 were designed for RACE-PCR. RACE-
PCR was carried out using the program as follows: denaturalization 
at 95°C for 5 min followed by 35 cycles of 94°C for 1 min, 60°C for 
1 min, and 72°C for 1 min and 30 s. The PCR products were 
analyzed on 1% agarose gels, then subcloned into the pMD19-T 
easy cloning vector (Takara) and sequenced at Invitrogen, 
Shanghai.  

 
 
Construction of recombinant plasmids and protein expression  

 
Total RNA from fat body was reverse transcribed into cDNA by a 
First-Strand System Kit (MBI) according to the protocol. The forward 
primer 5’- GGCGGATCC- ATGAGCTACACCACA-3’ and reverse 
primer 5’- CGCCTCGAGTTATACTTTGGCTTGTT-TCT-3’ (restriction 
enzyme sites BamHI and XhoI are underlined) were designed to 
amplify the open reading frame (ORF) of CYP4G25 gene by PCR. 
The PCR product and Pet-28a vector were ligated after being 
digested with restriction enzymes. The recombinant plasmids (PET-
CYP4G25) were identified by sequencing and then transformed into 
competent Escherichia coli BL21 (DE3) cells (TransGen) and 
induced by different concentrations of isopropyl-β-D-thiogalacto-
pyranoside (IPTG). 
 
 
Western blotting 
 
The recombinant proteins from E. coli BL21 (DE3) were subjected 
to Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) with 6% stacking gel and 12% separating gel, and then 
transferred onto a polyvinylidene difluoride membrane by an 
electrophoretic transfer system (Bio-Rad). Membranes were 
blocked with 1% bovine serum albumin (BSA) (diluted with 
phosphate-buffered saline containing 0.1% Tween 20 (PBST)) for 2 
h at room temperature. Membranes were washed with PBST and 
subsequently incubated with primary antibodies (diluted 1:2000 with 
PBST) for 2 h at room temperature. After washing, membranes 
were incubated with horseradish peroxidase (HRP)-conjugated 
sheep anti-rabbit IgG antibody for 1 h at room temperature (Zhu 
and Wu, 2008), and the final detection was performed with a HRP-
DAB Detection Kit (Tiangen).  
 
 
Expression of Ap-CYP4G25 in different tissues 

 
Mid-intestine, silk gland, hemocytes, fat body, testis integument and 
ovary were dissected from the larvae at day 3 of the fifth instar and 
antennae was collected from adult, they were immediately frozen in 
liquid nitrogen and stored at -72°C. Semi-quantitative PCR was 
carried out with specific primers F: 5′-GCTCGTGCCGGCT 
CTCTAATCCT-3′ and R: 5′-ACCGGCAGCTGTTGTATCGTGA-3′ to 
determine the expression level of CYP4G25. The actin gene 
(GenBank accession number GU073316) was used as an internal 
reference (with primers F: 5′-TCTGGCACCCCACCTTCTAC-3′ and 
R: 5′-CCGATTGTGATGACTTGAC-3′). The amplification program 
used for semi-quantitative PCR was 30 cycles of 94°C for 30 s, 
55°C for 35 s and 72°C for 40 s. 

 
 
RESULTS 
 
Cloning and sequence analysis of CYP 4G25 cDNA 
 
A cDNA fragment of 2112 bp was obtained by RT-PCR 
and RACE–PCR. The sequence had been deposited in 
the GenBank database with accession number 
GU205081. Nucleotide sequence analysis revealed that 
CYP4G25 cDNA contains a 111 bp 5’-untranslated 
sequence, a putative ORF of 1674 bp, a 326 bp 3′-
untranslated region (3′UTR) and a putative poly-
adenylation signal. Based on the deduced amino acid 
sequences, the heme-blinding region (residues 491 to 
500), I-helix domain (residues 352 to 361), K-helix 
domain (residues 416 to 419), C-helix domain (residues 
142 to 146) and N-terminal transmembrane anchoring 
signal (residues 13 to 35) were found using  the  ExPASy  
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-111            ACGACGCTAAGGCCTCTGTTGGCATCAATTGGGGATAAAATATAACGTAGT 
                                                                    F1 (-72--51bp) 

TGTCGGAGTCGACACTTCAATAGTTGGGTGTTTAAACACAAGAAATAAAATCTTCACAAG 
1 ATGAGCTACACCACAGCCGAGAATGTGGTGCCCAGTAGCACATTCTCTGCCATCAATCTG 
1  M  S  Y  T  T  A  E  N  V  V  P  S  S  T  F  S  A  I   N  L                                         

      61 TTCTATGTGTTGCTCGTGCCGGCTCTAATCCTCTGGTACACGTACTGGAGGATTTCAAGA 
21  F  Y  V  L  L  V  P  A  L  I   L  W  Y  T  Y  W  R  I   S  R      

         The deduce N- t er mi nal  t r ansmembr ane anchor i ng si gnal  
     121 CGTCGTCTCTATGAGCTGGCCGAGAAGTTGGGCGGACCCAAACCACTACCGATAATAGGA 

                                                                    F2 (162-183bp) 

      41  R  R  L  Y  E  L  A  E  K  L  G  G  P  K  P  L  P  I   I   G 
     181 AACGCTTTGGAATTCGTTGGCGGTTCAGCTGACATCTTTAACAACATTATTGCGAAGAGT 

61  N  A  L  E  F  V  G  G  S  A  D  I   F  N  N  I   I   A  K  S 
     241 CTTCCATTTGATCATGAGTCAGTAGTGAGACTTTGGATTGGACCTAGGTTGCTGGTATTC 

81  L  P  F  D  H  E  S  V  V  R  L  W  I   G  P  R  L  L  V  F   
     301 ATCTACGACCCTAGGGATGTGGAAGTTATTCTTAGCAGTCATGTGCACATTGACAAAGCT 

101  I   Y  D  P  R  D  V  E  V  I   L  S  S  H  V  H  I   D  K  A 
     361 GATGAGTACAGATTTTTCAAACCTTGGCTCGGTAACGGACTTCTTATAAGTACTGGACAA 
                                       RC5 (386-406bp) 

121  D  E  Y  R  F  F  K  P  W  L  G  N  G  L  L  I   S  T  G  Q 
     421 AAGTGGCGTTCTCACCGTAAACTGATTGCTCCCACATTTCACTTGAATGTGTTGAAGAGT 
                                          R1 (448-468bp) 

141  K  W  R  S  H  R  K  L  I   A  P  T  F  H  L  N  V  L  K  S 
           C- Hel i x 

     481 TTCATCGATTTGTTCAACGCTAATTCTAGAGCTGTAGTGGATAAGCTGAAGAAGGAGTCG 
161  F  I   D  L  F  N  A  N  S  R  A  V  V  D  K  L  K  K  E  S   

     541 GGCACCTTCGATTGTCATGACTACATGAGCGAATGCACCGTAGAAATCTTATTAGAAACT 
181  G  T  F  D  C  H  D  Y  M  S  E  C  T  V  E  I   L  L  E  T 

     601 GCAATGGGTGTAAGCAAAACTACACAGGACCAGAGTGGATTCGAATACGCCATGGCTGTT 
     201  A  M  G  V  S  K  T  T  Q  D  Q  S  G  F  E  Y  A  M  A  V 
     661 ATGAAGATGTGTGACATCCTCCATCTCAGACACACTAAAATATGGCTCAGACCAGATTTG 

221  M  K  M  C  D  I   L  H  L  R  H  T  K  I   W  L  R  P  D  L 
     721 CTATTTAAACTAACTGATTACGCCAAGAATCAAACCAAACTACTTGATGTCATCCACGGC 

241  L  F  K  L  T  D  Y  A  K  N  Q  T  K  L  L  D  V  I   H  G 
     781 TTAACCAAGAAGGTTATTAAGAGGAAGAAGGAAGAGTTCCAATCAGGCAAGAAAGCAACT 

261  L  T  K  K  V  I   K  R  K  K  E  E  F  Q  S  G  K  K  A  T 
     841 ATTATGCCCGAGGCTAATGACGTAACAAATGAAGTCCCATCTAGCAAGTCAACTTCAGTA 

281  I   M  P  E  A  N  D  V  T  N  E  V  P  S  S  K  S  T  S  V 
     901 GAGGGCTTGTCGTTTGGCCAGTCGTCTGGACTGAAAGATGATTTGGACGTAGACGATGAT 

301  E  G  L  S  F  G  Q  S  S  G  L  K  D  D  L  D  V  D  D  D   
     961 GTCGGCCAAAAGAAACGCCTAGCTTTCCTTGACTTACTCCTTGAGAGCTCTCAAAGCGGT 
                          F3 (976-996bp)     R2 (983-1003bp) 

321  V  G  Q  K  K  R  L  A  F  L  D  L  L  L  E  S  S  Q  S  G                                
 
Figure 1. Nucleotide sequence and amino acid sequence of CYP4G25 from A. pernyi. 

Translation start codon (ATG) and termination codon (TAA) are boxed and the 
polyadenylation signals AATAAA are double-underlined. 

 
 
 

Proteomics tools (Figure 1). Phylogenetic analysis 
indicated that A. pernyi CYP4G25 gene has 97.5% 
identity with A. yamamai CYP4G25 and 88.3% with 
Bombyx mori CYP4G25 (Figures 2 and 3). 

Protein expression and Western blotting 
 
The ORF of CYP4G25 was amplified by PCR and ligated 
to Pet-28a vector for  protein  expression.  A  recombinant  
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1021 GTTGTGATTACCGACGAGGAAATAAAGGAACAAGTCGACACCATTATGTTCGAGGGTCAC 
341  V  V  I   T  D  E  E  I   K  E  Q  V  D  T  I   M  F  E  G  H   

                                                   I - Hel i x 
1081 GATACAACAGCTGCCGGTAGCAGTTTCTTTTTGTCCATGATGGGAATACACCAGCACATT 
361  D  T  T  A  A  G  S  S  F  F  L  S  M  M  G  I   H  Q  H  I    

1141 CAAGATAAAGTTATTGAGGAGCTTGACCACATTTTTGGAGATTCTGATCGACCGGCCACT 
 381  Q  D  K  V  I   E  E  L  D  H  I   F  G  D  S  D  R  P  A  T 
1201 TTCCAAGATACATTGGAGATGAAATATTTGGAAAGATGCCTTATGGAAACTCTTAGATTG 
401  F  Q  D  T  L  E  M  K  Y  L  E  R  C  L  M  E  T  L  R  L 

                                                          K- Hel i x  
1261 TATCCACCAGTACCTATTATCGCTCGTCAACTGAAAGAAGAGATTACCTTACCGTCAAAT 
 421  Y  P  P  V  P  I   I   A  R  Q  L  K  E  E  I   T  L  P  S  N 
1321 GGAAAGAAGGTGCCTATAGGAACCACTTTGGTTGTGGGAACATACAAACTCCATCGTCGT 

                                   R3 (1361-1381bp)   F4 (1363-1382bp) 

441  G  K  K  V  P  I   G  T  T  L  V  V  G  T  Y  K  L  H  R  R 
1381 CCCGATGTATATCCAAACCCACATAAATTTGACCCTGATAATTTCCTTCCTGAGCGATCT 
      RC3 (1364-1384bp)  

461  P  D  V  Y  P  N  P  H  K  F  D  P  D  N  F  L  P  E  R  S   
1441 GCTAATCGTCACTATTACGCATTCGTTCCTTTCTCTGCTGGACCCAGAAGTTGTGTCGGT 
481  A  N  R  H  Y  Y  A  F  V  P  F  S  A  G  P  R  S  C  V  G 

                                            The Heme-blinding region 

1501 CGAAAATACGCCATGTTGAAGCTCAAGATCATTCTGTCAACAATACTTAGGAATTTCCGT 
501  R  K  Y  A  M  L  K  L  K  I   I   L  S  T  I   L  R  N  F  R 

1561 GTCTACTCAGATCTCACTGAATCGGATTTCAAACTTCAAGCAGATATAATTTTGAAACGA 
521  V  Y  S  D  L  T  E  S  D  F  K  L  Q  A  D  I   I   L  K  R 

    1621 GCTGAAGGTTTCAAAGTTCGTCTACAACCACGTAAGAAACAAGCCAAAGTATAA 
541  A  E  G  F  K  V  R  L  Q  P  R  K  K  Q  A  K  V  *  

GAAGGTTAACTATTCCTATACCATCATCTTTACGCTATAATGTAAATGTACAATGCCTAA 
ATTGTCAGAGACATTCGCGTTTTGTGATACTAGAACTGAATAAATTATTATTTCTTTATT 
ATTAAAAGGATGTTGTTTAAAATGGTGATAGTTTTGGGAAAGTACAAATAAAGGACA 
                                   R4 (1818-1839bp) 

GGGGTATTGTTGCTCAAGAACATTAAGCTAATCAATTTGTTTTTTGTTTGAA 

TTTGTAAATAAGTAGTTAAATTATATTGGTTGTAGACTTTCACTATATTGACA 

TATTAAACGTGATGTTCAAAGTAAAAAAAAAAAAAAAAAAAAAA   
  

 
Figure 1. Continued. 

 
 
 

protein with a molecular weight of about 63 kDa was 
detected by SDS-PAGE and the expression was not 
influenced by different IPTG concentrations (Figure 4).  

Western blot analysis of recombinant protein showed 
that a consensus 63 kDa protein band was detected 
using anti-His antibody, while there was none in the 
control group (Figure 5). All this indicate the successful 
expression of the recombinant CYP4G25 protein in E. 
coli BL21 (DE3) cells. 
 
 
Expression of Ap-CYP4G25 in different tissues  
 
Semi-quantitative  PCR  was  carried  out  to   detect   the 

expression of CYP4G25. The CYP4G25 gene ubiqui-
tously expressed in fat body, integument, midintestine, 
hemocytes, silk glands, antennae, testis and ovary with 
no obvious difference (Figure 6). These results suggest 
that the CYP4G25 plays an important role in the growth 
and development of A. pernyi. 
 
 
DISCUSSION 
 
In this study, a full-length cDNA encoding CYP 4G25 
gene was identified from A. pernyi. The cDNA is 2112 bp 
long and contains an open reading frame of 1674 bp. The 
predicted  protein   consists  of  557  amino  acids  with  a  
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Figure 2. Sequence alignment of the A. pernyi CYP4G25 proteins with its homologues. The CYP proteins from A. 

yamamai CYP4G25 (BAD81026), Apis mellifera CYP4G11 (ABB36785), Blattella germanica CYP4G19 
(AAO20251), B. mori CYP4G25 (ABF51415), Drosophila melanogaster CYP4G15 (AAF76522) and Manduca 
sexta CYP4G20 (ADE05582) were included. 

 
 
 

 
 
Figure 3. Phylogenetic analysis was performed by MEGA (version 4.0) program based on the CYP4G25 
amino acid sequences from various insects. The phylogenetic tree was constructed using the neighbor-
joining algorithm method and bootstrap values (1000 repetitions) of the branches are indicated. The CYP 
proteins from other organisms are: A. yamamai CYP4G25 (BAD81026), A. mellifera CYP4G11 (ABB36785), 
B. germanica CYP4G19 (AAO20251), B. mori CYP4G25 (ABF51415), D. melanogaster CYP4G1 
(ABY20430) and CYP4G15 (AAF76522), M. sexta CYP4G20 (ADE05582) and Mamestra brassicae CYP4G 
(AAR26517), Culex quinquefasciatus CYP4G15 (EDS33030), Leptinotarsa decemlineata CYP4G29 
(AAZ94273), Zygaena filipendulae CYP4G47 (ACZ97413) and CYP4G48 (ACZ97414), Ips paraconfusus 
CYP4G27 (ABF06553), Musca domestica CYP4G2 (ABV48808) and CYP4G13 (AAK40120). 
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Figure 4. Analysis of recombinant Ap-CYP4G25 protein on 12% SDS-PAGE gels. The protein 

amount used for SDS-PAGE was 30 µg in each lane and the gels were revealed by Coomassie 
blue R-250 staining. Bacterial proteins were collected after 4 h induction with different IPTG 
concentration. Lanes 1 to 5, after induction with 0.2, 0.4, 0.6, 0.8 and 1.0 mM IPTG, 
respectively; Lane 6, before induction; Lane 7, E. coli BL21(DE3); M, molecular weight marker. 

 
 
 

 
 
Figure 5. Western blot analysis of 

recombinant proteins with anti His-tag 
antibody. A total of 30 µg recombinant 
protein was used for Western blotting 
and a protein band with a molecular 
mass of about 63.6 kDa was detected 
by Western blotting using anti His-tag 
antibody. No immunoreactive band was 
found in the control group. Lane 1, After 
IPTG induction; lane 2 , no IPTG 
induction. 
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Figure 6. Expression analysis of Ap-CYP4G25 by semi-quantitative PCR. Lanes 1 to 8, 

expression of Ap-CYP4G25 in mid-intestine, silk gland, hemocytes, fat body, testis 
integument, ovary and antennae, respectively. The expression of Ap-actin was used as a 
control. 

 
 
 

calculated molecular mass of 63.6 kDa, which is 
somewhat larger than the size of other known vertebrate 
and invertebrate P450s (55 to 60 kDa). Phylogenetic 
analysis indicated that A. pernyi CYP4G25 was highly 
homologous to that of A. yamamai and a heme-binding 
domain (FXXGXRXCXG) which serves as fifth ligand to 
the heme iron and a K helix was found in the protein 
sequence (Werk and Feyereisen, 2000). 

The CYP4 is a member of the most ancient P450s, and 
many CYP4 subfamilies have been identified in 
arthropods and their enzymatic activities had been 
determined (Snyder et al., 1995; Pittendrigh et al., 1997). 
According to the reports, the new gene CYP4G20 may be 
associated with the diversity of odorants (Maibeche et al., 
2005), while CYP4G15 is probably important for the 
metabolism of endogenous compounds (Maibeche et al., 
2000), and CYP4G25 in A. yamamai is associated with 
diapause (Yang et al., 2008). Furthermore, P450s are 
involved in the detoxification of many xenobiotics 
(Feyereisen, 1999; Isin et al., 2007). However, the exact 
biological function of CYP4G25 in A. pernyi remains 
unknown.  

All together, A. pernyi CYP4G25 was characterized in 
this experiment and it was ubiquitously expressed in all 
examined tissues, and the prokaryotic expression of this 
protein was also successfully performed, we hope these 
results will provide some information for further studies. 
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