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A total of 101,270 eggplant expressed sequence tag (EST) sequences at public databases were used to 
search for simple sequence repeats (SSRs) and 405 potential SSR loci were identified from 388 
sequences. The highest proportion (34.07%, 138) was represented by trinucleotide, followed by 
dinucleotide (19.51%, 79) and hexanucleotide (15.8%, 64). Among the dinucleotide repeats, AG/CT was 
the most common (55.69%), followed by AT/AT (31.64%) and AC/GT (12.66%). Further, 288 pairs of 
primers were developed from these sequences. A random set of 100 EST-SSR primers were amplified in 
12 eggplant accessions and 88 successfully amplified expect PCR products. 32 markers revealed 83 
polymorphic alleles among the 42 cultivated accessions and the number of allelles per locus varied 
between 2 and 6 (mean 2.6). Polymorphism information content (PIC) values among the 42 cultivated 
types were calculated and varied from 0.045 to 0.701 (mean 0.289). The markers showed low frequency 
transferability in Solanaceae. The 32 SSRs were used to evaluate genetic diversity. These SSRs will be 
valuable markers for future genetic study, such as genetic diversity estimation, linkage mapping, 
association mapping and molecular breeding. 
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INTRODUCTION 

 
Microsatellites (simple sequence repeats, SSRs) are 
short tandemly repeated motifs of 1-6 nucleotide units, 
and their value for genetic analysis lies in their multi-
allelic nature, codominance, relative abundance, 
extensive genome coverage, high resolution and easy 
detection by PCR with small amount of genomic DNA 
template (Powell et al., 1996; Stagel et al., 2008). SSRs 
have been widely used for studies of genetic variability, 
linkage mapping, gene tagging and map-based gene 
cloning (Huang et al., 2010). About 1.5 to 4.7% of the 
ESTs in different plant species were reported to contain 
SSRs suitable for marker development (Kantety et al., 
2002). The EST-based markers  have  been  successfully  
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used in many species, such as barley (Castillo et al., 
2008; Emebiri, 2009), wheat (Ercan et al., 2010; 
Varshney et al., 2005), rice (Varshney et al., 2005), 
soybean (Liu et al., 2010; Mulato et al., 2010), cotton (Lu 
et al., 2010), sugarcane (Oliveira et al., 2007), grape 
(Huang et al., 2010), coffee (Aggarwal et al., 2007), 
peanut (Liang et al., 2009; Song et al., 2010), cucumber 
(Hu et al., 2010), safflower (Chapman et al., 2009), 
eggplant (Stagel et al., 2008; Tumbilen et al., 2011) and 
pepper (Huang et al., 2001; Lee et al., 2004; Nagy et al., 
2007; Portis et al., 2007). 

Eggplant (Solanum melongena L.), a member of 
Solanaceae, is an important vegetable in many countries. 
It is a good source of minerals and vitamins, and some 
polyphenols which show potent antioxidant activity (Nisha 
et al., 2009; Sudheesh et al., 1999). Despite the wide-
spread cultivation and economic importance, its 
molecular genetics studies were behind  those of  tomato,  
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Table 1. Fifty-four accessions included in the present study. 
 

Code Name Scientific name Source  

Sample panel 1 

1 Suanjie Qie S. sisymbriifolium   

2 Hongqie72 S. aethiopicum  China 

3 Huangguo Qie S. xanthocarpum Guizhou,China 

4 Congo Qie S. aethiopicum Congo 

5 Guanshang Qie S. aethiopicum  China 

6 Jiló S. aethiopicum  China 

7 Guangdong Qing Qie S. melongena  Guangdong,China 

8 Zi Chang Qie S. melongena  China 

9 Liangshui Qie S. melongena  Jiangxi,China 

10 Ep 143 S. melongena  India 

11 Dian Qie  S. melongena  Yunnan,China 

12 Bai Qie S. melongena  Yunnan,China 

    

Sample panel 2 

13 96-2 S. melongena  China 

14 Malaysia Qie S. melongena  Malaysia 

15 Shenxian Yuan qie S. melongena  Shandong,China 

16 Zi Hebao Qie S. melongena  China 

17 Hexian Qie S. melongena  China 

18 Rubai Qie S. melongena  China 

19 Xiao Bai Qie S. melongena  China 

20 Pinghu Bai Chang Qie S. melongena  Zhejiang,China 

21 Songjiang Qie S. melongena  Shanghai,China 

22 Pinghu Hong Qie S. melongena  Zhejiang,China 

23 Hangzhou Hong Qie S. melongena  Zhejiang,China 

24 Meiguo Da Chang Qie S. melongena  USA 

25 Zi Hei Chang Qie S. melongena  China 

26 Xian Qie S. melongena  China 

27 Hangzhou Tiao Qie S. melongena  Zhejiang,China 

28 Liu Tiao Qie S. melongena  Liaoning,China 

29 Qing Yangjiao Qie S. melongena  China 

30 Pingdong Chang Qie S. melongena  Taiwan,China 

31 Arka Keshav S. melongena  India 

32 Local-1 S. melongena  India 

33 Dunhe Qie S. melongena  China 

34 Chang Zi Qie S. melongena  China 

35 Qing Qie S. melongena  Hainan,China 

36 Nantong Qing Qie S. melongena  Zhejiang,China 

37 Fushe No.1 S. melongena  China 

38 Chang Qie S. melongena  Fujian,China 

39 Lanzhou Chang Qie S. melongena  Gansu,China 

40 Xiao Hongpao S. melongena  China 

41 Niujiao Qie S. melongena  China 

42 Benxi Zao Zi Qie S. melongena  Liaoning,China 

43 Longmenchi Zi Qie S. melongena  Guangdong,China 

44 Lv Qie S. melongena  Yunnan,China 

45 Diana Qie S. melongena  China 

46 Baicuo Qie S. melongena  China 

47 Hu Qie S. melongena  Shanghai,China 

48 Dian Xian Bai Qie S. melongena  China 
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Table 1. Continue. 
 

Sample panel 3 

49 Tomato Y43 S. pimpinellifolium America 

50 Tomato Y5 S. chiele America 

51 Tomato C1 S. lycopersicon Shanghai, China 

52 potato S. tuberosum China 

53 Ornamental Pepper  C. annuum China 

54 pepper C. annuum China 
 

Sample panel 1 was used to test PCR amplification and polymorphisms for 
the 100 primers. The primers that detected polymorphism in sample panel 1 
were tested further using DNAs from sample panel 1 and sample panel 2. 
The transferability of the 100 markers was evaluated with the accessions in 
sample panel 3. 

 
 
 

potato, and pepper, especially in the aspect of high 
density linkage map construction (Nunome et al., 2009). 
Several linkage maps had been reported in eggplant 
(Barchi et al., 2010; Cao et al., 2006; Doganlar et al., 
2002a, b; Nunome et al., 2001, 2003, 2009; Sunseri et 
al., 2003; Wu et al., 2009), however, the populations for 
mapping were limited. Up till now, all the interspecific F2 
populations were developed from the cross between 
Solanum  linnaeanum and S. melongena (Doganlar et al., 
2002a, b; Sunseri et al., 2003; Wu et al., 2009). The other 
maps were all constructed on the intraspecific 
populations. This was because of the hybrid obstacle 
between interspecific species. SSR markers had been 
developed and used for mapping in eggplant (Nunome et 
al., 2009), however, the level of intraspecific DNA marker 
polymorphism were rather limited. To construct a high 
density linkage map, much more markers are needed. 
Because the eggplant genetic research lagged behind 
other crops, little sequences were available and used 
from public data banks. Fukuoka et al. (2009) submitted 
volumes of EST sequences to the public databases, 
including 98,086 pieces of EST containing 50,438,137 bp 
nucleotides, which enriched the eggplant databases and 
gave much information for SSR searching and 
developing. 

In this study, we reported the characterization of novel 
eggplant EST-SSR markers developed from public 
databases and their application in genetic diversity 
evaluation.  
 
 
MATERIALS AND METHODS 

 
Plant materials and DNA extraction  

 
Forty-eight (48) morphologically different eggplant accessions were 
selected in this study (Table 1). The 1st to 6th eggplants were wild 
relatives, while the 7th to 48th eggplants were cultivated 
accessions. The accessions in sample panel 1 were used to test 
PCR amplification and detect polymorphisms. SSRs displaying 
polymorphism in six cultivated accessions (in panel 1) were 
subsequently tested against panel 1 and 2 for data acquisition and 
analysis. Accessions in panel 3 including 3 tomato accessions, 2 

pepper accessions and 1 potato accession were used to study the 
transferability of eggplant EST-SSRs (Table 1). DNA extraction 
followed an improved procedure (Paterson et al., 1993), however 
without DIECA addition in the DNA extraction buffer. 

 
 
Eggplant EST data retrieval and SSR detection  
 
A total of 101,270 eggplant EST sequences were retrieved from the 
NCBI and Solanaceae Network database (SGN). Of all these ESTs, 
98,089 ESTs were gotten from the NCBI website. The other 3,181 
ESTs were retrieved from the SGN (http://solgenomics.net). PolyA 
and polyT tracts were removed using the EST-trimmer software 
(http://pgrc.ipk-gatersleben.de/misa/), by applying the criterion that 
no 50 bp window contain a run of five A's or five T's. The ESTs were 
assembled using the CAP3 assemble software (Huang and Madan, 
1999). Identification and localization of microsatellites were carried 
out by MISA software (http://pgrc.ipk-gatersleben.de/misa/) (Thiel et 
al., 2003; Zhang et al., 2002). SSR motifs were searched with the 
criteria as follows: 20 repeats for mononucleotide, 10 repeats for 
dinucleotide, 7 repeats for trinucleotide, 5 repeats for 
tetranucleotide, 4 repeats for penta- and hexanucleotide, and 3 
repeats for heptanucleotide. Primer pairs were designed from the 
flanking sequences, using PRIMER3 software (Rozen and 
Skaletsky, 2000) in batch mode via the p3_in.pl and p3_out.pl Perl5 
scripts within the MISA package. The target amplicon size was set 
as 100 to 400 bp. Melting temperatures ranging from 55 to 59°C 
were tested, and the optimal temperature was found to be 57°C. 
The redundant primer pairs were analyzed using the BLAST 
(Altschul et al., 1990) software. The main parameters were “-p 
blastn -m 8 –F F –e 0.32”. The result was analyzed using script of 
PERL. It extracted primer pairs located in the same sequence. The 
match had no gaps. If several primer pairs were located in the same 
sequence with the same SSR site, we thought these primer pairs 
were redundant. 
 
 

PCR amplification and polyacrylamide gel analyses  
 
PCR was carried out in a 10 µl reaction mixture containing 20 ng 
template DNA, 0.1 µM of forward and reverse primers each, 2.5 
mM MgCl2, 0.2 mM dNTPs, 1×Taq buffer and 1 U Taq DNA 
polymerase (Shanghai Promega). Amplification was performed in a 
96 well thermocycler (Eppendorf AG 6321). Cycles were program-
med as follows: one cycle of 95°C for 2 min, 30 cycles of 94°C for 
45 s, 55°C for 45 s and 72°C for 60 s, and one cycle of 72°C for 7 
min, stored at 4°C. The PCR products were separated on 5% 
polyacrylamide gel and visualized by silver staining (Zhang et al., 
2002). 
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Table 2. Number and percent of major repeat motifs of EST-SSR in eggplant. 
 

EST-SSR type Motif Number Frequency (%) EST-SSR type Motif Number Frequency (%) 

Mononucleotide A/T 29 7.16 Pentanucleotide AAAAT/ATTTT 6 1.48 

Dinucleotide AG/CT 44 10.86  AAAAG/CTTTT 3 0.74 

 AT/AT 25 6.17  AAACC/GGTTT 3 0.74 

 AC/GT 10 2.47  AAAGC/CTTTG 3 0.74 

Trinucleotide AAG/CTT 53 13.09  AATAT/ATATT 3 0.74 

 AAT/ATT 29 7.16 Hexanucleotide AAGAGG/CCTCTT 6 1.48 

 AAC/GTT 16 3.95  ACCTCC/AGGTGG 6 1.48 

 AGC/CTG 15 3.70  AGGCGG/CCGCCT 4 0.99 

 ATC/ATG 8 1.98  AAAAAT/ATTTTT 4 0.99 

 ACC/GGT 7 1.73  AAGGAG/CCTTCT 3 0.74 

 AGG/CCT 3 0.74 HEPTANUCLEOTIDE AAAAAAT/ATTTTTT 5 1.23 

 CCG/CGG 3 0.74  AAAAAAG/CTTTTTT 3 0.74 

Tetranucleotide AAAG/CTTT 10 2.47  AAATCTC/AGATTTG 3 0.74 

 AAAT/ATTT 10 2.47     

 AAAC/GTTT 5 1.23     
 

The motifs with a frequency of <0.5% were not listed in the table. 
 
 
 
Data acquisition and statistical analysis 
 
The amplified bands of EST-SSRs were recorded as 
present (1) or absent (0), thus generating a binary data 
matrix. Polymorphism information content (PIC) value of 
each EST-SSR marker was calculated by Anderson et al. 
(1993). PIC indices were calculated for the information 
content in the 42 cultivated genotypes. Cluster analysis 
was performed using the unweighted pair-group method 
with arithmetic averages (UPGMA) and a dendrogram was 
constructed using the NTSYS-pc software version 2.10t 
(Rohlf, 2000).  

 
 
RESULTS 
 
Characterization of EST-SSRs 
 

In this study, all the 101,270 eggplant EST 
sequences were retrieved from the public 

databases. The non-redundant sequence pool 
contained 23,313 sequences. A total of 405 
potential SSR loci were identified from 388 
sequences, which represented 1.66% of all ESTs. 
Among the 405 EST-SSRs, most (397, 98.02%) 
consisted of simple repeats, whereas only few (8, 
1.98%) were of the compound type. The mean 
distance of the SSRs was 39.46 kb. The different 
SSR unit size was not evenly distributed. Of the 
total 405 SSRs, the highest proportion (34.07%) 
was represented by trinucleotide with the number 
of 138, followed by dinucleotide (19.51%, 79) and 
hexanucleotide (15.80%, 64). The frequency of 
tetranucleotide and mononucleotide was low for 
6.67 and 7.16%. So, trinucleotide, dinucleotide 
and hexanucleotide repeats represented majority 
of EST-SSRs in eggplant. Among the dinucleotide 
repeats, AG/CT was the most common (55.69%), 

followed by AT/AT (31.64%), and AC/GT 
(12.66%), whereas GC/GC did not appear. As for 
trinucleotide repeats, AAG/CTT, AAT/ATT, AGC/ 
GCT, ATC/GAT and AAC/GTT were common 
motifs (87.69%). In hexanucleotide repeats, 
AAGAGG/CCTCTT, ACCTCC/AGGTGG, 
AAAAAT/ATTTTT and AGGCGG/CCGCCT were 
the most common repeats (35.94%) (Table 2). In 
all the repeat motifs, most of the SSR repeat 
motifs derived from the ESTs were AAG/CTT 
(13.09%), followed by AG/CT (10.86%), AAT/ATT 
(7.16%) and A/T (7.16%). In the 1-7 repeat types, 
the most frequent repeat motifs were A/T, AG/CT, 
AAG/CTT, AAAG/CTTT and AAAT/ATTT, 
AAAAT/ATTTT, AAGAGG/CCTCTT and 
ACCTCC/AGGTGG, and AAAAAAT/ATTTTTT, 
which accounted for 100, 55.69, 38.41, 37.02, 
18.75, 9.38 and 13.16% of all  types,  respectively  
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Figure 1. Genotypes of the 30 accessions at EES066 loci. M, marker. Genotypes and their order are shown in 

Table 1. 

 
 
 

(Table 2). 
 
 

Development of EST-SSR markers and their 
polymorphisms  
 

All the 388 sequences were used for primer design by the 
software PRIMER3 and only 289 (74.48%) EST-SSR 
primers were obtained from these sequences. Among the 
289 primers, only one pair of primers was redundant, so 
288 non-repeated primers were produced and these 288 
primers were different from the eggplant SSR primers 
reported before (Nunome et al., 2003, 2009; Stagel et al., 
2008; Tumbilen et al., 2011). Out of the 288 primer pairs, 
a random set of 100 EST-SSR primers was selected for 
PCR optimization, characterization and amplification with 
48 selected eggplant accessions. The result showed that 
88 (88%) primer pairs were successfully amplified expect 
the PCR products (Figure 1). The remaining 12 primer 
pairs (12%) failed to amplify or were amplified weakly. 
Among the 88 primers, 9 had no polymorphism among 12 
accessions in panel 1, while the remaining 79 markers 
revealed 323 polymorphic alleles. As for the wild 
relatives, 64 of the 79 markers revealed 155 polymorphic 
alleles; as for the cultivated accessions, 32 of 79 markers 
revealed 83 polymorphic alleles. The details of the 32 
EST-SSR primers are listed in Table 3. Of the 32 primers, 
2 (EES019 and EES033) could not amplify any product in 
the wild relatives but could reveal polymorphisms among 
the cultivated accessions. Another 4 primers (EES020, 
EES035, EES076 and EES084) showed no polymor-
phism among the wild relatives but did in the cultivated 
accessions. A total of 83 alleles were amplified from 42 
cultivated accessions, with the number of alleles per 
locus varying between 2 and 6 (mean 2.6). PIC values 
among the 42 cultivated types were calculated and varied 
between 0.045 and 0.701 (mean 0.289). Primer EES038 
had the highest PIC, while EES033 and EES067 had the 
lowest. The correlation coefficient between PIC and SSR 
length was 0.03. Our study showed that 32% of the EST-
SSRs were polymorphic. 
 
  

Transferability of EST-SSRs in Solanaceae  
 

The transferability  of  the  developed  EST-SSR  markers  

was evaluated with three Solanaceous crops including 
tomato, pepper and potato. Out of the 100 selected 
primer pairs, 31 (31%) primers could amplify PCR 
products from at least one of the three species 
successfully, 27 (27%) in tomato, 27 (27%) in potato and 
24 (24%) in pepper. Of the 27 primers that could produce 
amplicons in tomato, 3 primers (EES043, EES080 and 
EES081) showed polymorphism in the three tomato 
accessions. In this study, low transferability was obtained 
for tomato, potato and pepper.  

 
 
Diversity analysis 
 
A dendrogram based on the similarity coefficients of the 
48 accessions was constructed (Figure 2). The 
dendrogram scale varied from 0.21 to 0.91. The 
dendrogram indicated a clear separation between the 
cultivated species and the wild relatives. Hong Qie, 
Congo Qie, Guangshang Qie and Jiló were grouped into 
cluster I, which belonged to Solanum aethiopicum. 
Cluster II contained two wild species, Suanjie Qie 
(Solanum sisymbriifolium) and Huangguo Qie (Solanum 
xanthocarpum). Cluster III consisted of the cultivated 
species (S. melongena). Cluster III-1 consisted of the 
accession of Bai Qie, which is a prickly plant that bears 
small, green, striped and round fruit. Thus, Bai Qie had a 
close relationship with the wild accessions. Cluster III-2 
consisted of the other cultivated accessions with a mean 
similarity of 0.62. The cluster distant to the cultivated 
group was the S. aethiopicum accessions with a mean 
similarity of 0.25. The cluster closest to the cultivated 
group contained both S. sisymbriifolium and S. 
xanthocarpum, with a mean similarity of 0.30.  
 
 
DISCUSSION 
 
Characterization of EST-SSRs 
 
The result that trinucleotide, dinucleotide and hexa-
nucleotide repeats represented majority of EST- SSRs 
was in agreement with the previous observations of SSR 
repeat units in barley, maize, rice, sorghum, wheat and 
grape  (Huang  et  al.,  2010;  Kantety  et  al.,  2002). The 
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Table 3. Characterization of 32 polymorphic EST-SSRs in eggplant. 
 

Name Repeat motif 
Primer sequence  

(5'-3') forward 
Primer sequence (5'-3') reverse Product size (bp) Number of allele PIC 

EES08 (CAG)7                                               TCTTGGGTTTTTCCTTTTTG                TCAGAAATTCTAGCAAGGGG               194 2 0.371 

EES015 (TGCAGG)4 TGGAAACAACGATAACATGG               GAGGGTGAGACAGAAGGTTG               108 3 0.587 

EES019 (AAT)16                                              TTGTCTCATTGTTGGTATGGA              GCCCATTGTTGAGGTGATTA               265 2 0.375 

EES021 (GCC)8                           AAAAATCCCCAAATCCATCT               ACGCTCTCTCACAACAACAA               352 2 0.305 

EES022 (ATT)7                                               CAAAGTACCTTCCATTTATCCAG             CAGGTGCAGGTATCATCGTA               219 2 0.374 

EES026 (TTTGC)4                                              GATGGAATTCAACAGTTACACAA             GGTCAATCCTGGTAAAGGTG               305 2 0.157 

EES028 (CT)11                                               ACCGTTCTCGTCTCTTTGTC               CAACAACAGTTCAACCCAAA               266 2 0.319 

EES029 (TAGTGC)4                                             GCCAATCACAAAATGTTGAA               GATCTTGAACAACTCCAGGG               396 2 0.067 

EES030 (ACA)7                                               CATTCTACCGTCTCCAAACC               AAACAGCCGCTCTACCTCTA               289 2 0.087 

EES031 (AT)12                                               AGAGGAGAAAGCGCTAGACA               TGATCAATCTTTGCATCCAC               226 6 0.636 

EES033 (TTC)7                         CCCTATTGGTTTCTTCCAAA               GAGCAAGGAGGATCAGAGAA               129 2 0.045 

EES038 (T)20                                               ATACTGGGCTGGACCACTTA               GAAATAACAAAATCCGTCCG               240 4 0.701 

EES040 (CCA)7                                               CTCGAGTACAAAAACATGCG               CTGCTGAATTTCTTGGCTTT               200 2 0.36 

EES043 (CTC)7                                               AATGCCAGGACATCTGAAAT               AAACGGAAACGATGAAGAAG               271 5 0.626 

EES045 (A)20                                               CAAATCAAAGAATGTGCTGC               AATTCCTTAGTTGCTCCGTG               203 2 0.297 

EES049 (TAC)7                                               CAAATCTCCACCAACATCAA               TTGATGAAACCCCAAATCTT               302 3 0.435 

EES050 (CCTGCA)4                                             CTCCAGAATCTGCTCCTGTT               CCACCACCCATATCAAGAAT               166 2 0.124 

EES051 (ATA)8                             CATCCACAATTTCAAAACAAA              TGAAAGCCATGAGATGCTAA               365 3 0.316 

EES054 (TCT)14                                              TCCCTTAACTTTTCCCTCCT                TTCCCATCCAAGAACAAACT               316 2 0.188 

EES062 (TTTG)5                                              GAACAACCCAACAAAAATCC               GGACAACGACGAAGAAGAGT               336 2 0.087 

EES063 (TC)17                                               AGCAAACATTACAAAAGCAGTT              TCAGGCATCAGTATCACCAC               258 4 0.512 

EES064 (TTTA)6                                              CAGCCGAAGTGATAAAGGTG               CCGAGATTAAACGAAAATGC               205 2 0.363 

EES065 (GCT)7                                               CATCAGACATATTCGGAGCA               AAGAGAGATGCAGAACCCTG               382 3 0.409 

EES066 (TAT)7                                               CAATTTGTAAACACTAGTACCATCA            CAGCTGATTCAAGGAGGAGT               200 3 0.354 

EES067 (AC)11                            GGCCCTGCTTTGTTATATTT               CTCACAGTGCTGATCGTAGG               375 2 0.045 

EES068 (AT)10                                               GATTTCCGATACTTTCCCCT               ACGATCCAGATGCCATACTT               175 4 0.091 

EES071 (AAT)8                                               ACACAAACTGGCAACTTCAA               ATGCTTCGAGGACTTTTGTC               184 3 0.069 

EES075 (TC)16                                               TTAATTTCGTCTGGACGTTG               TTCAAGCAAGCGACTGATTA               232 2 0.239 

EES080 (ACCCAT)6                                             GCATCTGATATCCTTGACCC               CCAAACCAAATGGTAGGTTC               217 2 0.188 

EES085 (AC)11                                               ACCTCATCTTCCCTTTCCTT                TTAAACGTCCGTTGCTTGTA               176 2 0.086 

EES091 (TTC)7                                               GAAGGTTGGTTTTCCATGAG               TCATCCCAAGAATTCCAGTT               353 2 0.124 

EES094 (AAAAAAT)3 CGTTTTAGTCACCGTTGATG TCGCACGAGAAAATCTCAC 216 2 0.312 
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Figure 2. A dendrogram constructed based on Jaccard’s similarity coefficient and UPGMA clustering. The samples are labeled with the codes 
liste 
 
 
 

trinucleotide motifs represented the most common class 
in the expressed sequences (Stagel et al., 2008). The 
dominance of trinucleotide and hexanucleotide SSRs was 
viewed as the result of the frame shift in the size of an 
amino acid read, or the three nucleotides, a selection 
against possible frame shift mutations (Huang et al., 
2010). Fukuoka et al. (2010) also reported that AG/CT 
was most common, followed by AT/AT and AC/GT among 
the dinucleotide repeats. The same result agreed with 
that of pepper. The result that AG/CT ranked first agreed 
with that of grape (Huang et al., 2010) and cotton (Lu et 
al., 2010). In eggplant, Stagel et al. (2008) also reported 
that trinucleotide represented the most common repeat, 
with AAG/CTT the most frequent. In summary, many 
researchers had gotten similar results in Solanaceous 
crops (Fukuoka et al., 2010; Nunome et al., 2003, 2009; 
Stagel et al., 2008). But, the results were not the same, 
perhaps because the criteria and the size of the 
sequence dataset were different. 

Development of EST-SSR markers and their 
polymorphisms 

 
The correlation coefficient between PIC and SSR length 
indicated that there was no clear correlation between 
SSR length and informativeness. Similar observations 
had been reported in pepper and some other species  
(Nagy et al., 2007). However, in other studies, 
researchers had found correlation between repeat length 
and informativeness (Frary et al., 2005; Stagel et al., 
2008; Tumbilen et al., 2011). Studies have reported that 
of the 25 studies across a variety of plant species, on 
average, 17.7% of loci producing PCR products were 
monomorphic (Squirrell et al., 2003). Low frequency of 
DNA polymorphism of most of the SSR markers had 
been observed in cultivated eggplants. Nunome et al. 
(2003, 2009) had reported that 56.7% of genomic SSRs 
and 30.3% of EST-SSRs were polymorphic. Studies by 
Stagel et al. (2008) showed that  only  28.2%  SSRs were  
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informative among the cultivated eggplant. Our result 
also indicated that only 32 EST-SSRs were informative 
among the cultivated eggplant, which was in agreement 
with the earlier mentioned researches. The reason might 
be because of the intensive breeding efforts and a narrow 
genetic background (Nunome et al., 2003). 

 
 
Transferability of EST-SSRs in Solanaceae  
 
In this study, low transferability was obtained for tomato, 
potato and pepper. In Solanaceous plants, transferability 
between potato and tomato, and from tomato to eggplant 
had been confirmed (Nunome et al., 2003; Stagel et al., 
2008) and also it had been reported that only few of 
tomato SSRs (15/600) can be applied to eggplant (Li et 
al., 2010), which was in agreement with this study. The 
transferability frequency was low when compared with 
that of cucumber (Hu et al., 2010) and previous studies in 
Solanaceae (Nunome et al., 2003, 2009; Stagel et al., 
2008), all of which reached 50%. The reasons might be 
because of the far genetic relationships between 
eggplant and the other Solanaceous plants and the larger 
amount of EST numbers used than before. Though the 
transferability was not high enough, it can be exploited as 
anchor markers for Solanaceous comparative mapping. 
 
 
Diversity analysis  
 
The genetic relationships between the 48 eggplant 
genotypes as displayed by genetic similarity at the SSR 
level were in good agreement with prior taxonomic 
classification based on AFLP markers (Furini and 
Wunder, 2004), SRAP markers (Li et al., 2010) and SSR 
markers (Stagel et al., 2008). The result that S. 
aethiopicum accessions were not the closest to cultivated 
accessions agreed with the study by Stagel et al. (2008) 
but not with the research by Furini and Wunder (2004) 
and Tumbilen et al. (2011). Tumbilen (2011) had reported 
that genetic diversity analysis based on molecular data 
was highly dependent on the number and type of marker 
chosen and the plant accessions tested. Also, the 
interpretation of the genetic relationships will also depend 
on the point of view of the scientist (breeder vs. 
taxonomist vs. molecular geneticist) performing the 
analysis, and thus, should be performed with caution. 
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