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This study aimed to predict spatial distribution of deforestation and detects factors influencing forest 
degradation of Northern forests of Ilam province. For this purpose, effects of six factors including 
distance from road and settlement areas, forest fragmentation index, elevation, slope and distance from 
the forest edge on the forest deforestation were studied. In order to evaluate the changes in forest, 
images related to TM1988, ETM

+
2001 and ETM

+
2007 were processed and classified. There are two 

classes as, forest and non-forest in order to assess deforestation factors. The logistic regression 
method is used for modeling and estimating the spatial distribution of deforestation. The results show 
that about 19,294 ha from forest areas are deforested in the 19 years. Modeling results also indicate that 
more deforestation occurred in the fragmented forest cover and in the areas of proximity to forest/non 
forest edge. Furthermore, slope and distance from road and settlement areas had negative 
relationships with deforestation rates. Meanwhile, deforestation rate is decreased with increase in 
elevation. Finally, a simple spatial model is presented that is able to predict the location of 
deforestation by using logistic regression. The validation was also tested using ROC approach which 
was found to be 0.96.  
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INTRODUCTION 
 
Three well-known global changes are increasing carbon 
dioxide in the atmosphere, alterations in the biochemistry 
of the global nitrogen cycle and continuing land-use/land-
cover change(LU/LC) (Vitousek, 1994), which generates 
many environmental consequences globally and locally, 
such as the release of greenhouse gases, the loss of 
biodiversity and the sedimentation of lakes and streams 
(Walker, 2000). In particular, it is recognized as the major 
driver of the loss of biodiversity and ecosystem services 
(Haines-Young, 2009). The effects of land-use changes 
on biodiversity may be greater than climate change, biotic 
exchange, and elevated carbon dioxide concentration at 
the global scale (Sala, 2000). Deforestation is known as 
one of the most important elements in LU/LC. Globally, 
deforestation has been occurring at an alarming rate  of 
13 million hectares per year (FAO, 2005). 

The Mediterranean area is one of the most significantly 
altered hotspots on Earth (Myers et al., 2000). It has 
been intensively affected by human activity for millennia 

(Covas and Blondel, 1998; Lavorel et al., 1998; Blondel 
and Aronson, 1999; Vallejo et al., 2005). As a result, only 
4.7% of its primary vegetation has remained unaltered 
(Falcucci et al., 2007). Agricultural lands, evergreen 
woodlands and maquis habitats that dominate the 
Mediterranean basin are the result of anthropogenic 
disturbances over centuries or even millennia (Blondel 
and Aronson, 1995; Blondel, 2006). 

Although, Iran has 14.4 million hectares of forestlands, 
it is still not safeguarding its natural heritage properly. A 
report by the United Nations‟ Food and Agriculture 
Organization (FAO), does not present a hopeful scenario 
for the Iranian environment. As an example, it reports that 
11.5% of the country‟s northern forests have been 
destroyed beyond recognition (http://earthtrends.wri.org). 
Its high deforestation rate has placed Iran among the top 
ten Asia and Pacific countries that destroy forests, with 
economic losses estimated at 6,800 billion rials 
(http://earthtrends.wri.org).  



 
 
 
 

The Zagros region is located in the west of Iran running 
from northwest to southeast. Total forest area is about 
5.2 million hectares. Population pressure has led to 
encroachments on the forestland, for agricultural and 
garden use, collection of fuel wood, mining, human settle-
ments, grazing, utilization of branches and leaves of oak 
trees for feeding domestic animals, etc. People have 
been forced to be highly dependent on these degraded 
forests and so the forests have been reduced quanti-
tatively and qualitatively. Since 1965, natural regenera-
tion has been severely reduced while pests and diseases 
have increased (Fattahi, 2003). 

Amini et al. (2009) carried out a study on deforestation 
modeling and correlation between deforestation and 
physiographic parameters, manmade settlements and 
roads parameters in the Zagros forests (Armerdeh 
forests, Baneh, Iran) using remote sensing and geogra-
phic information system (GIS). The result of forest 
change detection using forest maps of 1955 and 2002 
showed that 4853 ha of the forest area have been 
reduced and 953 ha increased in this period. The Spear-
man correlation test and logistic regression model were 
used to investigate correlation between changed forests 
and the mentioned parameters. The result showed that 
there is an inverse relationship between deforestation 
and distance from roads. Minimum and maximum 
deforestation were at north and east aspects, respect-
tively. The result of applying logistic regression model 
indicated that distance from road is more effective than 
other parameters on deforestation in the study area.  

Lambin (1994) and Mas et al. (2004) mention that 
deforestation models are motivated by the following 
potential benefits: 
 

1. To provide a better understanding of how driving 
factors govern deforestation,  
2. To generate future scenarios of deforestation rates,  
3. To predict the location of forest clearing and,  
4. To support the design of policy responses to 
deforestation. 
 
According to Kaimowitz and Angels (1998), one way to 
model deforestation is to make use of empirical models. 
Several studies have analyzed land-use change under 
these approaches (Mertens and Lambin, 2000; Pontius et 
al., 2004; Pontius and Spencer, 2005; Rogan et al., 2008 
and Schneider and Pontius, 2001). Logistic regression 
performs binomial logistic regression, in which the input 
dependent variable must be binary in nature, that is, it 
can have only two possible values (0 and 1). Such 
regression analysis is usually employed in estimating a 
model that describes the relationship between one or 
more continuous independent variable(s) to the binary 
dependent variable. Logistic regression analysis fits the 
data to a logistic curve instead of the line obtained by 
ordinary linear regression. In addition to the prediction, 
logistic regression is also a useful statistical technique 
that   helps   to   understand   the   relation   between  the 
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dependent variable (change) and independent variables 
(causes) (Mas et al., 2004).  

In the particular, case of deforestation, the spatial forest 
change is a categorically dependent variable, which 
results from the interaction of several explanatory varia-
bles. Logistic regression and GIS have been demonstra-
ted as useful tools to analyze deforestation by many 
authors (Echeverria et al., 2008; Etter et al., 2006c; Loza, 
2004; Ludeke et al., 1990; McConnell et al., 2004; 
Rossiter and Loza, 2008 and Van Gils and Loza, 2006). 

Logistic regression analysis has the advantage of 
taking into account several independent explanatory 
variables for the prediction of a categorical variable (Van 
Den Eeckhaut et al., 2006). In this case, the dependent 
variable is either change or no change that has occurred 
in the forests areas.  

Landsat MSS, TM and ETM
+
 data have been broadly 

employed in studies toward the determination of LU/LC 
since 1972, the starting year of Landsat program, mainly 
in forest and agriculture areas (Campbell, 2007). The rich 
archive and spectral resolution of satellite images are the 
most important reasons for their use. 

The aim of change detection process is to recognize 
LU/LC between two or more periods of time (Muttitanon 
and Tiipathi, 2005). There are many techniques 
developed in literature using post classification compare-
son, conventional image differentiation, image ratio, 
image regression and manual on-screen digitization of 
change principal components analysis and multi date 
image classification (Lu et al., 2005). A variety of studies 
have addressed that post-classification comparison was 
found to be the most accurate procedure and presented 
the advantage of indicating the nature of the changes 
(Mas, 1999; Yuan et al., 2005). In this study, change 
detection comparison technique (at the pixel level) (that 
is, maximum likelihood method) was applied to the LU/LC 
maps derived from satellite imagery. 

The main objective of this study was to analyze and 
predict processes of forest conversion in the Zagros 
forests in western Iran. In order to reach the goal, the 
following specific objectives were considered:  

 

1. To determine and quantify forest changes that 
occurred in the Zagros forests from 1988 to 2007.  
2. To identify and analyze the most significant 
explanatory variables that lead to forest conversion in the 
Zagros forests. 
3. To establish a predictive model based on logistic 
regression and its validation. 
 

 
MATERIALS AND METHODS 

 
Study area 

 
The study area  is  situated  in  the  province  of  Ilam,  west  of  Iran 

between 33°35´ and 33°43´ latitude and between 46°17´ and 
47°13´ longitude (Figure 1) and covers about 225,593 ha. The main 
species   of   these   forests   consists;   Quercus   brantii,   Quercus 
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Figure 1. Location of study area. 
 
 
 

infectoria and Quercus libani, the dominant species is Q. brantii. It 
covers a diversity of elevation, slope, population and land-use, etc. 
Beside the undamaged natural environment in some parts, a major 

part of the area has been changed by agriculture and grazing 
activities (Fattahi, 2003). 
 
 
Land-cover maps 
 
Multi-temporal Landsat satellite images from April 01, 1988 (Path 
167, Row 37), March 20, 2001 and May 24, 2007, were obtained 
from the Global Land Cover Facility (http://www.landcover.org), 

University of Maryland. The dates of these three images are chosen 
to be as closely as possible in the same vegetation season. The 
resolutions of all images are adjusted from 28.5 ×28.5 m to 30 × 30 
m. All visible and infrared bands (except the thermal infrared band) 
were used for the purpose of classification. Remote sensing image 
processing is performed using IDRISI Andes 15.0. 

The 1:25,000 digital topographic maps of the national 
cartographic Center of Iran have been used for geo-referencing of 

earlier mentioned three images. A digital elevation model (DEM) 
generated from 20 m contour lines are used to create slope and 
elevation maps. Digital elevation model (DEM) is produced from the 

standard topographic maps with the scale of 1:25,000. DEM is 
created by using ArcGIS 9.2 GIS software. Road networks and 
human settlements are manually digitized using ArcGIS 9.2 at the 

same scale. Pixel dimensions of all maps are in 30×30 m 
resolution. 
 
 
Pre-processing 
 
Landsat 2007 image is geo-referenced (universal transver 
mercator-UTM (Zone 38N), WGS84) to the maps of DEM, road 
networks, and human settlements, with an RMS error of less than 5 

m by using nearest neighborhood resampling method. The other 
two Landsat images are then geo-referenced to the 2007 image 
(image to image registration), with an error of less than 10 m. The 
radiometric corrections and systematic errors are removed from the 
data set providers.  

The model discussed in this study follows four sequential steps: 
(1) Elaboration of maps of deforestation obtained by overlaying 
maps of forest-cover from more than one point in time, (2) 

quantification of the relationships between deforestation and the 
causes (3) statistical selection of the most significant explanatory 
variables, (4)  prediction  of  future  deforestation  in a  business-as- 
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Figure 2.  Forest and non-forest map of 1988. 

 

 
 

usual way. 
 
 
METHODS 

 
IDRISI Andes 15.0 was used to determine deforestation rates using 
three different land-use/land-cover maps from 1988, 2001 and  
2007. The land-use/land-cover map of 1988 is produced by 

supervised maximum likelihood classification using training sites to 
identify forest, river, cropland, rangeland, barren land and 
settlement areas. The same methodology is applied to produce the 
land-use/land-cover maps of 2001 and 2007. Then, the classified 
land-use/land-cover maps are reclassified into two categories as 
forest and non-forest. Only forest areas are reclassified as "forest". 
While river, cropland, rangeland, barrenland and settlement areas 
are reclassified as "non-forest". The change from forest to non-
forest is classified as deforestation. Finally, these maps are used to 

calculate the area of each land-use/land-cover type at each time 
period and to measure the deforestation rate from 1988 to 2007. 

Classification accuracy is evaluated by calculating overall accu-
racy and Kappa coefficient using an independent sample of 116 
ground control points (GCPs) obtained from field work. Areas of 
forest are calculated for the three dates and then annual rates of 
forest clearing are estimated. As a following step, images are over-
laid in order to produce a digital map of deforestation that repre-
sents changes in forest cover. Therefore, the deforestation maps 
present only two classes: forest persistence (forest in both dates) 
and deforestation coded 0 and 1, respectively (Figures 5 and 6). 

 
 
The drivers  
 
The first step for deforestation modelling is to identify and collect  
information about factors that play a major role in the deforestation 
occurrence. An attempt is made to determine the relationship 
between deforestation, and environmental and socioeconomic 

factors, which are considered as priori elements that could 
influence deforestation such as distance from settlements, distance 
from roads, distance from forest edge, elevation, slope and forest 
fragmentation index. All these variables are integrated in a GIS and 
co-registered geometrically with the forest-cover-change map 
derived from the analysis of remote sensing images. Several spatial 
explanatory variables describing potential proximate causes of 
deforestation are generated as follow: 
 

1. Elevation: A digital elevation model (DEM) is constructed from 
the contour lines, where the lines are digitized at the 1:25,000 
scale, at intervals of 20 m. The resulting elevation map is binned 
with 200 m intervals. 
2. Slope: Slope is another important factor that is generated from 
elevation using ArcGIS 9.2. 
3. Distance from forest edge: It is calculated as a series of one-
pixel-wide buffers expanding from all interfaces between pixels 
classified as forest and non-forest. To remove the influence on this 
distance, calculations of isolated pixels are classified as forest or 
non-forest, and  the  land-cover  map is  first  smoothed using a 3×3  
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pixel low pass filter. For this smoothing, the most frequently 
occurring class in the window is assigned to the central pixel of a 
moving window. 
4. Distance to the nearest road: This variable is calculated as a 
series of buffers of 100 m expanding from each road segment. Most 
of the roads in the study area are gravel roads with quality largely 
dependent on the maintenance efforts and it  is  highly  variable  in  
time. Each road is, therefore, treated as equally suitable for 
transport of goods and people. 
5. Distance to the nearest settlement: It is calculated as a series of  
buffers of 100 m, expanding from each center. Only the officially 
registered village, district and town centers are taken into account.  
 

The following procedure is used to obtain the variable distances for 
Steps 4 and 5. 
a. Road networks and human settlements shape files were 
imported.  
b. Raster files were created from each of the vector files.  
c. The Operator DISTANCE was applied. 
 
6. Forest fragmentation index: In this study, fragmentation index is 
estimated using Matheron method (Matheron, 1970). Matheron 

method, calculated in 3×3 pixels windows, is defined as:  
 

NN

N
M

F

NFF

*
 

 
Where, NF-NF is the number of boundaries between forest and non-
forest pixels, Nf is the number of forest pixels and N is the total 
number of pixels. The numerator measures the number of pairs of 
adjacent pixels classified as forest and non-forest (that is, the 
length of the perimeter line of forest pixels) and the denominator 
normalizes this count by the size of the forest and entire area 
(Mertens and Lambin, 1997).      

 
 
Logistic regression model (LRM) 

 
Forest conversion is modelled and analyzed using logistic 
regression model (LRM) in IDRISI Andes 15.0. The purpose of 
modelling was (i) to assess the relative signification of six 
explanatory variables on forest change during the period 1988 to 
2007; and (ii) to predict probability of deforestation for future. 

LRM is a variation of ordinary regression which is used when the 
dependent (response) variable is a dichotomous variable. 

In this study, as mentioned before, the dependent variable is a 
binary presence or absence event, where 1= forest change and 0= 
no change, for the period 1988 to 2007. The logistic function gives 
the probability of forest change as a function of the explanatory 
variables. In other words, the probability of forest change for each 
pixel is a function of the values that the other variables have for the 
same pixel. According to Schneider and Pointius (2001) the 
function is a monotonic curvilinear response bounded between 0 

and 1, given by a logistic function of the form: 

 

  
      (1) 
Where, p is the probability of forest loss in the cell, E(Y) the 

expected value of the binary dependent variable Y, β0 is a constant 
to be estimated, βi‟s are coefficients to be estimated for each 
independent variable Xi. The  logistic  function  can  be  transformed  

 

 
 
 
into a linear response with the transformation: 

 

    
    (2) 
 
Hence: 

  (3) 
        
The  transformation  (Equation 2)  from  the  curvilinear  response 
(Equation 1) to a linear function (Equation 3) is called a logit or 
logistic transformation. The transformed function allows linear 
regression to estimate each βi. Since each of the observations is a 
pixel, the final result is a probability score (p) for each pixel. 

In LRM, the significance of the coefficients βi is tested with the 
Wald test, which is obtained by comparing the maximum likelihood 
estimate of every βi with its estimated standard error (Hosmer and 
Lemeshow, 1989; Eastman, 2006). It is the coefficient divided by its 
standard error. Thus, if the relative error is high, the Wald statistic is 

small. This gives an idea of the significance of each predictor: the 
greater the absolute value, the more significant. Note that the sign 
of the Wald statistic is the same as that of the coefficient, and thus 
gives the direction of the effect: increase or decrease in probability 
due to the predictor.  

Accordinge to Ayalew and Yamagishi (2004), in order to 
appropriately interpret the meanings of Equation 1, one has to use 
the coefficients as a power to the natural log(e). The result 
represents the odds ratio or the probability that an event will occur 
divided by the probability that it fails to do so. If the coefficient is 
positive, its transformation to log value will be greater than one, 
meaning that the event is more likely to occur. If it is negative, then 
the transformed log value will be less than one and the odds of the 
event occurring decrease. A coefficient of 0 has a transformed log 
value of 1, and it does not change the odds one way or the other. 
For a positive coefficient, the probability plotted against the values 
of an independent variable follows an S-shaped curve. A mirror 

image will be obtained for a negative coefficient (Ayalew et al., 
2005). 
 
 
Calibration of the Model 

 
To calibrate the LRM, the explanatory variables are incorporated in 
the IDRISI‟s LRM as independent variables. The forest change for 
the period 1988 to 2001 is incorporated as the dependent variable. 

The stepwise method is used to select the best set of predictor 
variables since the study considered 6 different predictor sets. 
Finally, Van Gils and Loza (2006) methodology is used to select the 
best-fitted model with the minimum amount of predictors measured 
by means of the Akaike Information Criterion (AIC) index. The 
smaller the AIC is, the better the fit of the model. The results are the 
regression equation of the best-fitted predictors set and a map of 
probability of deforestation. 
 
 
Prediction of the model 

 
The prediction for forest change between the year 2001 and the 
year 2007 is performed using the obtained probabilities of 
deforestation for the year 2001. For the new prediction, the dynamic 
variables such as distance from forest edge, distance from roads 
and fragmentation index are changed as long as they were in the 

year 2001. The variables, distance from settlements, elevation and 
slope remained the same. The result is a new map of probability of 
forest change for the year 2007. 
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Figure 3. Forest and non-forest map of 2001. 

 
 

 
Model validation 

 

The observed forest change map of 2007 is used to assess the 
accuracy of probability of forest change with the relative operation 
characteristic (ROC) curve, which is an effective and widely used 
method for evaluating the discriminating power of a statistical model  
(Hu and Lo, 2007; Pontius and Schneider, 2001). Eastman (2006) 
also mentions that ROC can be used to determine how well a 
continuous surface predicts the locations given the distribution of a 

Boolean variable (in this study, forest change is the Boolean 
variable). A ROC curve is a graph of the true positive and false 
positives fractions. The ROC works for two or more land types. If a 
grid cell is simulated as change in a scenario, it is a „positive‟. 
Therefore, a „true-positive‟ is a cell which is categorized as change 
in both actual and the modeled scenario. Conversely, a „false-
positive‟ is a cell that is categorized as non-change in reality and as 
change in the modeled scenario. ROC plots the rate of true-
positives on the vertical axis versus the rate of false-positives on 

the horizontal axis. If the sequence of the suitability values matches 
perfectly the sequence in which real land-cover change has 
occurred, then ROC equal to 1. As model performance improves, 
the curve moves towards the upper left corner and the area under 
ROC increases accordingly.  
 

 

RESULTS 
 

Accuracy assessment was performed for 1988, 2001 and 
2007 LU/LC maps (forest/non-forest). The overall 

accuracy of the classified maps for the years 1998, 2001 
and 2007 ranged from 83 to 87%, and Kappa indices 
varied from 0.71 and 0.73. Figures 2, 3 and 4 display the 
1988, 2001 and 2007 land-cover maps (forest/non-forest) 
created for the study area, respectively. These images 
are then overlaid in order to generate the digital forest 
change detection maps for two intervals; namely, 1988 to 
2001 and 2001 to 2007 (Figures 5 and 6). The results of 
forest change detection in the Zagros forests show that 
28.2% of primary forest has been lost from 1988 to 2007.  

This study selected the set predictor Step 6 as the best 
combination to be used in the prediction (Table 1). The 
selection procedure is performed as follows. According to 
Ayalew and Yamagishi (2005), a key starting point could 
be the model chi-square, whose value provides the usual 
significance test for logistic regression. It is a difference 
between −2lnL (L=likelihood) for the best-fitting model 
(predictor set) and −2lnL0 for the null hypothesis in which 
all the coefficients are set to 0. The value measures the 
improvement in fit that the independent variables brought 
into the regression. In this study, the high value chi-
square (for the predictor set Step 6) indicates that the 
occurrence of forest change is far less likely under the 
null hypothesis (without the forest conversion influencing 
parameters) than  the  full  regression  model  (where  the 
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Figure 4. Forest and non-forest map of 2007. 

 

 
 

parameters are included). The goodness of fit is an 
alternative to Chi-square for assessing the significance of 
LRM. It is calculated based on the difference between the 
observed and the predicted values of the dependent 
variable. The smaller this statistic is, the better fit it 
indicates. Model step 6 has a value of 359,634, which is 
the smallest Goodness of fit statistic among the model  
sets. The pseudo R-square value, which can be 
calculated from 1− (ln L/ln L0), indicates how the logit 
model fits the dataset (Menard, 1995). Thus, pseudo R-
square equal to 1 indicates a perfect fit, whereas 0 shows 
no relationship. When a pseudo R-square is greater than 
0.2, it shows a relatively good fit (Clark and Hosking, 
1986; Ayalew et al., 2005). The pseudo R-square of the 
Step 6 predictor set is 0.23. Under ROC, the Step 6 
predictor set obtained an accuracy of 0.96% and 
provided the smallest AIC index making it the best-fitted 
predictor set  (Table 2).  Regression  equation  best-fitted  

Step 6 predictor set. 
Linear probability (logit) =1.95 

 
-0.36* Distance from roads log 
-0.45* Distance from settlements log 
-0.31* Distance from forest edge log 
0.23* Fragmentation index 
-0.35* Slope 
-0.52* Elevation      
  
The relative contribution of the explanatory variables can 
be assessed using the corresponding coefficients in the 
LRM. According to Eastman (2006), the intercept can be 
thought of as the value for the dependent variable when 
each independent variable takes on a value of zero. The 
coefficients indicate the effects of each of the explanatory 
variables on the dependent variable.  

Figures 7 and 8 show the results of the  calibration  and 
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Figure 5. Cross 1988-2001. 

 
 
 

the prediction of the LRM. The color in the figures 
indicates the degree of probability of deforestation. Areas 
in dark blue show high probability for forest conversion, 
while, areas in other colors have decreasing probability 
for deforestation. Figure 9 illustrates the real change 
occurred for the period 2001 to 2007, areas in black are 
areas of changes. Figure 10 illustrates the ROC curve for 
the LRM. The Area under the ROC Curve is 0.961. 
 
 
DISCUSSION 
 
There may be many driving factors  of  forest  conversion,  
and they may vary from place to place. In this case study, 
selected spatial variables comprise a considerable share 
of the factors driving forest changes. In particular, the 
accessibility variables seem to be more important than 
the topographical ones. Many of these factors have been 
found to be important in other areas. For example, 
Merten and Lambin (1997) identified proximity to road, 

town and forest/non-forest edge as important drivers of 
forest change in southern Cameroon. Elevation and 
proximity to road are highlighted as important factors of 
forest change in the lowlands of Sumatra, Indonesia 
(Linkie et al., 2004). Elevation, slope, proximity to road, 
settlement and proximity to forest/non-forest edge are the 
key factors of forest change in southeast Mexico (Mas et 
al., 2004). The modelling of forest conversion considered 
six explanatory variables: Distance from forest edge, 
distance from roads, distance from settlements, 
elevation, slope and fragmentation index. In the LRM 
analysis, six predictor sets are compared. The best fitted 
predictor set is a combination of all the variables 
incorporated into the model. For this combination, the 
AUC is 96% and the AIC index is the lowest for the tested 
predictor sets. 

Among continuous variables, distance from settlements 
is the best single predictor for forest change (1988 to 
2007),   with  a  β  value  of  -0.45.  This  means  that  the 
probability of forest change decreases in direct proportion  
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Figure 6. Cross 2001-2007. 
 

 
 

to the increase in distance from the borders. In other 
words, the model assigns higher values of probability of 
change to areas, which are closer to the forest borders. 
Distance from roads and distance from forest edge have 
the nearly same negative value (β= -0.36; β= -0.31). The 
model assigns the similar significance to these two 
variables. The negative value means that the probability 
of forest change decreases in direct proportion to the 
increase in distance from roads and forest edge. In other 
words, the model assigns higher values of probability of 
change to areas which are closer to roads and forest 
edge. Finally, forest change has positive relation with 
fragmentation index (β=+0.23). This means that 
fragmented forest is degraded more than protected area. 
Many studies have attributed road infrastructure to one 
main cause of deforestation. Geist and Lambin (2002) 
and Krutilla et al. (1995) argued that the construction of 
roads requires clearing of vegetation that leads to 
deforestation. Greater access to forests and markets will 
accelerate the deforestation. 

The variables, distance from settlements  and  distance  

from roads are significant factor for forest conversion in 
this study, as well as mentioned by other studies 
(Echeverria et al., 2008; Etter et al., 2006a, b; Geist and 
Lambin, 2001; Loza, 2004; Vanclay et al., 1999), In the 
particular case of the deforestation in the Zagros forests, 
it is believed that first people settle land reached beyond 
existing roads and then they develop roads to reach the 
already taken lands. However, this is difficult to verify with 
the data and the analysis provided by this study.   

Meanwhile, among categorical variables, elevation is 
the best single predictor for forest change (1988 to 2007), 
with a β value of -0.52. This means that the probability of 
forest change decreases in direct proportion to the 
increase in elevation from the lower elevations. In other 
words, the model assigns higher values of probability of 
change to areas, which are located in lower altitudes (in 
other words, more accessible areas). Finally, slope also 
has good negative association (β = -0.35) with forest 
change. It means with increase in slope, forest change 
decreases due  to  decreasing  accessibility  to  that.  The 
conversion.  The   topography   of    Loza‟s    study   area 
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Table 1. Coefficients of logistic regression using 6 sets of explanatory variables. 
 

Variable 
Coefficient 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

Intercept 0.39 1.01 1.21 1.80 2.23 1.95 

Distance from roads -0.60 -0.52 -0.38 -0.29 -0.30 -0.36 

Distance from settlements  -0.57 -0.43 -0.40 -0.41 -0.45 

Distance from forest edge   -0.38 -0.31 -0.30 -0.31 

Fragmentation index    0.29 0.25 0.23 

Slope     -0.44 -0.35 

Elevation      -0.52 
 
 
 

Table 2.  Other statistics of logistic regression using 6 sets of explanatory variables 
 

Statistic Set 1 Set 2 Set 3 Set 4 Set 5 Set 6  

Total number of pixel 2,507,925 2,507,925 2,507,925 2,507,925 2,507,925 2,507,925 

−2lnL (L=likelihood) 241,734 230,936 229,930 219,983 214,249 201,426 

−2ln L0 435,731 430,328 356,701 383,941 361,618 340,231 

Model chi square 51,928 53,765 55,321 570,551 589,318 59,601 

Goodness of fit 401,369 400,187 391,442 376,964 368,980 359,634 

Pseudo R-square 0.15 0.18 0.21 0.22 0.22 0.23 

AUC 0.76 0.79 0.83 0.87 0.91 0.96 

Odds ratio 4.21 4.37 4.41 4.46 4.30 5.05 

AIC 247,651 238,756 220,908 217,781 215,645 201,341 
 
 

 

 
 
Figure 7. Map of probabilities of deforestation obtained by LRM (calibration 2001). 
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Figure 8. Map of probabilities of deforestation obtained by LRM (Prediction 2007). 

 
 

 

presents mostly hills (lower altitude) and flat areas. 
The involvement of some variables such as land tenure 

status, and other socio-economic data (level of income, 
level of education), which have contributed to 
deforestation might be incorporated in the model. Zagros 
forests have threats such as the construction of a road 
across the area, population density and agroforestry. The 
aim of this research is to predict probabilities of forest 
conversion. However, areas of change (not only 
probabilities) can be predicted by incorporation of 
methods such as Markov chains, Geomod and cellular  
automata. While this study considered only two 
categories, “forest and disturbed forest”, further studies 
could model additional categories of land-cover. 
 
 
Conclusion 

 
The    identification  of  the   areas   vulnerable  to  forest 
changes is fundamental  in  the  Zagros  forests  and  has  

important implications for biodiversity conservation in the 
region. One of the most important applications would be 
to relate the spatial patterns of forest changes to the 
spatial distribution of species. From a protected area 
management perspective, the prediction maps of forest 
change patterns can help protected area managers to 
identify places, where conservation and forest 
management efforts should be focused. At a larger scale, 
the prediction of forest change patterns can aid long-term 
sustainable forest management. Policy implication of the 
result model prediction is that the government should 
take more attention to the population problem and have 
to create non-agricultural sectors jobs in order to reduce 
pressure on forest, especially at district which will face 
serious deforestation. This study investigate the 
conversion of forest using remote sensing, GIS and 
logistic regression model in the Zagros forests of west of 
Iran. The LRM is parameterized to simulate the 
conversion of forest in the near future. It is shown that the 
utility of a combination  of  statistical  modeling  approach  
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Figure 9. Forest change year 2007(1=change; 0= No change). 
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Figure 10. Predictive performance assessment LRM (AUC/ROC). 
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and spatial analysis is necessary in order to analyze and 
predict deforestation. Distance from forest settlements, 
distance from roads, distance from forest edge, 
fragmentation index, elevation and slope are found to be 
the important variables in the model for explaining the 
pattern of deforestation observed in the Zagros forests.  
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