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The distribution of rare earth elements (REEs) in the lamina and chloroplast of fern Dicranopteris 
dichotoma Bernh from a light rare earth elements mine (LRM) and a non-mining (NM) area in Longnan 
county of Jiangxi province, China, were investigated by means of inductively coupled plasma-mass 
spectrometry (ICP-MS). The photosynthetic characteristics and pigment composition in immature and 
mature leaves of D. dichotoma were studied by chlorophyll (Chl) a fluorescence kinetics and high 
performance liquid chromatography (HPLC). Results show that contents of REEs in the lamina and 
chloroplast of D. dichotoma in LRM were higher than those ferns in NM. By comparing with D. 
dichotoma from NM area, the efficiency of photosystem 2 photochemistry and electron transport rate 
were significantly enhanced in mature lamina of the plant from LRM because D. dichotoma could 
change its xanthophyll cycle content to avoid the damaging effect of high REEs content. However, high 
irradiance decreased the photosystem 2 photochemistry efficiency in lamina from ferns in LRM 
suggested that large amount of REEs reduce the capacities to avoid photo damage in D. dichotoma.  
 
Key words: Dicranopteris dichotoma, photoinhibition, rare earth element, xanthophylls.  

 
 
INTRODUCTION 
 
Rare earth elements (REEs), comprising lanthanides (Ln) 
and yttrium (Y), can be divided into the light rare earth 
elements (LREEs) and heavy rare earth elements 
(HREEs) group according to their atomic mass. The 
REEs at low concentrations (usually less than 0.5 
mmol/L) can improve plant photosynthetic efficiency, crop 
quality and plant resistance to disease and stress (Hu et 
al., 2002; Liu et al., 2008; Zhang and Chen, 2007). In 
contrast, the REEs at high concentrations inhibit growth 
of plants (Chu et al., 2000). The mechanisms underlying 
different effects to plants were partly because dose effect 
(Huang and Zhou, 2006) and  partly  because  that  REEs  
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Abbreviations: REEs, Rare earth elements; LRM, light rare 
earth elements mine; NM, non mining.  

can modulate plant photosynthesis by K
+
, Na

+
, or Ca

2+
, 

ribulose-1,5-bisphosphate carboxylase/oxygenase (Chen 
et al., 2000), oxidative damage and redox system (Gao et 
al., 2005) and indolylacetic acid (Shen and Zhang, 1994). 
REEs also help plants suvival from stress conditions such 
as ultraviolet-B radiation, drought and acid rain (Liang et 
al., 2005).  

The fern Dicranopteris dichotoma Bernh., which belongs 
to Gleicheniaceae, is a hyper-accumulator of REEs and 
can be used in phytoremediation of REEs pollution 
(Ichihashi et al., 1992) in mining area of China. High 
contents of REEs were found in root, stem and lamina of 
this species. The REEs binding protein (Wang et al., 
2003), polysaccharides (Wang et al., 1997), nucleic acids 
(Wang et al., 1999) and chlorophyll (Hong et al., 1999) 
were distributed in the lamina of the plant. Other 
component such as oxygenated phenolic derivatives 
were also identified in D. dichotoma (Li et al., 2006, 
2007).    The    photosynthetic    characterizations   of   D.  
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dichotoma in normal growth conditions were preliminary 
studied (Wang et al., 2005, 2006). In places where D. 
dichotoma grow, photoinhibition, a common pheno-
menon, occurs because the plant photosystem cannot 
dissipate excited energy in time

 
(Demmig-Adams and 

Adams, 1992, 1996). Plant usually use xanthophyll cycle 
to quench extra energy.  

However, the possible roles of REEs in D. dichotoma 
and effects of photoinhibition on D. dichotoma are still not 
well explained. In this study, the contents of REEs as well 
as pigments compostions in lamina of D. dichotoma from 
LREEs mine (LRM) and non-mining (NM) area in 
Longnan county of Jiangxi Province, China, were 
measured, and the REEs effects on photosynthetic 
characteristics of ferns under photoinhibition conditions 
were also discussed. 
 
 
MATERIALS AND METHODS 
 
Longnan County is located at 114°56′ to 114°58′E, 24°41′ to 
24°52′N. The climate of Longnan County is warm and moist, with an 
annual mean temperature of 18.5 to 19.0°C, annual mean frost-free 
period of 272 to 287 days, annual rainfall of 1 439.8 to 1 515.6 mm, 
annual mean relative humidity of 76 to 79% and annual sunshine 
time of 1 863.1 to 1 909.9 h. The pH value in soil at 20 cm depth is 
3.92 to 4.80. D. dichotoma samples were collected from LRM and 
NM of Longnan County in Jiangxi Province, China, respectively. 
The completely expended lamina with dark green color (hereafter 
abbreviated mature) and fist-type lamina with light green color 
(hereafter abbreviated immature) was used for the following assay. 
 
 
REEs determination in D. dichotoma  
 
For each station, D. dichotoma samples were randomly collected, 
lamina were detached from petiole and mixed together. Samples 
were thoroughly washed with deionized water, then dried at 65°C 
and ground to pass a 100-mesh sieve. These samples were 
dissolved by HNO3/HClO4/H2O2 ashing and before determination by 
ICP-MS, 1 cm

3
 of de-ionized water was added. The ICP-MS was 

conducted according to Jarvis (1997). 
 
 
Chlorophyll and xanthophyll contents measurements 
 
Chlorophyll (Chl) was extracted with 80% ice-cold acetone from 0.1 
g samples of fresh leaves. The extract was measured spectro-
photometrically at 475, 645, and 663 nm. Specific Chl contents 
were determined according to Lichtenthaler (1987) with a DU800 
spectrophotometer (Beckman, Coulter, USA). Xanthophyll cycle 
pigments were separated and quantified by high performance liquid 
chromatography (HPLC) (Thayer and Bjotkman, 1990). The 
samples were extracted in ice-cold 100% acetone and the pigment 
extracts were filtered through a 0.45 µM membrane filter before 
assay with LC-MS2010 (Shimadzu, Tokyo, Japan). 
 
 
Isolation of chloroplasts 
 

Chloroplasts were prepared according to Wang et al. (2006). The 
fern lamina were thoroughly washed by deionized water, then 
ground in dark room at 4°C for 20 s with a blender in a medium 
containing 0.33 M Sorbitol, 50 mM MES, 10 mM NaCl, 2 mM MgCl2, 
2 mM EDTA Na2, 0.5 mM KH2PO4, 2 mM Na iso-ascorbate per  liter  

 
 
 
 
and 0.20% (W/W) bovine serum albumin (BSA) (pH 6.1). The slurry 
was filtered through 500, 195 and 20 µM nylon mesh and 
centrifuged at 300 × g for 3 min. The pellets were re-suspended in 
the grinding medium and centrifuged at 5,000 × g for 7 min to 
collect the chloroplasts. The isolated chloroplasts were then 
washed with the grinding medium and resuspended in the buffer 
containing the same contents as the grinding medium except 
replacing MES with 25 mM.L

-1
 Hepes-NaOH (pH 7.6). The final 

chloroplast concentration was higher than 1 mg/ml Chl and stored 
in refrigerator at -80°C before use. 
 
 
Modulated Chl fluorescence 

 
Chlorophyll fluorescence was measured in attached leaves with a 
PAM-2500 portable fluorometer (Walz, Effeltrich, Germany) 
connected to a notebook computer with data acquisition software 
(DA-2000) (Wang et al., 2011). 
 
 
Photoinhibition treatment  
 
Irradiance of 100, 200 and 1 000 µmolm

–2
s

–1
 was provided by a 1 

000 W tungsten bulb. A water tank with recycled water was used 
between radiation source and samples to absorb heat.  
 
 
Statistical analysis 
 
All data were analyzed on SPSS analytical software package 
(version 18.0) and one-way ANOVA with Duncan text was used to 
assess P<0.05 (probability level). Figures were drawn by Origin 
data analysis and graphing software, OriginPro8 (Version8E, Origin 
Lab Corporation, Massachusetts, USA). All of the measurements 
were performed 6 times, and the means and calculated standard 
deviations (SD) are reported. 
 
 

RESULTS 
 

REEs contents in lamina and chloroplast 
 

REEs concentrations in lamina and chloroplast of D. 
dichotoma in two places of LRM and NM are shown in 
Table 1. The concentrations of ΣREEs in lamina was 1 
494.45 mg/kg dry weight in NM area, while in LRM, the 
values was 2 648.79 mg/kg, respectively. The LR/HR 
ratios were 24.28 and 17.2, respectively. To depict REEs 
abundance variations in lamina and chloroplasts, the 
chondrite-normalized REEs patterns in two places are 
shown in Figure1 using of a set of chondrite normalizing 
values. The chondrite-normalized REEs patterns were 
given as the logarithm of the normalized abundance 
versus atomic number. The Figure 1 shows that D. 
dichotoma in two places had similar distribution patterns 
in lamina and chloroplasts. The total contents of HREEs 
were lower than LREEs contents in two places.  

The immature and mature lamina with fixed area were 
cut and Table 2 showed the total Chl (a + b), β-Car and 
Chl a/b ratio in two places. The total Chl content and β-
Car in mature lamina of D. dichotoma in the LRM was 
higher than those in NM, while in immature lamina the 
total Chl content and β-Car was lower than those in NM 
(P<0.01). The Chl a/b ratio in immature and mature leaves  
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Table 1. REEs concentration (mg/kg dry weight) in lamina and chloroplast of D. dichotoma. 
 

REEs 
NM  LRM 

Lamina Chloroplast  Lamina Chloroplast 

La 458.53 24.62  1095.80 98.88 

Ce 451.98 16.80  461.40 63.28 

Pr 94.64 6.04  155.62 22.90 

Nd 342.59 20.07  577.94 76.58 

Sm 45.08 3.72  89.77 12.58 

Eu 5.36 0.48  10.84 1.74 

Gd 36.42 3.05  74.79 11.59 

Tb 3.23 0.43  8.08 1.33 

Dy 10.38 1.67  32.24 5.29 

Ho 1.51 0.33  5.07 0.93 

Er 4.13 0.76  12.21 2.16 

Tm 0.30 0.11  1.08 0.25 

Yb 1.46 0.41  5.00 1.13 

Lu 0.17 0.07  0.59 0.18 

Y 38.68 8.61  118.34 29.35 

ΣREEs 1494.45 78.55  2648.79 298.82 

LR/HR 24.28 10.50  17.20 12.07 

δCe 0.51 0.32  0.26 0.31 

δEu 0.40 0.43  0.40 0.44 
 

REEs, rare earth elements; NM, non-mining; LRM, light rare earth elements mine. 
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Figure 1. REEs distribution patterns of in lamina and chloroplast of D. dichotoma in NM and LRM. 
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Table 2. The Chl a+b, β-car contents and Chl a/b ratio of immature and mature lamina of D. dichotoma in two places 
(µmol·m

-2
). 

 

Type Place Chl a+b β-car Chl a/b 

Immature 

lamina 

NM 272.80±10.30 9.15±0.34 2.33±0.08 

LRM 140.00±2.61** 5.82±0.67** 2.42±0.06 

Mature 

lamina 

NM 167.00±6.52 2.40±0.21 2.14±0.05 

LRM 218.30±10.64** 13.98±0.95** 2.11±0.03 
 

**Means significant level, P<0.01. 
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Figure 2. The room temperature (298K) absorption spectrum of immature and mature lamina chlorophyll 
in D. dichotoma in two places. LRMI, immature lamina in LRM; NMI, immature lamina in NM; LRMM, 
mature lamina in LRM; NMM, mature lamina in NM. 

 
 

showed little difference, thus suggesting that the 
chlorophyll composition remained stable. More also, the 
peaks in Soret band and Q band in immature lamina in 
LRM (LRMI) and NM (NMI) were 435, 434.5, 664.0 and 
664.0 nm, respectively and the Is/Iq ratio in LRM (LRMM) 
and NM (NMM) were 2.28 and 2.14, respectively. While 
the peaks in Soret band and Q band in mature lamina in 
LRM and NM were 434.5, 434.5, 664.0 and 664.5 nm, 
respectively and the Is/Iq ratio in LRM and NM were 2.46 
and 2.31, respectively. The absorption of unit chlorophyll 
from ferns in LRM was therefore higher than that in NM 
both in immature and mature lamina.  

As shown in Table 3 and Figure 3, the xanthophyll 
cycle pigments in two places were significantly different 
(P<0.01). The xanthophyll cycle pigments in ferns from 

LRM were higher than those in NM. Although, the (Z+A) / 
(Z+A+V) ratios in immature lamina showed little diffe-
rence, the ratios in mature lamina in LRM were higher 
than those in NM. Furthermore, Figure 4 shows the light-
induced Chl a fluorescence kinetic parameters of the 
mature lamina from NM and LRM under different 
irradiance. Although, the maximal efficiency of PS2 
photochemistry (Fv/Fm) was only little different in the 
ferns in two places, they showed decreased patterns 
along with the increase of light intensities. Other para-
meters such as the actual photochemical efficiency of 
PS2 (ΦPS2), the efficiency of excitation energy trapped 
by open PS2 reaction centers in the light-adapted state 
(F’v/F’m), and photochemical quenching (qP) were 
increased at low light  intensities  (100 to 200 µmolm

-2
s

-1
),   
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Figure 3. The (Z+A)/(Z+A+V) ratios of immature and mature lamina chlorophyll in D. dichotoma in 
two places.  

 
 
 

while decrease at photoinhibition light (1,000 µmolm
–2

s
–1

) 
was observed. Meanwhile, the non-photochemical 
quenching (qN) which reflects the process competing 
with PS2 photochemistry for absorbed excitation energy 
showed increase patterns along with the increase of light 
intensities in the lamina. The qN values in ferns from 
LRM which were higher than those in NM suggested that 
high REEs increase the effects of photoinhibition.  
 
 
DISCUSSION 
 
The hyperaccumulation of REEs in all the parts of D. 
dichotoma, especially high in root and lamina were well 
studied and the results suggested that the absorption of 
REE was not only determined by environment, but also 
by its own characters (Wang et al., 2005). The LREEs 
were easily transported to the lamina of D. dichotoma 
than HREEs, hence in lamina, more LREEs, especially 
La and Ce were accumulated in D. dichotoma in LRM 
and NM (Table 1). However, very little concentrations of 
REEs were found in chloroplast indicating that only small 
RREs have direct effects on photosynthetic apparatus. 

On the other hand, high concentrations of REEs altered 
the pigments compositions in different type lamina of D. 
dichotoma in two places (Figure 2). Combined with the 
changes of absorptions of unit chlorophyll, it was safely 
confirmed that D. dichotoma changed its physiological 
characterization such as DNA, chlorophyll and 
oxygenated phenolic derivatives for tolerance of high 
concentrations of REEs (Wang et al., 1999; Hong et al., 
1999; Li et al., 2006). Until now, the functions of these 
components in D. dichotoma are largely unknown. 

The findings of the effect of REEs concentrations and 
type on photosynthetic activities of D. dichotoma provided 
new sight to explaining the hyperaccumulation mecha-
nisms of REEs by D. dichotoma. High concentrations of 
REEs do have great harmful effects on crops and 
vegetables, so only few species can grow on REEs 
mining area. Usually, light RREs changed PS II activity, 
while heavy REEs changed the activity of PS I in D. 
dichotoma. The presence of REEs influenced the normal 
photosynthetic characterizations which in turn triggered 
another important excited energy quenching pathways, 
the xanthophyll cycle (Demmig-Adams and Adams, 
1996). The high  amounts  of  β-Car  associated  with  the 
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Figure 4. The Fv/Fm, Yield, qP and qN fluorescence parameters of mature lamina in D. dichotoma in two places under difference light 
intensities.  

 
 
 
adoption of D. dichotoma in REEs mine. The significant 
difference of (Z+A) / (Z+A+V) ratio under normal 
irradiance in the two places confirmed the important roles 
of xanthophyll cycle in hyperaccumulation of REEs 
(Figure 3). These results will explain why the efficiency of 
excitation energy trapped by PS2 reaction centre 
(F’v/F’m), the quantum yield of primary photochemical 
reaction (Yield) and the efficiency of photon energy 
utilization of PS2 (ΦPSII) are remarkably better in D. 
dichotoma from LRM than those from NM under low 
irradiances (Figures 4 and 5). However, these 
compensating effects are only effective at low irradiance; 
high light intensities remarkable decrease the PSII 

photochemistry of D. dichotoma in LRM.  
 
 
CONCLUSION 
 
The strategies plants use to cope with high concen-
trations of toxic metal were to deposit them (Küpper et 
al., 1999, 2001) and change their physiological 
characters (Lasat, 2002). Similarly, the mechanism of 
hyper-accumulation of REEs by D. dichotoma was to fix 
REEs in the lamina and chloroplasts, as well as alter their 
physiological characters such as use of β-Car and 
xanthophyll cycle pigments to  avoid  the  direct  effect  of  
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Figure 5. The Fv’/Fm’, ΦPSII and ETR fluorescence parameters of mature lamina in D. dichotoma in 
two places under difference light intensities. 
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high concentrations of REEs on their photosynthetic 
characteristics. 
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