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The population structure of Japanese flounder (Paralichthys olivaceus) in the Yellow and East China 
Seas were analyzed using amplified fragment length polymorphism (AFLP) and cytochrome c oxidase 
subunit I (COI) gene sequencing. A total of 390 reproducible bands were generated by 10 AFLP primer 
combinations in two populations collected from the coasts of Qingdao (located at the Yellow Sea) and 
Zhoushan (located at the East China Sea). The percentage of polymorphic loci (P), Nei’s genetic 
diversity (H) and Shannon’s information index (I) values were higher in the Qingdao population (P = 
72.85%, H = 0.243 and I = 0.364) than those in the Zhoushan population (P = 56.35%, H = 0.189 and I = 
0.284). The genetic diversity reduction in the Zhoushan population may be attributed to fishing pressure 
and habitat loss in this area. Based on the COI sequencing analysis, a total of 25 polymorphic sites 
were examined, and 15 haplotypes were identified in the two populations. The haplotype diversity (h) 
and nucleotide diversity (π) values in the Qingdao population were 0.746 ± 0.0728 and 0.00334 ± 
0.00103, respectively. The corresponding values in the Zhoushan population were 0.712 ± 0.0470 and 
0.00318 ± 0.00049. Both the AFLP and mtDNA data revealed significant genetic differentiation between 
the two populations. The present study discussed the factors that may result in genetic differentiation 
between the populations in the Yellow and East China Seas. 
 
Keywords: Japanese flounder, amplified fragment length polymorphism (AFLP), cytochrome c oxidase subunit 
I (COI) gene, genetic diversity, population structure. 

 
 
INTRODUCTION 
 
Japanese flounder (Paralichthys olivaceus) is an 
important commercial species that is widely cultured in 
China. However, the natural resources of Japanese 
flounder are declining owing to changes in the 
environment and fishing pressure. Moreover, aquaculture 
production of this species has not increased greatly over 
the last decade despite the extensive fishery 
management efforts because of inbreeding depression, 
viral and bacterial disease problems (Hulata, 2001; You et  
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al. 2007). Thus, maintaining long-term resource sustain-
ability is of concern for the Japanese flounder in China. 
Understanding the fish population structure is an 
important component of successful and sustainable long-
term management, and it is critical for the rational use of 
the exploitable resources. Therefore, clarifying the 
population structure of Japanese flounder is crucial in 
formulating fishery management and aquaculture deve-
lopment programs for this species. 

Genetic assessment of Japanese flounder has been 
performed using several types of genetic markers. You et 
al. (2001) compared the genetic variation between wild 
populations in the coastal area of the Yellow Sea in China 
using     allozymes.    Sekino    and  Hara  (2001)  applied  
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microsatellite markers to analyze the genetic structure of 
populations collected from coastal sea areas around 
Japan. Kim et al. (2010) also employed microsatellite 
markers to analyze the genetic structure of populations 
collected from coastal sea areas around Korea. 
Moreover, several studies have compared the genetic 
variation in hatchery populations to wild populations using 
random amplified polymorphic DNA (RAPD) (You et al., 
2007), microsatellite markers (Sekino and Hara, 2001) 
and amplified fragment length polymorphism (AFLP) 
(Zhang et al., 2004). The genetic variation of selected 
stocks has also been reported (Sekino et al., 2002; Liu et 
al., 2005).  

Previous studies on the genetic diversity of Japanese 
flounder in China were mainly focused on hatchery 
stocks (Zhang et al., 2004; Liu et al., 2005; You et al., 
2007). The genetic background of the wild Japanese 
flounder populations in the China Sea is limited. 
Therefore, the baseline information about the Japanese 
flounder should be acquired to meet the demands of 
natural resource protection and genetic breeding studies. 
In the present study, the genetic diversity and 
differentiation between two wild populations collected 
from the Yellow Sea and East China Sea were compared 
using AFLP and mitochondrial cytochrome c oxidase 
subunit I (COI) gene sequencing analyses to investigate 
the genetic resource status. 
 
 
MATERIALS AND METHODS 
 
Fish samples and genomic DNA extraction 
 
A total of 100 wild individuals were sampled. Among these 
individuals, 50 individuals were collected from the coast of Qingdao 
(120°38’N, 36°09’E, located at the Yellow Sea) in 2006, and the 
other 50 individuals were collected from the coast of Zhoushan 
(122°30’N, 30°08’E, located at the East China Sea) in 2008 (Figure 
1). Muscle tissue samples were preserved in 95% ethanol and 
stored frozen at -20°C until DNA extraction. Genomic DNA was 
isolated from muscle tissue using DNA extraction kits (TaKaRa No. 
D305, Dalian, China) following the manufacturer’s instruction. 
 
 
AFLP analysis 

 
AFLP analysis was performed as described by Xu et al. (2009). 
Sequences of AFLP adapters and primers are listed in Table 1 and 
the following 10 primer combinations were employed to generate 
the bands: E-AGA/M-CAT, E-ACT/M-CAT, E-AAG/M-CAA, E-
ACT/M-CTG, E-ACT/M-CAA, E-ACC/M-CAA, E-ACT/M-CTT, E-
ACT/M-CTC, E-AAG/M-CTG and E-ACT/M-CCA. PCR products 
were separated using 6% denaturing polyacrylamide gels 
(acrylamide/ bisacrylamide, 19:1; 7 mol/L urea; and 1×TBE buffer) 
and sized with the DL2000 DNA marker (Promega, Shanghai 
China). DNA bands were visualized with silver staining. 

AFLPs were scored as dominant markers and bands were 
scored as “1” for present or “0” for absent. Using this method, the 
markers were transformed into a 0/1 binary data matrix. The 
percentage of polymorphic loci (P), Nei's genetic diversity (H) (Nei, 
1978), Shannon’s information index (I) (Lewontin, 1972), gene flow 
(Nm = 0.5(1 - GST) / GST) (McDermott and McDonald, 1993) and 
Nei's genetic distance (D)  (Nei,  1978)  were  calculated  using  the  

 
 
 
 
Popgene 1.32 software package (Yeh et al., 1997). Molecular 
variances within and among populations of Japanese flounder were 
estimated by analysis of molecular variance (AMOVA) using the 
Arlequin 3.1 software package (Excoffier et al., 2005). To quantify 
the genetic differentiations between populations, FST values were 
calculated, and the significance of these values were tested with 
1000 permutations using the Arlequin 3.1 software package 
(Excoffier et al., 2005). 
 
 
COI sequencing 

 
A fragment of 3′ end of the mitochondrial cytochrome oxidase 
subunit one (COI) gene was PCR amplified in a subset of 80 
individuals. The fragments of COI gene sequences were obtained 
by PCR amplification using the following primer set: COI-F (5’-CCT 
GCA GGA GGA GGA GAY CC-3’) and COI-R (5’-AGT ATA AGC 
GTC TGG GTA GTC-3’). PCR amplification was performed in a 
reaction volume of 50 µL containing 29.6 µL high-performance 
liquid chromatography (HPLC) water, 5 µL 10× PCR buffer, 2 µL 
2.5 mM dNTPs, 5 µL 25 mM MgCl2, 2 µL of each primer/10µM, 2U 
Taq DNA polymerase (TaKaRa Biotechnology Co., Ltd.) and 40 ng 
diluted DNA. The PCR reaction was performed as follows: an initial 
incubation at 94°C for 2 min, followed by 35 cycles of PCR 
(denaturing at 94°C for 45 s, annealing at 52°C for 1 min, and 
extension at 72°C for 1 min), and a final extension at 72°C for 7 
min. The PCR products were purified with an agarose gel DNA 
purification Kit (Tiangen No. DP204-02, Beijing) following the 
manufacturer’s introduction. The purified of fragment were 
sequenced on an ABI prism 3730 automatic sequencer with forward 
or reverse primers.  

DNA sequences were aligned by Clustal X 1.83 (Thompson et 
al., 1997), and they were manually refined. The MEGA version 4.0 
(Tamura et al., 2007) and DnaSP 4.0 (Rozas et al., 2003) software 
packages were used to calculate statistical values including the 
nucleotide composition, number of haplotypes, number of 
polymorphic sites, nucleotide diversity (π) (Lynch and Crease, 
1990) and haplotype diversity (h) (Nei, 1987) for each population. 
The gene flow (Nm) between populations (Hudson et al., 1992) was 
calculated using the DnaSP 4.0 software package (Rozas et al., 
2003). Molecular variances within and among populations of 
Japanese flounder were estimated by AMOVA using the Arlequin 
3.1 software package (Excoffier et al., 2005). The FST values were 
calculated and the significance of these values were tested with 
1000 permutations using the Arlequin 3.1 software package 
(Excoffier et al., 2005). 

 
 
RESULTS 
 

AFLP analysis 
 

A total of 390 bands were produced from 100 individuals 
using 10 primer combinations and 341 (87.44%) of these 
bands were polymorphic. There were 279 and 204 
polymorphic bands in the Qingdao and Zhoushan 
populations, respectively. The percentage of polymorphic 
bands was significantly lower in the Zhoushan population 
(56.35%) than that in the Qingdao population (72.85%) 
(df = 1, χ

2 
= 22.20, P < 0.01). The genetic diversity values 

in the Qingdao population in terms of Nei’s genetic 
diversity (H) and Shannon diversity indices (I) were 0.243 
and 0.364, respectively. The corresponding values in the 
Zhoushan population were 0.189 and 0.284, respectively 
(Table   2).   The   genetic   diversity    in   the   Qing- dao 
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Figure 1. Sample locations and overwintering grounds for Japanese flounder. The overwintering grounds (area I, 33°30′ - 
37°30′N, 122°30′ - 124°00′E; area II, 27°00′ - 27°30′N, 121°30′ - 122°30′E) and spawning grounds (area A, B, C, D and E)are 
according to Li (1995). 

 
 
 

population was therefore higher than that in the 
Zhoushan population. 

More also, the genetic variation between the two 
populations was as follows: D = 0.0849, Nm = 3.084, and 
FST = 0.195. The FST values indicated significant genetic 
differentiation between the two populations (P < 0.001). 
Analysis of molecular variance (AMOVA) was conducted 
to describe the variance components of Japanese 
flounder populations (Table 3), and it revealed that 
80.53% of the genetic variation occurred within samples 

and 19.38% of the genetic variation occurred among 
populations. 
 
 
COI gene sequencing 
 
The COI sequences were corrected and aligned and 528 
bp consensus sequences were obtained. The average base 
composition was as follows: T = 29.10%, C = 25.10%, A   
=   25.30%,   and   G = 20.50%.   Among  the  sequences    
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Table1. Oligonucleotide adapters and primers used in AFLP analysis. 
 

Adapters or primer  Sequence (5′ — 3′) 

Adapters  

  EcoRⅠ1 CTC GTA GAC TGC GTA CC 

  EcoRⅠ2 AAT TGG TAC GCA GTC TAC 

  MseⅠ1 GAC GAT GAG TCC TGA G 

  MseⅠ2 TAC TCA GGA CTC AT 

  

Primer of pre-amplification  

EcoRⅠ1 GAC TGC GTA CCA ATT C 

MseⅠ1 GAT GAG TCC TGA GTA A 

  

Primer for selective amplification  

E-AGA GAC TGC GTA CCA ATT C AGA 

E-ACT GAC TGC GTA CCA ATT C ACT 

E-AAG GAC TGC GTA CCA ATT C AAG 

E-ACC GAC TGC GTA CCA ATT C ACC 

M-CAT GAT GAG TCC TGA GTA A CAT 

M-CAA GAT GAG TCC TGA GTA A CAA 

M-CTG GAT GAG TCC TGA GTA A CTG 

M-CCA GAT GAG TCC TGA GTA A CCA 

M-CTC GAT GAG TCC TGA GTA A CTC 

M-CTT GAT GAG TCC TGA GTA A CTT 
 
 
 

Table 2. Parameters of genetic diversity for populations of Japanese flounder. 
 

Parameter n Total band Polymorphic band P (%) H I 

Qingdao 50 383 279 72.85 0.243 0.364 

Zhoushan 50 362 204 56.35 0.189 0.284 

Total 100 390 341 87.44 0.240 0.379 
 

The letter “P”, “H” and “I” indicate percentage of polymorphic loci, Nei’s genetic diversity (H) and Shannon’s 

information index, respectively. 
 
 
 

Table 3. Analysis of molecular variance (AMOVA) within and among the populations of Japanese flounder. 
 

Source of variation Degree of freedom Sum of squares Variance components Percentage of variation (%) 

Among populations 1 355.0 6.56 19.47 

Within populations 98 2658.32 27.13 80.53 

Total 99 3013.32 33.68  
 
 
 

examined, the A/T base contents were higher than the 
C/G base contents. Sequence comparisons of the COI 
sequences revealed 25 polymorphic sites in two popu-
lations. Of these polymorphic sites, 15 were singleton 
variable sites and 10 were parsimony informative sites. 
Overall, a total of 15 haplotypes were defined in the 80 
individuals. There were 10 haplotypes in the Qingdao 
population and 7 haplotypes in the Zhoushan population, 
respectively. The distribution of haplotypes was 
nonrandom, and some samples had private haplotypes. It 

was observed that HPL01 was the most common 
haplotype in the two populations. There were 13 private 
haplotypes (86.67%) in the populations, with 8 private 
haplotypes in the Qingdao population and 5 private 
haplotypes in the Zhoushan population (Table 4). 

The haplotype diversity (h) and nucleotide diversity (π) 
values were 0.746 ± 0.0728 and 0.00334 ± 0.00103 in 
the Qingdao population, and the corresponding values in 
the Zhoushan population were 0.712 ± 0.0470 and 
0.00318   ±   0.00049.   These   results  suggest  that  the  
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Table 4. Nucleotide substitutions and distribution of the 15 haplotypes of the mtDNA COⅠ sequences of Japanese flounder. 

 

 

Haplotype 

 

Variable site position 

Locality  

Total QD ZS 

 

 

    1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4    

 3 4 6 7 8 5 7 7 7 0 2 2 4 5 5 6 8 0 1 6 7 0 3 4 6    

 0 6 5 0 2 2 2 6 8 5 4 7 6 0 9 5 4 3 3 4 4 0 5 8 6    

HPL01 C G A T T G A G A T T G A T A A T T G A G G T G A 14 17 31 

HPL02  C    A                    6  6 

HPL03  C                        8  8 

HPL04    C                      4  4 

HPL05           C               1  1 

HPL06     C                   C  2  2 

HPL07                        C  2  2 

HPL08  C G    G  G C          G T     1  1 

HPL09 G C    A      T  G   G G A    G C  1  1 

HPL10                    G       13 13 

HPL11                G     A     1 1 2 

HPL12                         G  5 5 

HPL13  C      C G            T      1 1 

HPL14               G     G       2 2 

HPL15 

 

           G       G    C   1 1 

Total                          40 40 80 
 

Each value is the number of 528-bp nucleotide sequences characterized by 25 variable nucleotide sites according to the reduced sequence data set 
in each area considering the decision rule. The letter “QD” and “ZS” indicated Qingdao population and Zhoushan population, respectively. 

 
 
 

genetic diversity in the Qingdao population was higher 
than that in the Zhoushan population (Table 5). The gene 
flow (Nm) between the two populations was 1.70. The 
pairwise FST value was 0.128, which indicated a 
significant genetic differentiation between the two 
populations (P < 0.001). The AMOVA analysis revealed 
that 87.16% of the COI sequence variation was 
distributed within samples and 12.84% of the sequence 
variation was distributed among populations (Table 6). 
 
 
DISCUSSION 
 
The genetic diversity of the two wild populations from the 
Yellow and East China Seas were analyzed based on 
AFLP and COI sequencing analysis in the present study. 
As revealed by AFLP analysis, the percentage of 
polymorphic loci and Nei’s genetic diversity values were 
72.85% and 0.243, respectively in the Qingdao 
population, and the corresponding values were 56.35% 
and 0.189 in the Zhoushan population. Based on the COI 
gene sequence analysis, the haplotype diversity and 
nucleotide diversity values were 0.746 ± 0.0728 and 
0.00334 ± 0.00103 in the Qingdao population, and the 
corresponding values in the Zhoushan population were 
0.712 ± 0.0470 and 0.00318 ± 0.00049. The levels of 

genetic diversity of Japanese flounder in this study were 
comparable to the levels of genetic diversity of other 
marine fishery species around China as follows: 
Japanese Spanish mackerel (Scomberomorus niphonius) 
with genetic diversity values of P = 38.54 ~ 45.70% and 
H = 0.0808 ~ 0.0984 as measured by AFLP (Shui et al., 
2008); small yellow croaker (Larimichthys polyactis) with 
genetic diversity values of P = 55.34 ~ 60.09% and H = 
0.124 ~ 0.138 as measured by AFLP (Han et al., 2009); 
white croaker (Pennahia argentata) with genetic diversity 
values of P = 47.13 ~ 57.63% as measured by AFLP (Lin 
et al., 2009); and silver pomfret (Pampus argenteus) with 
genetic diversity values of π = 0.880 and h = 0.006 as 
measured by COI sequencing (Peng et al., 2009). The 
large population size is thought to be responsible for the 
great levels of genetic diversity in many marine fishes 
(Avise, 1998).  

It is striking to note that there is a marked reduction in 
genetic diversity in the Zhoushan population compared 
with that in the Qingdao population. Genetic variation 
within populations can be lost through genetic drift or a 
bottleneck in the population size (You et al., 2001; Sekino 
et al., 2002; Kim et al., 2010). In fact, fishing is the main 
way to obtain aquatic products in the area of Zhoushan. 
Consequently, fishery resources have sharply declined in 
recent years (Xu et al., 2003; Yu et al., 2010). The 
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Table 5. Descriptive statistics for the Japanese flounder populations based on COI sequencing. 
 

Parameter n Number of haplotype Number of polymorphic site h π 

Qingdao 40 9 19 0.746 ± 0.0728 0.00334 ± 0.00103 

Zhoushan 40 7 12 0.712 ± 0.0470 0.00318 ± 0.00049 

Total 80 15 25 0.758 ± 0.0537 0.00329 ± 0.00058 
 

The letter” h” and “π” indicated haplotype diversity and nucleotide diversity, respectively. 

 
 
 

Table 6. Analysis of molecular variance of Japanese flounder COⅠ  sequences in the two populations. 

 

Source of variation Degree of freedom Sum of squares Variance component Percentage variation (%) 

Among Populations 1 5.238 0.112 12.84 

Within populations 78 59.275 0.760 87.16 

Total 79 64.513 0.872  
 
 
 

Zhoushan since the 1990s, which may result in low 
genetic diversity of Japanese flounder in this region.  

The genetic differentiation coefficient (FST) is the most 
important index that can reflect genetic differentiation. 
Mickett et al. (2003) suggested that an FST value of 0.446 
indicates a high genetic differentiation in channel catfish 
(Ictalurus punctatus) populations and that a value of 
0.176 indicates a moderate genetic differentiation based 
on AFLP analysis. Yue et al. (2004) considered that an 
FST value of 0.0470 corresponds to a moderate genetic 
differentiation in Asian arowana (Scleropages formosus) 
populations. In the present study, the FST-value was 
0.195 based on the AFLP data, which suggested a 
moderate genetic differentiation between the Qingdao 
and Zhoushan populations. The genetic differentiation 
was also confirmed by COI gene sequence analysis. The 
FST value of the two populations was 0.128 based on the 
COI gene sequencing analysis, which also suggested 
that the two populations were in the range for moderate 
genetic differentiation based on the guidelines of Wright 
(1978).  

Marine organisms with planktonic larvae were assumed 
to lack population structuring in open ocean environ-
ments due to the lack of apparent barriers to gene flow 
(Beheregaray and Sunnucks, 2001). A genetic study 
using mtDNA and AFLP markers on Nibea albiflora 
revealed no significant genetic differences among fish 
from three locations along the coastal waters of China. 
The water currents in the Yellow and East China Seas 
facilitate the dispersal of N. albiflora eggs and larvae, and 
this dispersal is likely responsible for the lack of genetic 
differences among the geographically separate groups of 
N. albiflora (Han et al., 2006; Han et al., 2008). However, 
population genetic structuring in widely distributed marine 
species has been reported as well. Similar to our results, 
AFLP analysis of S. niphonius (Shui et al., 2008), L. 
polyactis (Han et al., 2009) and P. argenteus (Zhao et al., 
2011) also revealed significant genetic differences among 

fish captured in the Yellow and East China Seas. 
Differences in life history dispersal, migrations, spawning 
and wintering sites are responsible for the genetic 
differences among species that have been observed. 

Japanese flounder inhabit shallow shelf waters and 
utilize near-shore or estuarine habitats as nursery areas 
for larvae and juveniles. Li (1995) assumed that there are 
two stocks (Bohai - Yellow Sea stocks and East Sea 
stocks) throughout the range of Japanese flounder based 
on breeding migration routes and overwintering grounds 
(Figure 1). The overwintering grounds for the Bohai-
Yellow Sea stock are found at the following locations: 
33°30′ - 37°30′N and 122°30′ - 124°00′E (Figure 1, area 
I). In May, the adults migrate from the overwintering 
ground to the Yalu River (Figure 1, area A), Liaodong 
peninsula coast (Figure 1, area B) and south of the 
Shandong peninsula (Figure 1, area C) to spawn. For the 
East China Sea stocks, the overwintering grounds are 
found at the following locations: 27°00′ - 27°30′N and 
121°30′ - 122°30′E (Figure 1, area II). The adults migrate 
to the coasts of Zhejiang (Figure 1, area D) and Fujian 
Province (Figure 1, area E) to spawn in late March. The 
migratory behavior, such as the different migration routes 
and overwintering grounds, and different mating periods 
in the Yellow Sea and East China Seas may be res-
ponsible for the genetic differentiation among populations 
of Japanese flounder (Shui et al., 2008; Han et al., 2009; 
Zhao et al., 2011).  

The present study generated preliminary data on the 
genetic diversity and population differentiation of 
Japanese flounder in the Yellow Sea and East China 
Sea. More geographic stocks should be utilized for future 
detailed genetic studies to understand the population 
structure of Japanese flounder in the China Sea. The 
results of our study demonstrated significant genetic 
differentiation of Japanese flounder in the Yellow Sea 
and East China Sea. Genetically differentiated popu-
lations may show variation of traits, which is important for 



aquaculture. Therefore, economically important traits, 
such   as   growth   and   disease   resistance   should  be  
 
 
 
 
evaluated for these populations. 
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