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The ability of plant to sustain itself in limited water conditions is crucial in the world of agriculture. To 
breed for drought tolerance in wheat, it is essential to clearly understand drought tolerant mechanisms. 
Conventional breeding is time consuming and labor intensive being inefficient with low heritability 
traits like drought tolerance. Recent progress made in the field of genomics enabling us to access 
genes linked with drought tolerance has enhanced our understanding of this complex phenomenon. 
The purpose of this review paper was to briefly overview the accomplishments in molecular breeding 
for drought tolerance in wheat. Thus, by knowing the genetics of drought tolerance and identifying 
quantitative trait loci (QTLs) linked with DNA markers will help wheat breeders to develop high yielding 
drought tolerant cultivars.  
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INTRODUCTON 
 
Wheat (Triticum aestivum L) is a cereal of choice in most 
countries of the world. Constant efforts are therefore 
needed to boost its production to keep the pace with ever 
increasing population. But unfortunately, these efforts are 
seriously being hampered by a number of abiotic 
stresses among which is drought (Boyer, 1982). 
According to Pfeiffer et al. (2005), 50% of wheat 
production area is affected due to drought worldwide. 
Drought leads to abnormal germination and poor crop 
stand (Harris et al., 2002; Kaya et al., 2006). Further-
more, drought prevailing at various critical growth stages 
like flowering and grain filling greatly reduce crop yield 
and due to that reason, its importance have been realized 
at the global level. Thus, developing drought resistant 
cultivars has been the objective of plant breeders and 
plant biotechnologists.  

Considerable efforts have been made in the past to 
develop drought tolerant cultivars of wheat through 
conventional breeding. But with little success due to 
quantitative (polygenic) nature of drought tolerance which  
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is more influenced by external environmental conditions 
than by the genetic component (El-Jaafari, 1999; 
Krishnamurthy et al., 1996; Ingrams and Bartels, 1996; 
Zhang, 2004). 

The recent progress in the field of genomics is 
astonishing providing breeders new tools for crop genetic 
improvement with reference to drought tolerance 
(Cattivelli et al., 2008) This review paper therefore 
analyses how genomic based approaches can contribute 
to the accelerating release of drought tolerant wheat 
cultivars. 
 
 
DROUGHT TOLERANT MECHANISMS 
 
Drought tolerance is the ability of plant to sustain itself in 
limited water supply (Ashley, 1993). As aforementioned, 
drought tolerance is a complex polygenic trait, therefore a 
number of factors come in to play making the plant to 
sustain drought. Drought affects the plant at the cellular, 
tissue and organ levels (Beck et al., 2007) and drought 
tolerant plants tackle the injurious effects of drought by 
initiating various defense mechanisms which should be 
understood in order to breed for drought tolerant cultivars 



 
 
 
 
(Chaves and Oliveira, 2004; Zhou et al., 2007). Drought 
tolerant mechanisms can be morphological, physiological 
or molecular (Bohnert et al., 1995; Farooq et al, 2009).  

Morphological mechanisms include; drought escape 
which is the ability of plant to complete its life cycle 
before the onset of drought season (Mitra, 2001), drought 
avoidance which is the plant’s ability to retain the water 
by increasing the uptake of water and reducing its loss 
through reduced transpiration which is made possible by 
long and thick root network as well as leaf and stomatal 
characteristics (Blum, 1988; Turner et al., 2001; Izanloo 
et al., 2008; Agbicodo et al., 2009).  

Among the physiological mechanisms, osmotic 
adjustment (OA) is perhaps the most crucial factor which 
allows the cell to decrease osmotic potential and maintain 
the turgor and the plant is able to sustain itself in 
decreased water supply (Blum, 2005; Farooq et al., 2009; 
Taiz and Zeiger, 2006). 

The role of abscisic acid (ABA) a stress hormone 
cannot be overlooked. Under water deficit environment, 
ABA induces the closure of stomata and thus reducing 
water transpiration (Turner et al. 2001). Glucousness (a 
waxy covering over the cuticle) is also considered to be a 
reliable parameter leading to increase in water use of 
efficiency in wheat plant thus providing a mechanism of 
drought tolerance (Richards et al; 1986).   

The molecular mechanisms involve activation of a 
cascade of genes which ultimately make the plant desic-
cation tolerant (Agarwal et al., 2006; Umezawa et al., 
2006) 
 
 
MAPPING QTLS FOR DROUGHT TOLERANCE IN 
WHEAT 
 
As aforementioned, conventional breeding strategies like 
selection and hybridization have met with little success in 
breeding for drought tolerance in wheat. The genomic 
based approaches provide excellent opportunities to 
search and map quantitative trait loci (QTLs) for drought 
tolerance. This is due to our increased understanding of 
gene structure and function at the cellular and molecular 
level (Gosal et al., 2009). Various QTLs for drought 
tolerance in wheat are summarized in Table 1. 

Earlier, Quarrie et al. (2005) conducted mapping of 
QTLs for drought tolerance in hexaploid wheat which 
were located on chromosomes 1A, 1B, 2A, 2B, 2D, 3D, 
5A, 5B, 7A, and 7B. 

Double haploid populations serve as a permanent 
source of mapping QTLs. Dashti et al. (2007) used 96 
doubled haploid lines of wheat to analyze QTLs for 
drought tolerance. They found drought tolerant indices for 
QTL effects ranged from 13 to 36%. Recombinant inbred 
lines developed from crossing drought resistant and 
drought susceptible lines were used to produce mapping 
populations for QTL analysis regulating yield under 
drought (Tuberosa et al., 2002). 
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MAPPING QTLS THROUGH MARKER ASSISTED 
SELECTION (MAS) IN WHEAT 
 
Marker assisted selection (MAS) refers to selection 
based on DNA markers linked to QTLs. The DNA 
markers are very powerful. Once these are identified, 
their mapping on the chromosome in relation to QTLs is 
carried out. Thus, presence of QTLs for drought tolerance 
can then be tracked by careful monitoring of these DNA 
markers (Thoday, 1961; Everson and Schaller, 1955). 
Various DNA markers like restriction fragment length 
polymorphism (RFLP), amplified fragment length 
polymorphism (AFLP), and simple sequence repeat 
(SSR) have been used to tag QTLs for drought stress in 
wheat (Quarrie et al., 2005). Application of microsettalite 
markers in wheat for tagging QTLs for disease 
resistance, grain protein contents, and yield have also 
been documented by a number of scientists (Fahima et 
al., 1998; Huang et al., 2000; Del Blanco et al., 2003; 
Huang et al., 2003; Prasad et al., 2003).  

Kirigwi et al. (2007) used simple sequence repeat 
(SST)/expressed sequence tag (EST) marker for 
mapping QTL on chromosome 4A for grain yield and 
yield components in wheat. The markers associated with 
the QTL were XBE637912, Xwmc89, and Xwmc420. 
Thus, the DNA markers closely linked with QTLs 
conferring drought tolerance would greatly enhance the 
selection efficiency (Cattivelli et al., 2008).  
 
 
CANDIDATE GENES AND FUNCTIONAL GENOMICS 
 
A candidate gene is one which is associated with the 
function and development of any trait. There has been a 
growing interest to map and sequence the candidate 
genes with known or proposed function determining 
QTLs associated with drought tolerance (Byrne and 
McMullen, 1996; Gutterson and Zhang, 2004; Nguyen et 
al., 2004). 

The technologies of microarrays and DNA chips are 
being successfully employed to quickly monitor or predict 
the expression of millions of genes and search the 
genomes of target crops (Schena et al., 1996; Lemieux et 
al., 1998). The technology of microarray becomes more 
useful when coupled with EST analysis (Sreenivasulu et 
al., 2007). EST markers are available for rice and efforts 
for developing EST markers for wheat are in progress 
(Goff, 1999). In short a dedicated effort is what is 
required to isolate and develop EST markers for drought 
tolerance to be able to get full potential of microarray 
technology. 
 
 
TRANSGENIC DROUGHT TOLERANT WHEAT  
 
In recent years, introducing drought tolerant genes from 
different  sources  into  drought  susceptible   plants   has  
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Table 1. Summary of QTLs associated with drought tolerance in wheata 

 

Cross Trait QTL 
Mapping 

Number of 
QTL Reference 

Chinese Spring x Ciano 67  ABA concentration DHL* 1 Quarrie et al. (1994)  
Songlen x Cobdor 4/3Ag14 Osmoregulation under 

drought 
RIL* 

 
1 Morgan and Tan (1996) 

     
Trident x Molineux 
 

Yield interaction with water 
supply and hot conditions 

DHL 
 

1 Kuchel et al. (2007) 
 

     
Durum x Wild emmer 
 

Various morpho-
physiological traits 

RIL 
 

many Peleg et al. (2009) 
 

     
Seri M82 x Babax 
 

Various productivity and 
physiological traits 

RIL 
 

many McIntyre et al. 2010; 
Suzuky Pinto et al., 2010. 

 

*DHL= doubled haploid; RIL= recombinant inbred lines; aSimilar studies reported in the text were not included in this table. 
 
 
 

Table 2. List of recently produced transgenic wheat with drought tolerant genes. 
 

Gene Mechanism of tolerance Reference 
DREB1A Regulatory control Pellegrineschi et al. (2004). 
HVA1 Protective proteins Sivamani et al., 2000; Bahieldin et al., 2005 
mtlD Mannitol as osmoprotectant Abebe et al. (2003) 
P5CS Osmoprotectant Kavi Kishor et al., 1995; Sawahel and Hassan, 2002; 
TaLTP1 Lipid transfer protein Jang et al. (2004). 

 
 
 
become one of the promising avenues for plant genetic 
engineers. A transgenic approach involves the structural 
modification in traits by transferring genes from one 
species to another (Ashraf, 2010). A number of genes 
conferring drought tolerance from different sources have 
been incorporated in wheat making it transgenic (Table 
2). 

Most of these transgenic lines have been tested in the 
laboratory. Their full scale utilization in the field would 
provide important information for continued exploitation of 
transgenic work. Nonetheless it is expected that trans-
genic approach will have an increased role in the future 
as far as the mapping and engineering of QTLs for 
drought tolerance is concerned (Cattivelli et al., 2008; 
Ashraf, 2010).  
 
 
CONCLUSION 
 
Drought is a major cause of yield losses of wheat in the 
world. Applications of conventional selection based 
breeding are limited due to complex nature of drought 
stress and drought tolerance. The molecular based tools 
would ultimately help us to identify potential candidate 
genes and valuable QTLs for drought tolerance and their 
effective utility in marker assisted breeding (Tuberosa 

and Silvio, 2006; Taishi et al., 2006; Fleury et al., 2010). 
The integration of these novel approaches with 
conventional system of crop genetic improvement should 
provide exciting results to breed for drought tolerance in 
wheat in the near future (Khan and Iqbal, 2011).   
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