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Roundabout (Robo) receptors have many important roles including mediating the migration of the 
growth cone and neurons, promoting axonal growth and development of nerve fascicles, and guiding 
the growth direction of central nervous system by binding Slit. To better understand the role of Robo in 
peripheral nervous system, this study investigated the expression profile of Robo1 in the dorsal root 
ganglia (DRG) of adult rats following sciatic nerve transection (SNT). Adult Sprague-Dawley rats that 
were untreated (n = 8), or received SNT (n = 40), were analyzed. DRG from each treatment group at days 
three, seven, 14, 21, and 28 post-SNT were collected and assayed by real-time PCR and 
immunohistochemistry. Expression of Robo1 and 2 was performed, with staining also evaluated in 
relation to neuron diameters. We found that both mRNA and protein levels of Robo1 were detected in 
normal DRG, and these levels increased following SNT. Increases were initially detected at day three 
post-SNT, then peaked between day seven and 14, then gradually returned to basal levels by day 21 
post-SNT. Neither normal, nor SNT DRG exhibited co-localization of Robo1 and 2, and this observation 
was independent of neuron diameter. These results suggest that Robo1 in DRG is upregulated following 
sciatic nerve transection in rats. 
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INTRODUCTION 
 
The roundabout (Robo) families of receptors are mem-
bers of the immunoglobulin superfamily of cell adhesion 
molecules (CAM). Robo1-4 contain five 1g subunits, 
three type III fibronectin repeats, a transmembrane 
region, and long cytoplasmic tails that contain robo-
specific motifs (Hivert et al., 2002; Kidd et al., 1998a, b; 
Liu et al., 2004; Sundaresan et al., 1998; Jaworski et al., 
2010; Pappu and Zipursky, 2010; Zhang et al., 2010). 
Robo   proteins   share   homology    with    other   CAMs,  
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including    neural   cell  adhesion   molecule   (NCAM), L1 

protein, and DCC (deleted in colorectal carcinoma), and 
thus are capable of homophilic and heterophilic binding 
interactions to promote neurite outgrowth (Doherty et al., 
2000; Hivert et al., 2002; Kutcher et al., 2004; Li et al., 
1999). Upon binding of Robo proteins by the ligand, Slit, 
Robo proteins can direct the growth of the central 
nervous axons and promote cell migration, as well as 
axon branching and dendrite growth (Brose et al., 1999; 
Li et al., 1999; Rajagopalan et al., 2000; Wang et al., 
1999; Whitford et al., 2002). Robo proteins also 
contribute to axon tract fasciculation in the developing 
nervous system (Hivert et al., 2002; Liu et al., 2004; 
Simpson et al., 2000; Sundaresan et al., 2004; Jaworski 
et al., 2010; Pappu and Zipursky, 2010).  Moreover,  both  
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the Slit and Robo protein families have been shown to be  
essential for axon guidance and cell migration in worms, 
flies, fish and mice (Brose et al., 1999; Brose and 
Tessier-Lavigne, 2000, Inatani, 2005, Rajagopalan et al., 
2000; Wong et al., 2002; Jaworski et al., 2010; Pappu 
and Zipursky, 2010).  

Robo1 was the first Robo gene identified in Drosophila 
based on a comprehensive screen for factors that 
regulate growth cone midline crossing in the developing 
central nervous system (CNS) (Inatani, 2005; Kidd et al., 
1998b). To date, four vertebrate Robo homologues have 
been cloned, Robo 1-4 (Camurri et al., 2004; Kidd et al., 
1998b; Lee et al., 2001; Nguyen-Ba-Charvet and 
Chedotal, 2002). The spatiotemporal expression of 
vertebrate Robo and Slit genes has been well-charac-
terized during the early embryonic stages (Holmes et al., 
1998; Mambetisaeva et al., 2005; Marillat et al., 2002; 
Rudenko et al., 1999), and expression has also been 
detected both postnatally and into adulthood (Marillat et 
al., 2002; Wehrle et al., 2005; Hagino et al., 2003; Kidd et 
al., 1998a, b; Rajagopalan et al., 2000). Robo1 is 
specifically expressed in the developing retina and 
olfactory bulb, in dorsal root ganglia (DRG), and in the 
spinal cord of zebrafish, chicken, mice and rats (Challa et 
al., 2001; Lee et al., 2001; Li et al., 1999; Mambetisaeva 
et al., 2005; Marillat et al., 2002; Nguyen-Ba-Charvet and 
Chedotal, 2002). These experimental results indicate that 
the spatiotemporal expression of Robo1 appears to be an 
important determinant of function during the neuronal 
development of the brain (Hagino et al., 2003; Kidd et al., 
1998a, b; Rajagopalan et al., 2000). 

Our previous data demonstrated that both Slit and 
Robo2 exhibit differential expression patterns in the adult 
rat spinal cord, DRG, and sciatic nerve before and after 
sciatic nerve transection (SNT). These results suggest 
that Slit1 and Robo2 have important roles in regeneration 
of peripheral nerve injury (Yi et al., 2006). Slit1 is 
expressed in non-neuronal cells, as well as in satellite 
cells in DRG and Schwann cells present in the nerve 
trunk. In contrast, Slit2 is expressed by neurons and 
Schwann cells. In primary neurons of DRG, Robo2 is 
induced by peripheral axotomy primarily in large diameter 
cells (Yi et al., 2006). However, little is known about 
Robo1 expression and its role in the peripheral nervous 
system of adult mammals. 

Therefore, in this study, expression levels and distri-
bution patterns of Robo1 in adult rat DRG were investi-
gated following SNT using real-time PCR and 
immunohistochemistry.  
 
 
MATERIALS AND METHODS 
 
Animal models of SNT 

 
All procedures were performed with the approval of the local animal 
ethics committee, in accordance with university guidelines for 
animal experiments (Chinese government animal protection and 
management law). A total of 48  adult  Sprague-Dawley  rats  (250 ±  

 
 
 
 
20 g) were used (Xiangya Center of Experimental Animals, Central 
South University, Changsha, China) and these were randomly 
divided into two groups: (1) a normal group (n = 8), and (2) a group 
that underwent sciatic nerve transection (SNT) (n = 40). For 
surgery, rats were anesthetized with an intraperitoneal injection of 
2% sodium pentobarbital (40 mg/kg) and fixed in a prostrate 
position. All surgeries were conducted under sterile conditions. The 
sciatic nerve 10 mm proximal to its division to the tibial and 
common peroneal nerves was transectioned (Yi et al., 2006). After 
surgery, all rats were injected subcutaneously ketoprofen at a dose 
of 5 mg/kg once daily for three days. In order to obtain samples for 
different timepoints following SNT (that is, three, seven, 14, 21 and 
28 days post-SNT), rats were randomly subdivided into five groups 
(n = 8).  

 
 
Tissue preparation 
 
For immunohistochemistry, rats were over-anesthetized with 
pentobarbital, then perfused with saline, followed by cold 4% 
paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) for 30 min. 
L4-L6 DRG were carefully dissected and post-fixed in the same 
fixative for 2 h. DRG were then transferred sequentially to 10, 20, 
and 30 % sucrose solutions in phosphate buffered saline (PBS) for 
three days or longer at 4°C for cryoprotection until sectioning. For 
real-time PCR samples, the rats were over-anesthetized and L4 to 
L6 DRG were collected into liquid nitrogen and homogenized 
immediately.  

 
 
Real-time quantitative PCR  

 
Total RNA was extracted from frozen tissues using TRIzol Reagent 
according to the manufacturer’s instructions (Invitrogen, USA). The 
quality of the RNA obtained was determined based on 28S/18S 
rRNA bands detected on electrophoresis gels stained with ethidium 
bromide. RNA concentrations were determined using NanoDrop 
spectrophotometry (Thermo Scientific, USA), and cDNA was 
generated from 500 ng pooled total RNA from each treatment group 
using SuperScript II reverse transcriptase (Invitrogen, USA) and 
oligo-dT primers. Real-time quantitative PCR assays were 
performed using a LightCycler 480 quantitative PCR system 
(Roche) with SYBR Green (TOYOBO Co., Japan), and 28s rRNA 
detected as an internal control. Primers used in the amplification 
reaction included (shown 5’ to 3’): 28S rRNA F, AGCAGCCGACT-
TAGAACTGG, and R, TAGGGACAGTGGGAATCTCG; rat Robo1 F, 
GCAGAGAGGCCTACACAGATG, and R, CACTGGGCGATT-
TTATAGCAG. 
 
 
Immunohistochemistry 
 
Free floating sections were washed in PBS / 0.3% Triton ×-100 / 
5% bovine serum albumin (BSA) for 1 h, thereafter, were incubated 
with goat anti-rat Robo1 antibody (1:200, Santa Cruz 
Biotechnology, USA) overnight at 4°C. After three washes in PBS, 
sections were incubated in biotinylated rabbit anti-goat antibody 
(1:200, Vector, USA) for 2.5 h, then in avidin biotin complex (ABC) 
solution (1:100, Vector) for 1 h at RT. Subsequently, sections were 
rinsed and stained with 0.05% diaminobenzidine (DAB, Vector) in 
the presence of 0.03% hydrogen peroxide for 5 min. Following 
additional rinses, sections were mounted on gelatin subbed slides, 
air dried, dehydrated in ethanol, cleared in xylene, and coverslipped 
with DPX (Fluka Chemie AG, Switzerland). As a negative control, 
sections were incubated without primary antibody and processed as 
described above (Zheng et al., 2008, 2010). 

For    immunofluorescence    microscope  studies,  sections  were  
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Figure 1. Relative expression of Robo1 mRNA levels in normal (Nor) and 
damaged DRG following SNT as indicated. Values represent the mean ± SEM (n 
= 3). 

*
p < 0.05 compared with Nor. 

 
 
 

washed   in   PBS / 0.3%   Triton ×-100 / 5%   BSA    for   1 h,   then 
incubated with goat anti-rat Robo1 antibody (1:200, Santa Cruz) or 
rabbit anti-rat Robo2 antibody (1:200, Santa Cruz) overnight at 4°C. 
After three washes in PBS, sections were incubated with rabbit anti-
goat FITC-labeled IgG (1:100, Santa Cruz) and mice anti-rabbit 
Cy3-labeled IgG (1:100, Vector) overnight at 4°C. Following 
additional rinses in PBS, sections were washed and adhered to 
gelatin subbed coverslips, then mounted on slides with propenyl 
alcohol. Images were collected using a fluorescent microscope 
(Nikon, Tokyo, Japan).  
 
 
Data collection and statistical analyses 

 
Light microscopy images were captured using a digital camera 
(Nikon, Japan) attached to a Motic BA400 microscope (Motic, 
Germany) at 100 × magnification. Five sections from each 
specimen and five visual fields for each section were randomly 
selected. The optical density (OD) value of positively stained cells in 
each field were quantified using Image Pro Plus 5.0 for Windows, 
and the number of stained neurons, according to their diameter, 
were counted. Analysis of digitized images was performed. All data 
are presented as the mean ± standard error of the mean (SEM). 
Comparisons between the normal group and the SNT group were 
made using one-way analysis of variance (ANOVA) followed by 
Dunnett’s tests. A p-value less than 0.05 was considered 
statistically significant. All data were analyzed using SPSS 15.0 
statistical software for Windows. 
 

 

RESULTS 
 

Changes in levels of Robo1 mRNA in DRG following 
SNT 
 

As shown in Figure 1, levels of Robo1 mRNA detected by 

real-time PCR were observed to increase at day three 
post-SNT, and peaked between day seven to 14 post-
SNT. At day 21, mRNA levels for Robo 1 had returned to 
normal levels. Furthermore, on days seven and 14, the 
relative expression of Robo1 compared to the normal 
group was significantly different (p < 0.05).  
 
 

Robo1 protein levels in DRG following SNT 
 
Expression of Robo1 was detected in large (25 to 40 µm), 
medium (25 to 15 µm), and small (< 15 µm) DRG sensory 
neurons using immunohistochemical methods (Figures 
2B and C). In these assays, an increase in levels of 
Robo1 were detected at day three post-SNT, the highest 
levels were detected at day seven post-SNT, and Robo1 
levels gradually returned to basal levels at day 21 post-
SNT (Figures 2D to H). On days three, seven and 14 
post-SNT, the OD values of the positively stained cells 
between SNT samples and normal or contralateral DRG 
significantly differed (p < 0.05). Moreover, neither large, 
medium, nor small DRG sensory neuron numbers were 
observed to change at any of the examined time points 
following SNT (Figure 3). Co-expression studies of 
Robo1 and 2 were also performed for samples of normal 
DRG and damaged DRG following SNT, and no neurons 
co-expressing Robo1 and 2 were detected (Figure 4).  
 
 

DISCUSSION 
 
In this  study,  a  transection  of  the  peripheral  axons  of  
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Figure 2. Representative microphotographs of Robo1 immunostaining of DRG following SNT in adult rats. (A) negative control, (B) 
contralateral side DRG, (C) normal DRG, (D) day 3 following SNT, (E) day 7 following SNT, (F) day 14 following SNT, (G) day 21 
following SNT, (H) day 28 following SNT. Robo1 protein increased following SNT, which initially detected by day 3 post-SNT, then 
peaked between day 7 and 14, then gradually returned to basal levels by day 21 post-SNT. (I) Quantitation of Robo1 staining as 
indicated. Values represent the mean ± SEM (n = 5). On days 3, 7, and 14 post-SNT, the OD values of the positively stained cells 
between SNT samples and normal or contralateral DRG significantly differed (p < 0.05). * p < 0.05, compared with the normal group, # 
p < 0.05, compared with contralateral DRG. Scale bar in panel A to H = 100 µm. 

 
 
 

DRG neurons resulted in the up-regulation of Robo1 in all 
sizes of neurons after peripheral nerve injury. However, 
neither normal nor sensory neurons affected by SNT 
were observed to co-express Robo1 and 2. In com-
bination, these findings suggest that Robo1 has a role in 
normal DRG and plays a role following sciatic nerve 
injury in rats.  
 
 
Robo1 is up-regulated in primary sensory neurons 
after peripheral nerve injury 
 
Injured peripheral neurons regain their regenerative 
capacity by reverting to gene expression patterns that 

were used during development. These gene programs 
involve hundreds of genes, and many of these genes that 
are highly expressed, including injury- and growth-
associated molecules such as growth-associated protein 
43 (GAP-43), cytoskeleton-associated protein 23 (CAP-
23), and some neurotrophic receptors, have been shown 
to mediate peripheral nerve regeneration following 
peripheral axotomy (Costigan et al., 2002; McLean et al., 
2002; Xiao et al., 2002). Unlike central nerve injury, 
peripheral branches of sensory neurons remain in contact 
with target tissues, which provide trophic support 
(Schwab and Bartholdi, 1996; Smith and Skene, 1997; 
Woolf et al., 1990). Moreover, injury to the central 
process has been shown to have a limited effect on  gene  
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Figure 3. Quantitation of the number of large (black), medium (light gray), and small (dark gray) DRG sensory 
neurons observed in normal and SNT samples. No change in the number of DRG sensory neurons was detected 
at any of the examined time points following SNT. Values represent the mean ± SEM (n = 5). 

 
 
 
expression profiles of DRG neurons, which is charac-
terized by an absence of GAP-43 up-regulation, and 
limited, or absent, regeneration were observed in the 
dorsal root and spinal cord, respectively (Chong et al., 
1994; Schnell and Schwab, 1990; Schwab and Bartholdi, 
1996; Schwaiger et al., 2000). In this study, an increase 
in Robo1 expression was detected in primary sensory 
neurons in adult rat DRG following peripheral transection. 
This pattern of expression is similar to the expression 
profiles of other growth-associated molecules, and some 
trophic receptors, during peripheral nerve regeneration 
(Fu and Gordon, 1997). In combination, these data 
suggest that Robo1 expression is primarily influenced by 
the target tissues that provide trophic support.  

The functional role of Robo1 in DRG neurons remains 
unknown. However, Robo receptors have been shown to 
positively promote axonal elongation and branching, to 
cause growth cone collapse and guidance axonal growth, 
and to serve as the receptor of Slit (Hammond et al., 
2005; Rajagopalan et al., 2000; Wang et al., 1999). 

 It has also been hypothesized that Robo receptors 
form a functional complex at the plasma membrane in 
response to Slit binding (Yi et al., 2006). This interaction 
may occur in DRG to affect neurons and the growth cone. 

The induction of Robo1 following peripheral injury may 
also reflect on the early stages of a regenerative program 
initiated by injured primary sensory neurons.  
 
 
Robo1 may have a role in guiding the regeneration of 
the growth cone of injured peripheral nerves  
 
During the development of the CNS, an axonal growth 
cone detected, reacted to environmental cues to direct an 
axon to the appropriate location. These guidance cues, 
both attractive and repulsive, act through distinct 
signaling pathways to reorganize the cytoskeleton in 
responsive cells (Hornberger et al., 1999). Based on the 
differential expression of receptor complexes that have 
been detected, a single guidance cue can have attractive 
or repulsive effects depending on the intracellular state of 
the cell and the cross-talk that has occurred between 
intracellular signaling cascades (Hammond et al., 2005; 
Hornberger et al., 1999). Slit1 and Slit2 are ligands of 
Robo receptors that mediate downstream signaling from 
Robo proteins, and are expressed in Schwann cells of 
peripheral nerves (Yi et al., 2006). When 3T3 cells were 
transfected with Robo, neurite outgrowth of Robo-positive  
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Figure 4. Representative images of the immunofluorescent staining of Robo1 and 2 in DRG. sections. Normal DRG (upper panels) 
and DRG 7 d post-SNT (lower panels) were stained with anti-Robo1 (green) and anti-Robo2 (red) antibodies. Merged images are 
shown in the far right panels. Co-localization of Robo1 and Robo2 was not detected in any of the DRG analyzed. Scale Bar = 100 
µM.  

 
 
 

neurons, such as retinal neurons and olfactory neurons, 
were stimulated. In contrast, Robo-negative neurons, 
such as cerebellar granule cells, were unaffected (Hivert 
et al., 2002). Similarly, when DRG of chicken embryos, 
trigeminal neurons of zebrafish, and cultured DRG 
neurons of adult rat were treated with an antibody raised 
against the first 1g domain of Robo1/2, or a soluble 
Robo-Fc chimera, outgrowth was inhibited (Yeo et al., 
2004; Yi et al., 2006). 

 Therefore, in combination, these data suggest that the 
expression of Robo1 in DRG neurons mediates signaling 
to guide the growth cone of injured peripheral nerves 
during regeneration. 

Homophilic and/or heterophilic interactions between 
Robo family members can directly contribute to axon tract 
fasciculation in the developing nervous system (Hivert et 
al., 2002; Yeo et al., 2004). Interestingly, our results 
indicate that Robo1 and 2 are not co-expressed in 
sensory neurons, thereby suggesting that Robo1 and 2 
have different roles in the process of peripheral nerve 
regeneration following injury.  

In summary, our results indicate that Robo1 is expres-
sed in adult rat DRG neurons, and undergoes changes in 
expression following axotomy. Correspondingly, further 
studies are needed to address the role of Robo1 
expression in DRG during the processes of neuronal 
survival and axonal regeneration. 
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