Full Length Research Paper

Novel expressed sequence tag- simple sequence repeats (EST-SSR) markers characterized by new bioinformatic criteria reveal high genetic similarity in sugarcane (*Saccharum* spp.) breeding lines

Kittipat Ukoskit¹*, Penjun Thipmongkolcharoen¹ and Prasert Chatwachirawong²

¹Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Campus) Klong Luang, Pathumtani 12121, Thailand.

²Department of Agronomy, Faculty of Agriculture, Kasetsart University, Kamphaengsean Campus, Kamphaengsean, Nakhon Pathom 73140, Thailand.

Accepted 21 September, 2011

Using different bioinformatic criteria, the SUCEST database was used to mine for simple sequence repeat (SSR) markers. Among 42,189 clusters, 1,425 expressed sequence tag- simple sequence repeats (EST-SSRs) were identified *in silico*. Trinucleotide repeats were the most abundant SSRs detected. Of 212 primer pairs selected, based on repeat patterns of n≥8 for di-, tri-, tetra- and penta-nucleotide repeat motifs verified using 15 sugarcane (*Saccharum* spp.) genotypes and marker segregation using F1 progenies of a cultivated sugarcane and *Saccharum spontaneum*, 191 loci were identified. All new EST-SSR loci detected a total of 1,529 markers ranging from 2 to 21 markers per locus, with an average of eight markers per locus. Observed polymorphism ranged from 0.12 to 0.93 with a mean of 0.74. A total of 426 and 333 markers were putatively identified as simplex in the cultivated sugarcane and *S. spontaneum*, respectively and corresponding to 2.23 and 1.74 markers per primer, respectively while 167 markers were identified as double-simplex markers, with 0.87 markers per primer. Cluster analysis revealed a high genetic similarity among the sugarcane (*Saccharum* spp.) breeding lines which could reduce the genetic gain in sugarcane breeding.

Key words: sugarcane, expressed sequence tag- simple sequence repeats (EST-SSRs) markers, genetic similarity.

INTRODUCTION

In current years, with the rapid increase of expressed sequence tag (EST) sequence in public data base, the development of EST containing simple sequence repeats (SSRs) becomes an attractive choice for the development of SSR markers. With evolving bioinformatic tools, it is easy to download the ESTs from public databases, scan for EST containing SSRs and develop EST–SSR markers at a large scale with a time saving and cost

effective way (Kantety et al., 2002; Yan et al., 2008). EST-SSRs have some advantages over genomic SSRs since these markers are derived from expressed genes, they are more conserved and have a better potential for their applications across the species than anonymous DNA markers like amplified fragment length polymorphisms (AFLPs), random amplified polymorphic DNA (RAPD) and genomic SSR markers (Feng et al., 2009). Consequently, they are useful as anchor markers for identifying conserved genomic regions among species and genera, comparative genomics, and evolutionary studies (Cordeiro et al., 2001; Kantety et al., 2002; Thiel et al., 2003). Moreover, EST-SSRs may be directly

^{*}Corresponding author. E-mail: ku@tu.ac.th.Tel: 662- 5644500. Fax: 662-5644500.

related with a coding gene, used as functional SSR markers, and are better resources for their use in breeding since they may be directly associated with the genes affecting a particular trait (Andersen and Lubberstedt, 2003).

The sugarcane EST project (SUCEST) generated 291,689 ESTs (Vettore et al., 2001). Trimming and clustering ESTs were performed to obtain 43,141 clusters (Telles and Silva, 2001). These large datasets of non-redundant (NR) EST sequences are publicly released on the public domain sugarcane EST (http://sucest. lbi.ic.unicamp.br/public/) and available for developing EST–SSR markers at a large scale. Although, the sugarcane EST database had been surveyed for ESTs containing SSRs (Oliveira et al., 2007; Oliveira et al., 2009; Pinto et al., 2004; Silva, 2001), a large number of EST–SSR markers are still available for marker development.

The current study was designed (1) to develop and characterize a novel set of EST-SSR markers from the sugarcane EST using different search EST-SSR criteria from previous reports (2) to evaluate the ability to detect polymorphism and to determine simplex alleles segregating in mapping population derived from an interspecific hybridization between a cultivated sugarcane and *Saccharum spontaneum* (3) to assess their potential for diversity and pedigree relationship studies. The new EST-SSR markers developed from this study provide a robust set of polymerase chain reaction (PCR) primers that are a useful addition for functional sugarcane genome mapping facilitating introgression of favorable wild alleles in sugarcane breeding programs and for sugarcane genotyping.

MATERIALS AND METHODS

Plant materials

Thirteen sugarcane breeding lines and 2 cultivars, Phil66-107 and KU60, (Table 1) were used for evaluation of selected EST-SSR markers. Ten random F_1 progenies obtained from the interspecific cross between the cultivated sugarcane 'Phil6607' and *S. spontaneum* 'S6' were used for simplex marker segregation analysis. Leaf material was collected and DNA was extracted following the cetyltrimethylammonium bromide (CTAB) method described by (Gawel and Jarret, 1991). DNA quantity and quality were determined using agarose gel electrophoresis and spectrophotometric measurements, and then the samples were diluted appropriately for marker analyses.

Data mining for EST-SSR markers and primer design

We collected 42,189 clusters from 37 libraries publicly provided from the SUCEST database and surveyed electronically using the PERL program, Simple Sequence Repeat Identification Tool(SSRIT), downloaded from the Cornell University web site http://www.gramene.org/gramene/searches/ssrtool. The parameters

in SSRIT program were set for detection of di-, tri-, tetra-, and penta nucleotide motifs with a minimum of 5 repeats. The identified ESTs containing repeat motifs were subjected to masking of other repeat sequences from the Gramineae family as well as low-complexity sequences, including the SSRs and interspersed repeats, with the RepeatMasker Program (A.F.A. Smit, R. Hubley & P. Green RepeatMasker at http://repeatmasker.org). The Primer3 software (freely available at http://www.genome.wi.mit.edu/genome software/ other/ primer3.html) was used to design the primers (Rozen and Skaletsky, 2000) to amplify the selected EST-SSRs based on the following parameters: primer length from 18 to 24 with 20 as the optimum, PCR product size from 150 to 350, optimum annealing temperature of 60°C, and GC contents from 40 to 70%, with 50% as optimum. PCR reactions were carried out in 20 µl reaction volumes containing 1× Buffer, 1.5 mM of MgCl₂, 20 µM of each dNTPs, 0.25 µM of each primer, 0.5 U of Taq DNA polymerase and 20 ng of DNA template and were performed on MJ Thermal Cycler at 94 ℃ for 5 min, 40 cycles of 30 s at 94 ℃, 60 s at appropriate annealing temperature of each primer and 1 min at 72°C, with a final extension of 7 min at 72°C. PCR products were run on 6% denaturing polyacrylamide gels and silver-stained as described by (Benbouza et al., 2006).

Gene identity of characterized EST-SSRs

To obtain sequence homology and putative function of genes represented by the EST-SSRs characterized from the Repeat Masker program, the EST-SSRs were BLAST searched against NCBI non-redundant (nr) database using Blast2GO freely available through Java Web Start at http://www.blast2go.de; (Conesa et al., 2005). BLASTX results were loaded into the program and the default settings were used to assign GO terms to all EST-SSRs.

Evaluation of EST-SSR polymorphisms and determining simplex alleles

Primarily, the selected EST-SSRs were screened for polymorphism between the two parents, Phil6607 and S6 used to generate a mapping population for constructing linkage maps. Secondly, the resulting polymorphic EST-SSRs evaluated between the two parents were determined for putative simplex markers (markers present in one parent but absent in another and segregate 1:1) and double simplex markers (marker present in both parents and segregate 3:1; (Grattapaglia and Sederoff, 1994; Ritter et al., 1990) using 10 random progenies of F_1 mapping population. Thirdly, based on high polymorphism between the two parents and homology to genes of interest, a subset of 212 primer pairs were selected to determine the polymorphism information content (PIC; Botstein et al., 1980) in 15 sugarcane genotypes, using the equation.

$$PIC = 1 - \sum_{i=1}^{k} p_i^2 - \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} 2p_i^2 p_j^2$$

where *p* is the frequency of the j^{th} allele pattern of EST-SSR locus t^{th} and *k* is the number of allele pattern of EST-SSR locus. The selected highly polymorphic 212 EST–SSRs were tested to ascertain the genetic relationships by cluster analysis among 15 sugarcane genotypes including *S. spontaneum* used as an out group. The binary data were used to calculate Jaccard similarity coefficients (Jaccard, 1908) as indicators of genetic similarity

Olama	0		Pedig	ree	
Cione	Source	Female	Breeding*	Male	Breeding
TBy20-0556	Breeding line	K83-74	OCSB	K84-200	OCSB
TBy20-0732	Breeding line	K83-74	OCSB	K84-200	OCSB
TBy20-0734	Breeding line	K83-74	OCSB	K84-200	OCSB
TBy20-0794	Breeding line	K84-200	OCSB	K92-166	OCSB
TBy20-1300	Breeding line	K83-74	OCSB	K84-200	OCSB
TBy20-1455	Breeding line	Co775	Thai Major parent	K84-200	OCSB
TBy20-2248	Breeding line	K83-74	OCSB	K84-200	OCSB
NRCT01-0398	Breeding line	K83-74	OCSB	UT1	DA
NRCT01-0663	Breeding line	KU50	KU	B4362	Thai Major parent
NRCT01-0877	Breeding line	UT1	DA	K83-74	OCSB
NRCT01-1192	Breeding line	UT1	DA	K83-74	OCSB
NRCT01-1202	Breeding line	UT1	DA	KU50	KU
NRCT01-1256	Breeding line	Co775	Thai Major parent	K82-32	OCSB
KU60-1	Cultivar	Co775	Thai Major parent	K84-200	OCSB
Phil6607	Cutivar	Phil5460	Unknown	Co440	Thai Major parent
S6	S. spontaneum				

 Table 1. Sources and parents of sugarcane clones used for evaluation of developed EST-SSR markers.

*OCSB = Office of the Cane and Sugar Board; KU= Kasetsart University; DA = Department of Agriculture.

Figure 1. Frequency of repeat motif classes.

among pairs of genotypes as follows: GSij = a/(a+b+c) where GSij is the genetic similarity measurement between individuals i and j, a is the number of polymorphic bands that are shared by *i* and *j*, *b* and *c* are the number of bands present in individual *i* and *j*, respectively. The resulting similarity matrices were used to construct dendrograms by the unweighted pair-group method with arithmetic means (UPGMA) using software packages NTSYSpc ver 2.02 (Rohlf, 1998).

RESULTS

Type and frequency of EST-SSRs

A search of the EST from the SUCEST database

usingthe PERL program, SSRIT found 4,401 ESTs containing repeat motifs according to the search criteria. Since the SSRIT program identifies ESTs solely based on the fact that they contain a certain repeat motif, all these ESTs containing repeat motifs were subjected to masking of other repeat sequences from the Gramineae family as well as low-complexity sequences, including the SSRs and interspersed repeats, with the Repeat Masker pro-gram. A total of 1,425 EST-SSRs were identified, accounting for approximately 3.4% of the total cluster searched. Of the total EST-SSRs identified (Figure 1), 1,141 (80.1%) were perfect repeats representing the majority of the SSR structure types, 31

Demost motif					N	umbe	r of repeat	t			Tatal	F actor 1 (0 ()
Repeat motif	5	6	7	8	9	10	11–15	16–25	26–40	41–60	lotal	Frequency (%)
AG/CT	55	34	24	65	42	21	57	40	4	0	342	19.1
AC/GT	33	15	4	22	16	8	11	12	3	1	125	7
AT/AT	30	11	6	14	6	8	26	15	16	3	135	7.6
CG/CG	51	10	1	5	1	0	0	0	0	0	68	3.8
ACG/CGT	28	18	7	8	2	1	0	0	0	0	64	3.6
ACT/AGT	3	0	1	1	0	0	0	0	0	0	5	0.3
ATT/AAT	1	1	1	1	2	0	4	1	0	0	11	0.6
AAC/GTT	4	4	7	6	5	0	2	0	0	0	28	1.6
CAT/ATG	10	6	5	1	2	3	1	1	0	0	29	1.6
CTT/AAG	12	3	7	4	3	0	1	2	0	0	32	1.8
GGT/ACC	23	15	10	5	7	1	2	0	0	0	63	3.5
CCT/AGG	50	35	27	11	6	2	2	0	0	0	133	7.4
AGC/GCT	60	42	20	14	6	1	4	0	0	0	147	8.2
CGG/CCG	200	132	88	42	22	2	6	0	0	0	492	27.5
AAAG/CTTT	4	2	1	2	1	1	2	0	0	0	13	0.7
AAAT/ATTT	2	0	1	0	0	0	0	0	0	0	3	0.2
ACAT/ATGT	4	1	0	2	0	0	0	1	0	0	8	0.4
AGCT/AGCT	2	1	0	0	0	0	0	0	0	0	3	0.2
AGGA/TCCT	1	1	1	1	1	0	0	0	0	0	5	0.3
AGGC/GCCT	5	0	0	0	0	0	0	0	0	0	5	0.3
ATGG/CCAT	5	0	0	0	0	0	0	0	0	0	5	0.3
CAAT/ATTG	2	0	0	0	0	0	0	0	0	0	2	0.1
CCCG/CGGG	4	0	0	0	0	0	0	0	0	0	4	0.2
CCTC/GAGG	7	2	0	0	0	0	0	0	0	0	9	0.5
CGCT/AGCG	2	0	0	0	0	0	0	0	0	0	2	0.1
TCTA/TAGA	1	1	0	0	0	0	0	0	0	0	2	0.1
Other tetra-repeats	9	1	0	0	0	0	1	0	0	0	11	0.6
ATGTA/TACAT	2	0	0	0	0	0	1	0	0	0	3	0.2
ATCCA/TGGAT	2	0	0	0	0	0	0	0	0	0	2	0.1
CCTTT/AAAGG	2	0	0	0	0	0	0	0	0	0	2	0.1
TCTCT/AGAGA	0	1	0	1	0	0	0	0	0	0	2	0.1
TCTCC/GGAGA	2	1	0	0	0	0	0	0	0	0	3	0.2
CTTTT/AAAAG	3	0	0	0	0	0	0	1	0	0	4	0.2
TCCCT/AGGGA	3	1	0	0	0	0	0	0	0	0	4	0.2
Other penta-repeats	16	2	0	1	1	0	2	0	0	0	22	1.2
Total	638	340	211	206	123	48	122	73	23	4	1,788	100

Table 2. Number and frequency of different SSR-repeat motifs identified in the analyzed 42,189 clusters from the SUCEST database.

(2.1%) were imperfect repeats with one or more interruptions in the run of repeats and 253 (17.6%) were compound repeats with adjacent tandem simple repeats of a different sequence, resulting in the total number of SSRs of 1,788 obtained.Analysis of SSR motifs in this study (Figure 1 and Table 2) revealed that the trinucleotide motifs were the most abundant type of SSRs found in the database searched (56.2%), followed by di(38.3%), tetra- (4%), and penta-nucleotide repeats (2.3%). The dominance of trinucleotide motifs in this study may be explained by the suppression of non-trinucleotide motifs in coding regions because of the risk of frame shift mutations that can occur when there is length variation in these motifs (Thiel et al., 2003; Varshney et al., 2005). Among the dinucleotide motif sequences, AG/CT motif was the most common (19.1%)

followed by AT/AT (7.6%) and AC/GT (7.0%) motifs, whereas CG/CG motif was the least common (3.8%).

Among the trinucleotide motifs sequences, the motif CGG/CCG was the most common (27.5%) followed by the motifs AGC/GCT (8.2%) and CCT/AGG (7.4%) while the motif ACT/AGT was the least common (0.3%). However, the most common tetra- and pentanucleotide motif sequences were found in insig-nificant numbers (0.7 and 0.2%, respectively) due to the high cut-off used for mining of tetra- and pentanucleotide motifs.

Gene annotation and function of characterized EST-SSRs

Of 1,425 EST-SSRs, the BLAST2GO searches showed that 856 (60%) matched to genes of known functions at e values <10⁻⁶, while 222 (16%) and 342 (24%) had matched to hypothetical proteins and had no significant matches, respectively. To provide a general representation of the annotation, the Slim GO Classification was obtained for the whole set of EST-SSRs. Of the biological processes, 260, 172, 99, 99, 53, 45 and 29 EST-SSRs were related with cellular process, metabolic process, localization, establishment of localization, biological regulation, response to stimuli and developmental process, respectively. In the category cellular component, two main types were associated with cellular and organelle, 461 and 293, respectively. Under the category of molecular function, the vast majority of EST-SSRs were involved in catalytic activity and in binding activities, 132 and 130 respectively. Among the known function EST-SSRs, numerous EST sequences related to a wide range of proteins of interest (Supplementary Table 1) including enzymes involved in sugar metabolism, disease resistance related proteins, abiotic related proteins and growth regulatory proteins.

EST-SSR polymorphism and segregation analysis

Of the total 1,425 EST-SSRs identified, the selected 424 and 36 primer pairs were designed based on SSRs containing repeat patterns with $n \ge 8$ and on homology to genes of interest, respectively and then assayed to detect polymorphisms between the two parents, Phill6607 and S6. Four hundred and thirty-four (434) primer pairs (94.4%) successfully amplified either Phill6607 or S6 while 26 primer pairs completely failed to yield PCR products from both parents at various annealing temperatures. Of the total 460 primer pairs, 74 (16.1%) and 26 (5.7%) primers pairs failed to amplify S6 and Phill6607, respectively. Among the 434 working primer pairs, 424 produced PCR products at the expected sizes, while 20 primer pairs yielded larger PCR product size than expected from the EST sequence, likely due to the presence of small introns. The EST-SSR markers developed in this study were highly polymorphic between the parents and among 14 sugarcane genotypes (Fig 2a). The polymorphism assay revealed that 407 primer pairs (93.7%) were polymorphic between the two parents reflecting the fact that the alleles between the cultivated sugarcane 'Phil6607' and *S. spontaneum* are distinct. The dominant scoring of the SSR bands yielded 1, 256 and 1,115 total polymorphic bands corresponding to an average of 3.1 and 2.7 polymorphic bands per primer pair in Phill6607 and S6, respectively.

All 407 polymorphic primers were tested for the simplex marker segregation in the 10 randomly selected F₁ progenies generated from the interspecific hybridization between the two parents. The simplex mrkers and double simplex markers in pseudo testcross configuration were expected to flow 1:1 (fig 2b) and 3:1 segragation patterns in the f₁ progeny, respectively. All polymorphic primers generated 2,371 polymorphic markers (bands). Of the total polymorphic markers, 828 and 165 markers were putatively identified as simplex and double simplex corresponding to 2 and 0.4 markers per primer, respectively. Based on high polymorphism between the two parents and on homology to genes of interest, a subset of 212 primer pairs were selected from 407 polymorphic primers to determine informativeness of EST-SSR markers in 15 sugarcane. Characteristics, putative function and segregation pattern of the 212 EST-SSR markers are shown in Supplementary Table 1.

Comparing redundancy to other EST-SSR data mining works in sugarcane (Oliveira et al., 2007, 2009; Pinto et al., 2006; Silva, 2001) illustrates that of 212 primer pairs, 191 primer pairs are new EST-SSR markers developed from this study (Supplementary Table 2). The new EST-SSR primer pairs detected a total of 1,529 markers ranging from 2 to 21 with the average of 8 markers per locus. The mean of PIC determined from 191 primer pairs were similar to those obtained from a previous study (Pinto et al., 2006). The PIC values ranged from 0.12 to 0.93 (except five monomorphic loci) with a mean of 0.74. 426 and 333 markers were putatively identified as simplex in Phill6607 and S6, corresponding to 2.23 and 1.74 markers per primer, respectively, while 167 markers were identified as double simplex corresponding 0.87 markers per primer.

Genetic similarity

The similarity coefficient based on 1,743 polymorphic markers (alleles) scored from 212 primer pairs ranged from 0.56 to 0.80 with a mean of 0.72. Based on the marker data, the dendrogram generated with the UPGMA clustering method illustrates that the tested germplam were clearly resolved in two distinct clusters and one separated commercial cultivar on the level of similarity

Figure 2. The UPGMA dendrogram of the 13 sugarcane breeding lines and 2 cultivars based on 212 EST-SSR primer pairs. *S. spontaneum* (S6) was included as an out species.

coefficient 0.68 as expected of their pedigree (Figure 2). *S spontanuem* were included in the analysis as an out group and clearly differentiated from the sugarcane breeding lines and two commercial cultivars. TBY family and KU60-1 cultivar was grouped on the level of similarity coefficient of 0.72, while NRCT family was grouped in the same cluster on the level of similarity coefficient of 0.71. The dendrogram further validated the placement of the old commercial cultivar, Phil6607, as the most distant to the new breeding lines and the new commercial cultivar, KU60-1.

DISCUSSION

On the basic of the average length of 790 bp per EST sequence (data from Blast2Go), at least one SSR motif was found per 18.6 kb in the approximately 33.3 Mb ESTs that were searched. Data mining of EST-SSRs in cotton and wheat showed close values with one SSR for every 20.0 (Cardle et al., 2000) and 15.6 kb (Kantety et al., 2002), respectively. This value was lower than that of barley (1/6.3 kb; Thiel et al., 2003), soybean (1/7.4 kb; Cardle et al., 2000) coffee (1/1.56 kb; Aggarwal et al., 2007) tomato (1/11.1 kb; Gupta et al., 2003) Medicago truncatula (1/12 kb; Mun et al., 2006). However, the density of EST-SSRs in wheat (1/9.2 kb; Cardle et al., 2000) and M. truncatula (1/1.7kb; Gupta and Prasad, 2009) was varied in other studies. In sugarcane, a density of one SSR every 16.9 kb was estimated from a previous study (Pinto et al., 2004). The abundance level of EST-SSR may vary because of SSR search criteria. SSR mining tools and the size of the database searched (Varshney et al., 2005). In the present study, the parameters set for detection of di-, tri-, tetra-, and penta nucleotide motifs in SSRIT program were a minimum of 5 repeats, subsequently, the identified EST-SSRs were subjected to masking for interspersed repeats and low complexity DNA sequences using the Repeat Masker program whereas surveying EST containing SSRs in sugarcane from the previous study (Cordeiro et al., 2001; Pinto et al., 2004) used the BLASTn software to search for dinucleotide, trinucleotide, and tetranucleotide repeat patterns with $n \ge 7$, 5 and 3, respectively.

Di- and tri-nucleotide repeat motifs were mostly reported in plants, but the frequency of repeat motifs were different. Di-nucleotide repeat motifs were dominant in coffee (Aggarwal et al., 2007) apricot, peach (Jung et al., 2005) and Kiwi (Fraser et al., 2004). The analysis of our results revealed that the trinucleotide motifs were the leading repeat motif type of SSRs found in the database searched. This result is cosistent with previous research in sugarcane (Duarte Filho et al., 2010), and close evolutionary species such as in maize, rice, sorghum, wheat (Kantety et al., 2002), barley (Thiel et al., 2003), and oat (Becher, 2007). Based on the previous study (Pinto et al., 2004), tetra-nucleotide repeat motifs were reported to be the most abundant in sugarcane. This also verified a previous point of view that EST-SSR frequency was related to the search criteria (Aggarwal et al., 2007; Kantety et al., 2002; Pinto et al., 2004; Thiel et al., 2003).

Duarte Filho et al. (2010, Sugar Tech Volume 12, Number 2, 145-149). The result is very similar, were di-, tri- and tetracleotide is very similar with the presents here.

Earlier reports on the abundance of different SSR motifs in plant databases showed that AT motif was the most common repeat motif type (Lagercrantz et al.,

1993). Among the dinucleotide motif sequences in our sugarcane EST-SSRs, AG/CT motif was the most common (19.1%). This contrasts to the report of Pinto et al. (2004) in which, AT/AT motif was observed preferentially among dinucleotide motif sequences. The AG/CT motif was also the most frequently observed EST-SSRs in plants (Scott et al., 2000; Kantety et al., 2002; Gao et al., 2004; Thiel et al., 2003; Saha et al., 2004; Feng et al., 2009). Expressed sequences had shown a higher frequency of AG repeats than AT repeats (Morgante et al., 2002; Mun et al., 2006). A wide variety of tri-nucleotide repeat motifs were represented at high percentages. However, the repeat motif CCG/CGG was highly represented in monocots (Cho et al., 2000; Kantety et al., 2002; Thiel et al., 2003). This result is in agreement with our results and the result from the previous surveyed in SUCEST data base (Pinto et al., 2004). Rich GC content in rice was reported in the coding regions (Cho et al., 2000). The GC content was significantly higher in monocot species than in dicot species. Codon bias had been reported to correlate with GC content at the third codon position (Kawabe and Miyashita, 2003). This could be one of the reasons why CCG/CGG motifs are present at such high frequencies in EST collections of monocot species. This result (motifs rich in GC - CCG/GGC or GCG/CGC) is similar to Duarte Filho et al. (2010), where trinucleotidie rich in CG is most frequent in SUCEST, different to Pinto et al. (2004). You can improve your discussion, including this information about EST-SSR in SUCEST.

The result of transferability of EST-SSR markers developed from the present study indicated that the rate of amplification in the commercial cultivar (94.3%) was higher than that of its wild relative, S. spontaneum (83.9%), for the primer pairs which were designed from ESTs generated from commercial cultivars (Vettore et al., 2001) have a high homology sequence for annealing to the DNA template of the commercial cultivar. The failure of PCR amplification in both Saccharum species may be explained by the fact that primers extend across a splice site or that there are large introns in the genomic sequence. In the present study, the total of 460 and the subset new 191 EST-SSR primer pairs revealed that EST-SSRs were highly polymorphic between the two parents, the cultivated sugarcane and S. spontaneum and showed a high PIC (0.74) among sugarcane breeding lines determined in this study. The high PIC and the average number of alleles (8.8) showed close values to previous reports in analysis of EST-SSR informativeness (Oliveira et al., 2009; Pinto et al., 2006, 2004). The high percentage of polymorphism between the two parents is due to a different genome composition and a complex polyploid with different chromosome numbers between the cultivated sugarcane, Phil6607, (2n = 10 0-130 chromosomes) and S. spontaneum (2n = 40-128)chromosomes), S6, (Price, 1963). Owing to the high

ploidy number of sugarcane, most EST-SSRs yielded more than two PCR products which were assumed to be alleles. The multiple allele characteristic of SSR combined with the polyploidy nature of sugarcane, which resulted in the high PIC providing the capability of EST-SSR to create unique sugarcane fingerprints.

The new 191 EST-SSR primers generated the larger numbers of putative simplex markers (759 markers) both in Phill6607 and S6 as well as double simplex markers (167). As reflected by the much higher percentage (80%) of putative simplex markers, these types of markers represented alleles differed by the interspecific hybridization. In the case of crossing between two parents sharing alleles of heterozygous markers, the larger proportion of double simplex markers would be expected (Garcia et al., 2006). Although, double simplex markers are less informative than simplex markers (Maliepaard et al., 1998; Wu et al., 2000) double simplex markers can provide a locus connection between the mapping parents (Grattapaglia and Sederoff, 1994). Regarding both types of markers, these EST-SSR markers will be very useful for its potential to incorporate both improved and wild alleles in sugarcane linkage maps by using the simplex polymorphism approach (Wu et al., 1992) facilitating introgression favorable wild alleles with known function in sugarcane breeding programs.

The achievement of the sugarcane breeding program lies in the proper choice of parents based on genetic diversity. A cluster analysis of genetic relationships performed in sugarcane breeding lines and commercial cultivars using EST-SSR markers developed from the present study revealed two major groups of sugarcane breeding lines. This clustering result corresponded well to their known pedigree relationships and source of the breeding program. There are three main organizations in Thailand conducting research in sugarcane breeding, the Office of the Cane and Sugar Board (OCSB), the Department of Agriculture (DA), and Kasetsart University (KU), which have conducted breeding programs during the past 40 years in Thailand. Within the TBy breeding lines (including cv. KU60-1), all of them were derived from a cross between two parents from OCSB except TBy20-1455 and KU60-1 which one parent was the Thai major parent used in most breeding programs in Thailand. Therefore the clustering of TBv breeding lines and KU60-1 was due to the fact that their parental breeding lines are the same or are very close to each other in a breeding program. Although, the NRCT breeding lines involved germplasm from all three programs (Table 1), they were still grouped in the same cluster but separated from TBy breeding lines. The clustering of NRCT breeding lines was contributed by using common parents within them. Clearly, separation of the old cultivar, Phill6607, from the new breeding lines was due to dissimilarity of the parents used for breeding the cultivar, as compared to those used for generating

the new breeding lines. It should be noted that the genetic resources have been used repeatedly among the three breeding programs. Consequently, the sugarcane breeder should, in the future, carefully choose more distantly related clones for crossing in order to broaden genetic variation. The consequence of large genetic variation existing over the whole national crop would also reduce the genetic vulnerability to pests and disease of sugarcane cultivars used in commercial production. The main reason for the failure of base broadening programs is the inability to trace or follow the incorporated germplasm into the germplasm of the advanced breeding population through visual selection. EST-SSR markers developed from this study will help breeders to investigate germplasm for the selection of genetically distant parents used in future breeding, and for the selection of particular sugarcane genotypes based on higher variability among the progenies in order to broaden the gene pool in the breeding programs.

Our study also revealed a high similarity coefficient (0.70) among the two breeding line families, including Phill6607 and suggested that the Saccharum germplasm collection in the breeding programs presented a genetically narrow base. This result supports sveral reports of narrow genetic varition in sugarcane. Refferences to the narrow genetic base of sugarcane varieties are available from several regions, including commercial sugarcane clones from Brazil(Duarte Filho et al., 2010; Oliviera et al. 2009; Pinto et al. 2006)USA (Alwala et al. 2006; Pan 2006; Glynn et al. 2009) Mexico(Rodriguez et al. 2005) tropical and subtropical regions (Selvi al. 2003). An early report on the coefficient of parentage (Chang et al., 1991) of major sugarcane clones in Thailand revealed that the major ancestral S. officinarum clone in the pedigrees of the OCSB, DA, and KU cultivars was cv. Black Cheribon (Chatwachirawong and Srinives, 1999). For the Saccharum barberi, cv. Kansoer was the predominant genetic resource of OCSB and DA, whereas cv. Kansoer cv. Chunee predominated at KU (http:// and cropthai.ku.ac.th/coefparent/fracoef.htm). Consequently, the narrow genetic base of Thai sugarcane germplasm is descended primarily from the ancestral cultivar Black Cheribon contributing most germplasm to the improved cultivars developed by all three programs. Previous studies have also indicated that the genetic basis of modern hybrid sugarcane cultivars are essentially derivatives of no more than 15-20 nobilized cultivars (Berding and Roach, 1987; D'Hont et al., 1995; Ming et al., 2010). Since early interspecific hybridization between Saccharum officinarum and other species, mostly S. spontaneum, followed by a back-crossing process referred to as nobilization, was so successful in producing superior hybrid cultivars, they were selected and became the ancestry of most, if not all, modern cultivars grown in most countries today (Jackson, 2005). Consequently, a genetic bottleneck has occurred in

development of sugarcane. Utilization of wild species with known functional markers developed from this study to tag desirable and undesirable genes in *S. spontaneum* would be an effective way to change this situation to perform more effective introgression breeding for a shortand long-term breeding program.

ACKNWOLEDGEMENT

The authors gratefully acknowlege Dr. Sittichoke Tangpatronrang for his assistance with some parts of functional analysis. This was supported by grants from NATIONAL Centre for Genetic Engineering and Bioyechnology (BIOTEC), Thailand.

REFERENCES

- Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L (2007). Identification, characterization and utilization of ESTderived genic microsatellite markers for genome analyses of coffee and related species. Theor. Appl. Gene. 114: 359-372.
- Alkwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006). Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci. 46:448-455
- Andersen JR, Lubberstedt T (2003). Functional markers in plants. Trends in Plant Science 8: 554-560.
- Becher R (2007). EST-derived microsatellites as a rich source of molecular markers for oats. Plant Breed. 126: 274-278.
- Benbouza H, Jacquemin JM, Baudoin T, Mergeai G (2006). Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biol. Agron. Soc. Environ. 10: 77-81.
- Berding N, Roach B (eds) (1987). Germplasm collection, maintenance and use. Elsevier Press, Amsterdam.
- Botstein D, White RL, Skolnick M, Davis RW (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Gene. 32: 314-331.
- Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000). Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 156: 847-854.
- Chang HL, Fernando RL, Grossman M (1991). On the principle underlying the tabular method to compute coancestry. Theor. Appl. Genet. 81: 233-238.
- Chatwachirawong P, Srinives P (1999). Coefficient of parentage of major sugarcane clones in Thailand SABRAO J. Breed. Genet. 31: 51-57.
- Cho Y, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S, Parl W, Ayers N, Cartinhour S (2000). Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (*Oryza sativa* L.). Theor. Appl. Genet. 100: 713-722.
- Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21: 3674-3676.
- Cordeiro G, Casu R, McIntyre C, Manners J, Henry R (2001). Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci. 160: 1115-1123.
- D'Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995). Identification and characterisation of sugarcane intergeneric hybrids, *Saccharum officinarum x Erianthus arundinaceus*, with molecular markers and DNA in situ hybridisation. Theor. Appl. Genet. 91: 320-326.

- Duarte FL, Silva P, Santos J, Barbosa G, Ramalho-Neto C, Soares L, Andrade J, Almeida C (2010).genetic similarity among genotypes of sugarcane estimated by SSRand coefficient of parentage. Sugar Tech. 12: 145-149.
- Feng S, Li W, Huang H, Wang J, Wu Y (2009). Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (*Hevea brasiliensis*). Mol. Breed. 23: 85-97.
- Fraser LG, Harvey CF, Crowhurst RN, Silva HN (2004). EST-derived microsatellites from *Actinidia* species and their potential for mapping. Theor. Appl. Genet. 108: 1010-1016.
- Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004). One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor. Appl. Genet. 108: 1392-1400.
- Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, Silva JAG, Ulian EC, Figueira A, Souza AP (2006). Development of an integrated genetic map of a sugarcane (*Saccharum* spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor. Appl. Genet. 112: 298-314.
- Gawel N, Jarret R (1991). A Modified CTAB DNA Extraction Procedure for *Musa* and *Ipomoea*. Plant. Mol. Biol. Rep. 9: 262-266.
- Glynn NC, Mccorkle K, Comstock C (2009). Diversity among mainland USA sugarcane cultivars examined by SSR genotyping. J. Am Soc. Sugarcane Technol. 29:36-52
- Grattapaglia D, Sederoff R (1994). Genetic linkage laps of *Eucalyptus* grandis and *Eucalyptus urophylla* using a pseudo-testcross: Mapping strategy and RAPD Markers. Genetics, 137: 1121-1137.
- Gupta P, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H (2003). Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genomics, 270: 315-323.
- Gupta S, Prasad M (2009). Development and characterization of genic SSR markers in *Medicago truncatula* and their transferability in leguminous and non-leguminous species. Genome, 52: 761-771.
- Jaccard P (1908). Nouvelles reseachers surla distribution florale. Bull. Soc. Vaud.Sci.Nat. 44:223-270
- Jackson PA (2005). Breeding for improved sugar content in sugarcane. Field Crops Res. 92: 277-290.
- Jung S, Abbott A, Jesudurai C, Tomkins J, Main D (2005). Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct. Integr. Geno. 5: 136-143.
- Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002). Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48: 501-510.
- Kawabe A, Miyashita NT (2003). Patterns of codon usage bias in three dicot and four monocot plant species. Gene. Genet. Syst. 78: 343-352.
- Lagercrantz U, Ellegren H, Andersson L (1993). The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res. 21: 1111-1115.
- Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, Van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG,Den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998). Aligning male and female linkage maps of apple (*Malus pumila* Mill.) using multiallelic markers. Theor. Appl. Genet. 97: 60-73.
- Ming R, Moore PH, Wu K-K, D'Hont A, Glaszmann JC, Tew TL, Mirkov TE, Da Silva J, Jifon J, Rai M, Schnell RJ, Brumbley SM, Lakshmanan P, Comstock JC, Paterson AH (2010). Sugarcane Improvement through Breeding and Biotechnology. John Wiley & Sons, Inc.
- Morgante M, Hanafey M, Powell W (2002). Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat. Genet. 30: 194-200.

- Mun JH, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez A-M, Kiss GB, Roe B, Young ND, Cook DR (2006). Distribution of microsatellites in the genome of *Medicago truncatula*: A resource of genetic markers that integrate genetic and physical maps. Genetics, 172: 2541-2555.
- Oliveira K, Pinto L, Marconi T, Margarido G, Pastina M, Teixeira L, Figueira A, Ulian E, Garcia A, Souza A (2007). Functional integrated genetic linkage map based on EST-markers for a sugarcane (*Saccharum* spp.) commercial cross. Mol. Breed. 20: 189-208.
- Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC, Chabregas SM, Falco MC, Burnquist W, Garcia AAF, Souza AP (2009). Characterization of new polymorphic functional markers for sugarcane. Genome, 52: 191-209.
- Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, De Souza AP (2006). Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed. 125: 378-384.
- Pinto LR, Oliveira KM, Ulian EC, Garcia AAF, De Souza AP (2004). Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome, 47: 795-804.
- Price S (1963). Cytogenetics of modern sugar canes. Econ. Bot. 17: 97-105.
- Ritter E, Gebhardt C, Salamini F (1990). Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics, 125: 645-654.
- Rohlf FJ (1998). NTSYSpc: numerical taxonomy and multivariate analysis system, Exeter Software, Setauket, New York, 2: 02.
- Rodriguez H, Castillo M, Flores B (2005). Genetic diversity of the most important sugarcane cultivars in mexico. e-Gnosis (Online) 3(1).
- Rozen S, Skaletsky H (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386.
- Saha M, Mian M, Eujayl I, Zwonitzer J, Wang L, May D (2004). Tall fescue EST-SSR markers with transferability cross several grass species. Theor. Appl. Genet. 109: 783-791.
- Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000). Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet. 100: 723-726.
- Selvi A, Nair NV, Balasundaram N, Mohapatra T (2003). Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46:394-403.
- Silva JAGD (2001). Preliminary analysis of microsatellite markers derived from sugarcane expressed sequence tags (ESTs). Genet. Mol. Biol. 24: 155-159.
- Telles GP, Silva FRd (2001). Trimming and clustering sugarcane ESTs. Genet. Mol. Biol. 24: 17-23.
- Thiel T, Michalek W, Varshney R, Graner A (2003). Exploiting EST database for the development and characterization of gene derived SSR-markers in barley (*Hordeum vulgare* L.). Theor. Appl. Genet. 106: 411-422.
- Varshney R, Graner A, Sorrells M (2005). Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23: 48-55.
- Vettore AL, Silva FRd, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet. Mol. Biol. 24: 1-7.
- Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992). The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor. Appl. Genet. 83: 294-300.
- Wu RL, Han YF, Hu JJ, Fang JJ, Li L, Li ML, Zeng ZB (2000). An integrated genetic map of *Populus deltoides* based on amplified fragment length polymorphisms. Theor. Appl. Genet. 100: 1249-1256.
- Yan Q, Zhang Y, Li H, Wei C, Niu L, Guan S, Li S, Du L (2008). Identification of microsatellites in cattle unigenes. J. Genet. Genomics, 35: 261-266.

Supplemental Table 1. Functional annotation of 212 EST-SSR sequences.

S/N	Marker	Cluster	Motif	Forward primer	Reverse primer	Time (℃)	Expected
1	SEM1	SCEPB71008B02 g	(anc)10			56	215
2	SEM2	SCACAD1035E09 g	$(agc) = 10^{-10}$	ACACCGAGCTGTCCCCAT	GCATCTGATGAGCCTGTGAA	56	164
2	SEM7	SCAGI B2047G03 g	(tttc)15	GGAAGGTATGGGTGCTATGC		58	167
1	SEM11	SCAGBT20/1411 a	(ta)16			58	190
т 5	SEM13	SCREAM2022D09 a	(19)10 (naaa)11		CGCAGATCCTCTTGAACCTC	62	161
6	SEM14	SCBGAM1091405 g	(gaaa) 11 (ta)10(caa)5	GAGCAACGAGCTGAAAAGTG	TGTCCTGACCTAGGATGTGC	59	245
7	SEM15	SCBGL B1119D12 a	(ta) 10(cag) 3 (ta) 26(at) 5	TGTCCACAATTTTGGCTGAT	GTTGCTTGCCTGATCATTGT	56	240
, 8	SEM16	SCCCAD1003H03 g	(la)20(al)3	COTTOCTTOGCOTOTTOTOT	TECTEGTCECAGTACTTEAT	58	248
a	SEM10	SCCCCI /002408 g	(aag) 10	CAGCCCATTAACCAAGCAAT	GAAGCAGCTGTTGCTCACTG	58	18/
10	SEM20	SCCCCI 4004D08 g	(gea)5(caa)10 (ataga)12	CCGGCTGTGAAAATTAGGTT	TCGAATTGGTCAAGACTCTCC	58	219
11	SEM24	SCCCCI 4015G07 g	$(a(aga))^2$ (ct)10(ac)5	CAATTOGTOGCTTGTGTTTG		58	197
12	SEM27	SCCCCI 6001E08 a	(ag)16	AGGTCTCGGCACTTGGAGTA	GATCGATCCTCCTCTTTCC	62	172
13	SEM29	SCCCCI 6005E10 g	(ct)21(cca)7	GATCGATCCTCCCTCTTTCC	AGGTCTCGGCACTTGGAGTA	62	187
14	SEM36	SCCCI B1078G05.g	(ta)12	CCATGTGCAGCATTTAACAA	TGGACATGCTAATGACTACTGC	56	152
15	SEM37	SCCCI B1079D03 g	(a) 15	CTTCCTGCTTCGAACATTTG	ACGAGGTAGATCCCGAAGG	56	214
16	SEM38	SCCCLR1080G12.g	(ga)10	TGAATTGCACAAAACACCAA	GACGGTGTAAACAAGCTGTGA	55	249
17	SEM41	SCCCRT2001B06.g	(ag)24	CCCCCTTGACACCTCTGTAT	TAGAACGAACCAGACGACCA	59	248
18	SEM42	SCCCRZ2004G11.g	(aag)7(ta)15	GACTTCGGGAAGAAGGAGGT	ACCAAGCACATCCAGCAGTA	59	285
19	SEM46	SCCCST1002H09.a	(act)11	GCGGTCTTGTAGTGGTAGAGC	TGATCCTCCTGTTCCTCACA	59	232
20	SEM53	SCEPAM1020C01.g	(ct)20(ct)20	CCGCCTTCTCCTTAGTGACA	CCACAAGCCTAATACAGCTCAA	62	192
21	SEM55	SCEPAM2057B09.g	(ct)15(ct)5	ACGGCATCAGATTCAGATCA	ATGGCTTTCCATCTCGTGAC	56	277
22	SEM57	SCEPRT2048F09.g	(cag)11	TCCAGAAGTACGTGGAGACG	ACGACAGCAGGTCGAACAT	56	222
23	SEM58	SCEPSB1130G10.g	(cacta)15	CCAACCAACCTCGACATTCT	CCATGTGATCTGACCTGGTG	60	209
24	SEM60	SCEQAM1041B03.g	(ag)12	TGCTAACACATTTCAAGAAAGAGA	GATCCAATCCGAGGAAAAGT	58	155
25	SEM61	SCEQAM1041H02.g	(ct)12	GTTCAGAACACGTGCAGCAT	CACGCTTGACATGAGAGGAA	59	165
26	SEM63	SCEQHR1078A09.g	(ag)25	GGTCGGTGCTCTGTTCTTT	CCTGCAGCAGAGACGAGAT	59	197
27	SEM68	SCEQRT1032H07.g	(ta)6(ac)11(tc)6	CCCTGAGGTCTCTCTCCACT	TGCCATAGGACAAGAGTTTAACA	64	239
28	SEM72	SCEQSD2075F10.g	(ag)14	GAACCTTATCGGTAGCCTCCT	GAGCGCCATAGGAGAAGTG	58	158
29	SEM76	SCEZHR1048C09.g	(gata)14	ATATGCCATGCACGTGTGAC	CAATGTAACCATCGCAGCAT	58	190
30	SEM78	SCEZRT2023F09.g	(ggt)5(atag)14	GTGGTCGCAGACGAGGTC	CTCCGCATTAGCCATTTCC	58	222
31	SEM79	SCEZRT2024C04.g	(ac)13	GATGGAACAGATGCGACAAG	GTTCATCGTAACCTGCTGGA	58	207
32	SEM80	SCEZRZ3015G05.g	(ta)27	GCAGATGAGAGGGCAAAAGT	CGCCTGCAGATGAATCATAG	59	244
33	SEM82	SCEZRZ3017G04.g	(ga)12	AGTACAAGGCACAGCCAGAG	GGACATGAGGTACACCCAGA	62	197

34	SEM83	SCEZRZ3096G10.g	(atg)10	TCCTCCTCTTGTTGCAGTTG	GTCGTCGTCACGATCATCTC	58	184
35	SEM84	SCEZSB1094A08.g	(tc)10	TGTAGCAATTCCTTGCGTTG	CAACAAATACAATGCCAATCG	58	229
36	SEM85	SCJFAD1011F07.b	(ga)10(agag)5	CACCTAGTGAAAGGGGCAAA	CCTGAAGCCTTGGTAGCATC	59	242
37	SEM86	SCJFLR1035E04.g	(ga)10	CGAGAACTAGCATAGCACAAGA	AACAACTGGTGCAAGTCCAT	58	172
38	SEM90	SCJFRZ2010C01.g	(ag)17	CGTGGGCTAATACAGCTCAA	CCCACTGGCACAATCTTCTT	60	190
39	SEM92	SCJFSB1010B12.g	(tc)10	TGTGCCGTTGCCTAATAACA	GGCAAGCTTCCTCAGTTTCTT	56	209
40	SEM94	SCJFST1014E07.g	(tc)10	TTATCTCTTCCCTGCGGTCT	CTGGCTGGGGAGCAACTT	56	196
41	SEM97	SCJLLR1033A04.g	(cgt)10	TTTGGGGGTTCTTAGTCCAG	GAAGACAGTGGACGAGGTCA	59	233
42	SEM98	SCJLRT1019D02.g	(tg)15	GCCAGCAGAATGCTTAACAA	TCTTACTCTGTCCCCCAACC	58	233
43	SEM99	SCJLRT3076A02.g	(ta)12	TTACCTCCGGCAACGTTAAA	TGCAGGCATATGGTAGTCCA	56	175
44	SEM105	SCMCAM1100G01.g	(ctttt)18	AGGGGCCTCAAGTTGTTCTT	CGGTCTCATGGTCACCTTTT	58	220
45	SEM106	SCMCCL6027C07.g	(tc)24	AGGTTGCTGATGGTCCTCAC	CAAGAAGGGAAGCAGGGACT	62	197
46	SEM108	SCMCFL5008F03.g	(ag)10	CGACTTGTGTGGAGGTGAAA	TGGATCAATGTGAACAAAATCG	58	164
47	SEM110	SCMCRT2103A12.g	(at)12(tg)25(ccg)5	GTCTCCTCCTCAACCACTGC	GTGGGGTATGTAACCCATGC	62	202
48	SEM112	SCMCST1057D03.g	(tc)14	CCTTCTGCAGACGAGTTGAA	ACCTGACCAGCAAATCAACA	58	159
49	SEM113	SCPIRT3024F01.g	(ga)17(gga)5	TTCCGGTTTACCCTGCATAG	TTCCTCAGGGCCCTTTTATT	58	232
50	SEM117	SCQGLV1018G08.g	(at)41	GCGTGGCACTGACTACAAGT	CAATGTTCTGTGGTCTGCACT	56	246
51	SEM119	SCQSHR1020F04.g	(ct)16	CCGCGTGCTCTCTCTCTCT	ATTGCCATCACCTCATGCTT	56	206
52	SEM120	SCQSRT2032H08.g	(ccg)10	TAGCAGCTCGATTCACGATT	ATCCTAGTGTGGTGGGTGCT	58	176
53	SEM124	SCRFLB1055F01.g	(tcc)11	CCTTGATGTGCTTGACGAG	CCAACGAGCAAAAGTAAACG	56	270
54	SEM125	SCRFRT3058D07.g	(ct)16	TATTCTCTCCGGATCCCCTA	ATTCAAAGCGCAACACAGTC	58	160
55	SEM127	SCRLAD1139G03.g	(ag)23	GCAGGATAAGCTTGGCAGTT	CTCAAGGCAAGGAACGAATC	58	286
56	SEM131	SCRUFL4024B04.g	(ac)18(cgc)6	AAAGGAAAGCAAACCCAAGG	GCAGTCGTTGTCGTAGCAGA	58	245
57	SEM132	SCRURT2010E12.g	(ct)18	CCCTCCACCTCTTTGCTC	TAGAAAGACCTGCCCTCCTG	58	202
58	SEM136	SCSBAM1085C09.g	(cgg)12	CTCTGACCCGAGCAAAGG	GCCAATAAACAGCAGGGGTA	56	238
59	SEM140	SCSFAD1114H02.g	(at)23	GTGTTTTGGAGACCGTGTCA	CGATTGTTGCGCTGTACATC	58	127
60	SEM141	SCSFFL4083B01.g	(ac)16(ag)13(gt)5	ATCATCCACAGCTAGCAGCA	GGTTTTGCCTTGGTTTTTGA	56	174
61	SEM143	SCSFHR1045G08.g	(ct)9(ct)12	CCCCTCTCCCTCAGTCTTCT	CCATGCTGTCAGGATCCAC	60	279
62	SEM147	SCSGHR1070F11.g	(tcc)10	GCCTCTTCCTCCTCCACTC	GACGACCGTCCTTGTTGAG	58	250
63	SEM148	SCSGLR1025D03.g	(tca)12	GCTACCGGATGGATAAAAGC	CTGACCGAAATGATCAAGGA	56	245
64	SEM154	SCUTCL6035D02.g	(ct)14	ACCGAGGTAGGAGGGAGTGT	GCTCGCCATGAATAGAAAGG	58	219
65	SEM158	SCVPCL6044A06.g	(ag)12	GGATGGTTAAAGCGGAAACA	GGAAACAGTGTACGCCCAGT	56	151
66	SEM159	SCVPHR1089A09.g	(ag)13	CTGGTGGAATAACTCGCTGA	CTCAAGGCAAGAACGAATCC	60	279
67	SEM161	SCVPHR1094C01.g	(agg)10	GAACTGCTCACTGGCTCCTC	GTAGAAGTCCGTCGCCGTAA	58	186
68	SEM164	SCVPLR2019H04.g	(ag)18	GAGGTTATGGGGAAACCAGA	GATTGCAGCCGTAAACTTGA	56	211
69	SEM166	SCVPRT2080G09.g	(gt)22	AGCGCATCTTGCTTATTTGA	ATGCATGATCATCGAGGAAG	56	171

70	SEM167	SCVPRT2083D03.g	(gt)30	CGGATCTTGGCTCCTTCTCT	AGCCTTGATTGGCAATGGTA	58	223
71	SEM168	SCVPRZ2037E02.g	(ct)11	AACGTCAGCCGCTACAACTT	CTTCCCTTTTGCGAAGAAAA	56	143
72	SEM174	SCQGFL3059G12.g	(ta)11	CTCACCGCAGCTCTTTTCT	CACAAGCTATGCGGTCAAAA	58	249
73	SEM176	SCRFFL1029H06.g	(cctc)5(ct)10	CGCCATAACCATAACCACAG	CCTCCCTCCGCTACTTCCTA	58	188
74	SEM179	SCSBFL1101G01.g	(aaag)10	TATTCCACCGGGAACAAGAA	GGGATTGTAGCGACGAGTTG	58	210
75	SEM180	SCSBFL1104E01.b	(ct)12(tgc)6	TTCCACATCAAGCAAGCAAG	ATGACATCAGGAGGGAGACC	58	206
76	SEM184	SCVPFL1073A11.g	(ga)10(ggc)7	ACCAACGCGACGAGAGAG	GCCTGAACTGGTCGTAGGTC	58	206
77	SEM189	SCJFAD1013E12.g	(agg)6(ggaa)8	GAACTGCTCACTGGCTCCTC	GTAGAAGTCCGTCGCCGTAA	59	209
78	SEM190	SCRLAD1098A04.g	(ct)9	CTAGCACGGCAATACAGGC	AGATCTGTTGGGTGCTCGTC	59	189
79	SEM191	SCRLAD1138A05.g	(gcc)8(cca)5	CCAGTCGCGATTCTTCCAC	AAGGGACGGGGAGAAAAATA	55	176
80	SEM195	SCSGAD1008F08.g	(ggc)9(gag)5	CTTCCCGTCGCTCTTACCT	CTCCTCCTCCTCCTCCAC	60	183
81	SEM199	SCEPAM1021B02.g	(tg)9	CTCTCGAGGAGGTGGATGAG	CTGCAAGTTTGTTGGCTGAA	56	237
82	SEM200	SCEPAM1050A03.g	(tc)9	CTGCAGGATCACCTGGAAC	TAAACCCACGCTGACAGACA	56	238
83	SEM203	SCEQAM1036D03.g	(cgc)6(cgc)8	GCGGCCTCATACGTGTAGAT	TCTCTTCCCCTCACCAGAAA	56	237
84	SEM206	SCVPAM1056A04.g	(tctt)9	CATGGTAGCTCCGCTTCTTC	GCGAGAAGCTAGGAAGCACA	59	197
85	SEM207	SCACAM2043G03.g	(gct)8	GGCACACCTCGAGAGACC	ACTCCTCCTCCTCGCTTAGG	60	151
86	SEM208	SCACAM2044B11.g	(ca)8(ac)5	TGAAGACGATGATGGGATGA	TCTGTTTTGCTCCTCCGTCT	56	302
87	SEM211	SCCCAM2001E04.g	(cgc)8	CGGTCGTCTCTTCCTCCTC	CTACTACCACCCGGACCAGA	59	212
88	SEM213	SCCCAM2C08B11.g	(tc)5(tc)5(ct)5(ct)6	CTCTCCGACTCGTCTTCCAC	GCGGACTGCAAAAGAGAGAT	56	241
89	SEM214	SCEQAM2037C11.g	(cag)8(cg)5	ATCGGCTCCAGTCAGAGAGA	CCTGGTGAAGGCTCATGATT	59	323
90	SEM215	SCEZAM2033H10.g	(tc)8	GCCGAAGAGGAATCTACGAG	GTTTGTCTTCCTCCCTGTGC	56	193
91	SEM217	SCEZAM2096F07.g	(ga)9	CACGGGGAGACGAGAGAC	CCAACAACAACCAGAATATCG	54	174
92	SEM219	SCMCAM2084A04.g	(cag)6(cag)5(gca)5(cag)5	AAGTACGGAGCGCAGTGTAG	ACCGCCTTGTACTCCAAATC	56	228
93	SEM220	SCMCAM2084F10.b	(at)8	AAGCTCCTTGCCTGCTACTC	CAAAGGGCATCCTTTCTGAT	55	218
94	SEM221	SCQGAM2028B01.g	(ccg)8	GCCTCTCTCTGCTCAGCCTA	CTCCTCATCTCTCGCCAAA	56	170
95	SEM223	SCSGAM2076E10.g	(tc)8	CACAGCACTTGCCAAGCTAA	AGTTTCACAAAGGGCGACTG	56	216
96	SEM227	SCCCCL3005D03.b	(ct)8	GCTACAGTGCCTCTCCCTCT	CTAGAAGCAGAAGTGGAGTGCT	59	287
97	SEM229	SCCCCL4007E05.g	(cga)9	AGAACCACAACCACCAGGAG	ACAGTTGAATAGGCCGGATG	58	343
98	SEM231	SCCCCL4013B10.g	(cgt)5(gcg)9(cg)5	CCGTTCTACACCTCCAACAT	GACCGTGACCATCTGCTG	57	426
99	SEM232	SCCCCL4014F09.g	(ga)8	CAACTCCAGCTCCAGTCTCC	CTTTTCGCGAAGTGAACACA	58	311
100	SEM233	SCCCCL4015B01.g	(tgt)8	TTGCTTGGGACAAAAGGCTA	ATCTTGCAAAGGAAGGAGCA	55	336
101	SEM234	SCACCL6009D08.g	(acc)8	GGACATGCTGCTCCCTACAT	AGGAGGACTGGTGGTTGAGG	60	211
102	SEM235	SCACCL6010C05.g	(tc)9	CATCGGCTCATCATAACGAA	AGCTACTTCAGCCCCAAGTG	55	250
103	SEM236	SCCCCL6003H04.g	(ct)9	CCCTTTGCTTCCCCTTTACT	GAGGCGCCTTACTGTTCTTG	56	193
104	SEM237	SCEPCL6023G01.g	(gca)8	AGGGAAAGAGACGAGGGAGA	CGTATCTCCGACCACTCCAC	59	167
105	SEM238	SCEPCL6029D06.g	(gcg)8	CTCTCCCCCAACTCTCTCTG	TCCGACGTCAACGTCTCAG	59	176

Supplemental Table 1. Continue.

	106	SEM239	SCRLCL6030D09.g	(ct)9	CGAGAAACCGTGTCCCCTA	CCCTCTCCCTCTTCCTCCT	59	155
	107	SEM246	SCJLFL4097F08.b	(cg)5(gaaa)8	AATCGATCTTAGGGCCGGTA	ACGCCGACGAGTGAGGAC	58	276
	108	SEM250	SCRLFL4109G12.g	(ga)8	ACGACTGTTTGTTCGTGCTC	TTCAAAGGGGCTATCTTGCT	55	233
	109	SEM254	SCBGFL5080G03.g	(cgg)8	ACCTTACAGAGCCCACTGCT	TCGCGATAATGAGATTGAGC	59	152
	110	SEM255	SCCCFL5062D10.g	(ag)8	CGGCGTCCACTGAAAGAG	CAGCCTCGAGTTGGGATG	56	178
	111	SEM257	SCEZFL5084A01.g	(tg)8	TGCTGGAGACGGAGTAGCTT	ATCAGGCAAGCACACAATCA	57	159
	112	SEM258	SCEZFL5091D04.g	(cac)9	GGAAGAGGAGGCTTCGAGAT	CTGGATAATCACGCCCAAAT	55	343
	113	SEM261	SCAGFL8042E05.g	(cgg)8	CCATCCATCCTCTCATCTCC	AAGAGTGCTTGAGCGGATCT	56	187
	114	SEM263	SCRLFL8053B05.g	(gga)5(gca)8	AGCCTCTGACGCTAAGATCC	CACACGCTGCAGATGTTGTT	56	208
	115	SEM265	SCAGHR1018C11.g	(cca)8	ACACTAGCTAGCCAGCCACA	GAAGCGAGGCTATGGCTATG	57	163
	116	SEM271	SCJFHR1034E09.g	(ccg)9	AGCAGATTCACTTCGCCACT	CGATGAGCTTGGAGAGGAG	55	157
	117	SEM273	SCQSHR1022B03.g	(cat)9	TTTCTTTTCGTCACACCCAAT	ACTCCCGTCACTCACCTGAC	55	180
	118	SEM275	SCRUHR1074E09.g	(gag)9	TCTCATCGGATTCACACACA	GGGCAGCTTCGTAATGGT	55	242
	119	SEM276	SCSFHR1043F12.g	(tg)5(tg)8(ag)5	AACCCGTTCTTCTTCCCCTA	CAGAGGGAGATTTGCCATGT	55	241
	120	SEM279	SCVPHR1092G06.g	(gt)8	AACCTAAACGACGACGATGG	AGCGAGGAAACGTCGTACAT	58	343
	121	SEM280	SCCCLB1002D05.g	(ac)5(tac)8(ct)7(act)5	ATGGAGCTCCGTCTTCTTGT	AGTACCGTAGTTGGGGGTTG	54	222
	122	SEM282	SCQGLB1038F11.g	(gcc)9	GAACCTCGCAGTCTTCACAA	CACTACCTGCCTTTCTCTCG	56	191
	123	SEM285	SCVPLB1020B05.g	(gcc)9	TCCTTGAACCTCGCAGTCTT	CTACCTGCCTCTCTCGTTCC	54	192
	124	SEM287	SCRULB2062C01.b	(ac)5(ac)9	CCAATTCAACAAGCATCGAG	GGGAGGACATGAAGTCTGGT	59	187
	125	SEM288	SCACLR1057E07.g	(ga)8(gct)5(ctg)7	TCCGATCACAATCACAGACC	GCTGCAGCAGATGACAAACT	58	227
	126	SEM290	SCBGLR1002F11.g	(cgc)9	AAACGCAAACCCTTATCTCG	GCTTGGAGGTCACCTTCTTC	55	250
	127	SEM294	SCCCLR1066D07.g	(cca)5(ccg)8	CCATACCCTGTACCGTACCC	GATGCTTGCATTCATCCTTG	55	184
	128	SEM295	SCCCLR1066F12.g	(tc)8	CACCTCCCAGACTCTTCTCC	GTGACACCATGGTCCTGAAG	56	176
	129	SEM297	SCCCLR1075D10.g	(cgc)8(cac)6	CACCAAACAGACTCGCATTT	CGGATCGAACTCTGTGACAT	54	214
	130	SEM298	SCCCLR1076A04.g	(ca)8	ACGCGAGAGGGGAGAGAGATA	GTCAGCAGCACGAACAGC	59	163
	131	SEM302	SCEPLR1008H10.g	(ggc)5(cgg)8	GCGGTTTCTTGTTTTCCTTC	ACCACGACCTCGATCTCAAC	56	282
	132	SEM303	SCEPLR1030D11.g	(agg)8	CGAAAACCCTCAAACCCTAA	CTCCTCTAGCTTCCGCTTGT	55	193
	133	SEM306	SCJFLR1013A08.g	(cag)8(cag)9	ACCACCAATACCACCACCAC	TCGACGTTGGACTTGAGAAG	56	247
	134	SEM307	SCJFLR1074A10.g	(ac)5(ca)9(ag)7	CAAACTTTTGCCCGATAGGT	CGGAGCATACCAAGTGAAGA	54	244
	135	SEM308	SCJLLR1101F02.g	(gt)8	TCTCGACTCCCCTAATCACC	CGGACAGAAAGATCGCAGTA	55	242
	136	SEM310	SCQGLR1019C10.g	(ga)8	AAGAAACCAACCCTCAAAGC	GTAGGGTAGCGCTGGGTAAT	55	230
	137	SEM313	SCSGLR1084A02.g	(gcg)9	GAGGGAACACATCCCTTCTC	GCCGTAGATGAAGACCTCCT	56	211
	138	SEM314	SCVPLR1049G12.g	(ct)8(ct)5(cgc)7	GAATATAACCGCCACCTTGC	TGGCTTTCCATCTCGTGACT	58	250
	139	SEM315	SCACLR2007A01.g	(ca)5(ag)9	GAGGTCCTGGGAGAGACAGA	GTCTGGCCCGTAAGCTGT	60	152
	140	SEM319	SCAGLR2026C05.g	(cgc)8	ATCGTCATCGCAAAATGC	CAACCGGAGGCACTGAGTA	56	150
_	141	SEM320	SCCCLR2002F05.g	(ag)9(ag)7	GAGGCAGCTCGACGACAC	GTCAGCTCCGCTCCTGCT	62	111

	142	SEM321	SCQGLR2032D06.g	(ga)8(gc)5	GTCCGTCTCCACTCGAAAAC	GCGGTTGAGGTCGAGGTAG	59	222
	143	SEM327	SCCCRT1001G10.g	(cct)8	CTCCCCTCTCGCTCATCA	AGGTTGACGATGGTGGTGAC	59	196
	144	SEM328	SCCCRT1003H03.g	(ct)16	TCTTGCCTGTTCGTCTTCCT	ATTCCGATTCCGATTCCAAC	55	239
	145	SEM329	SCEQRT1025C10.g	(cgg)8	CACCCAGCTCAAGTACAGCA	GCCTGTAAAAGCCTCCTGTG	59	222
	146	SEM332	SCJFRT1009B09.g	(ggc)8	CCGCAAGGAAGAACACCTT	GCAGTGGAAGTCGACGTAGG	56	232
	147	SEM336	SCJLRT1006C08.g	(at)5(aag)8	GCCAGGGTTCTTCAAGTGAT	TTCGTCATAGCCATCGTCAT	55	155
	148	SEM337	SCJLRT1013F12.g	(ga)8	AGCAATGGTACGCACAAGAG	TTGCTAGTCGTCGTTCTTGG	55	202
	149	SEM338	SCJLRT1018G02.g	(ga)8	GATCGGATCGAGAGGAGTTTT	ATACGACGAGGACGAAGTGG	56	216
	150	SEM339	SCJLRT1019C06.g	(ag)8	AAGCGAGCGTACACCAAATC	ACGGCTCAGATGGTTGAGAG	58	163
	151	SEM341	SCAGRT2041D09.g	(cgg)8	GTGGTTTGAGTACGCTCGTG	AGAGGGATGGCAGTATCCAG	56	249
	152	SEM344	SCEPRT2047A05.g	(ct)15	CGTGCGCTCTCTCTCTCTCT	ATTTTGAGATGGCTGCATCA	57	171
	153	SEM349	SCEQRT2099E08.g	(gca)8	CGAGAGGCCTTCTCTCTCTG	CGCTGACGTAGTCCTGGTAG	59	180
	154	SEM350	SCJFRT2057F04.g	(gca)9	CCAATGGAGACGACACTCCT	GCGGACGTAGATGGAGAAGA	59	228
	155	SEM351	SCMCRT2085E08.g	(tg)8	CGACTGTGGGAGGAGTTTGT	TTGCAGCAGTTGCTAGCTGT	57	119
	156	SEM353	SCQSRT2033C08.g	(ttg)9	TTGCTTCTGTTGGGTTTCAA	TGGTTAAGGTTTGTCGGTGA	54	191
	157	SEM355	SCSFRT2067E08.g	(ag)8	ACCAAATCCAAACACAGCAG	CGATGGTTGAGAGCTTGTGT	57	144
	158	SEM358	SCAGRT3048C12.g	(gaa)9	CTGGCCTCAAGAGGAAACTG	ACCAACCTCTTGACCAGCAC	59	124
	159	SEM361	SCCCRT3001D09.g	(ct)9	GTAGCCGTGGAGCATGAAGT	CTGCTGCCATTAGGAGCAAT	59	173
	160	SEM366	SCBFRZ2045C02.g	(ca)9	CCACCTCTTCTGCCAAGAAC	CATCTTAAACTCCGGTCCACA	55	167
	161	SEM367	SCCCRZ2001C02.g	(ag)8	AGTCAGCATCCATCCAGTCC	ATTTCTCCTGCCCTCCTCTC	59	196
	162	SEM368	SCCCRZ2004C05.g	(gcg)9	AAACCCTCGCCTCCGATT	CCCAATGGTACCAGCAGAGT	59	241
	163	SEM369	SCJFRZ2015A10.g	(ga)8	CGCTTCCATATCTTCTTCTTGG	TGACTCTCCGGTCCCTACAC	55	123
	164	SEM371	SCJFRZ2034B06.g	(tg)9	GGAGAAGCATTTCAGCAACC	CCCGCTTTTCCTCTTTCTTT	54	238
	165	SEM372	SCVPRZ2036E01.g	(at)8	GCCAAGCTAAATAGCTGCTG	ACCACCGTTTCTTTCCTGAC	57	205
	166	SEM373	SCVPRZ2038E05.g	(ccg)8	GCGACCAAATCTGCCGTAT	CATGTAGTCGAGCGCAGAGA	58	189
	167	SEM374	SCCCRZ3003B01.g	(ag)9	GCCTCCTCCCTCCTCTTCTA	GACTGGCTCGGAAACCCTA	59	141
	168	SEM375	SCEPRZ3128D05.g	(ct)6(tc)9	ATGGAGGCTCGTTGTCTTTG	CCGTAATCGCCTCCACTAAA	55	174
	169	SEM377	SCEQRZ3020E12.g	(gcg)8	GGAGAGGACGAAACCCTAGC	CGCATTGAACGCAGTTTCTA	55	233
	170	SEM379	SCJFRZ3C03A08.b	(ctgtg)9	ACGAGGCCACCATAGAACAT	GCACAAGGTGATTGTGCTGT	56	221
	171	SEM384	SCUTRZ3103F01.g	(cgg)9	TAGTAGCAAGCGAGGCGATA	GTCTGTTGCCTTTGATCGTG	55	228
	172	SEM390	SCSGSB1005B12.g	(ag)9	GGGGAAGTAAGTCTCAGGTCA	GCCACCACCTCCATTATCTT	57	116
	173	SEM391	SCUTSB1033C02.g	(ag)8	GTTCAGACTCGCGTGTTTTT	GCTGAGAACCCTTCAGCTCT	55	104
	174	SEM392	SCUTSB1075H09.g	(ta)8	TCATGCTCACCAGCAAAGAC	TCCCGATCAGTGTGTAGACG	55	234
	175	SEM398	SCEPSD1006D03.g	(ta)9	CGTGCAAGCTCCAATATGAT	TGCCACTGTATAGCAGCGTA	54	184
	176	SEM400	SCEZSD1081A02.g	(ccg)8	CAGCTCATCCTCGTCAACCT	CTCCTCTGCTCCTTGTTGCT	59	225
-	177	SEM401	SCMCSD1059G09.g	(ct)9	GCTCCATTCATTTCCTCCTC	TTCGATCGATTGATGGTTGA	53	111

	178	SEM403	SCEQSD2077B12.g	(cga)8	CCTGCATCAACCTCTCCAC	GAAGGCGAGAGAGAAGATCG	55	242
	179	SEM407	SCCCST1006B01.g	(cga)8	GCGAAACTAGCGCTGCTAAA	GGAGGTTCGGGTACGAGTC	58	295
	180	SEM408	SCJFST1048G04.g	(ga)9	CAGAGCCAGCCAGGTAAAAG	TCATCGTGTGCTGCTGGT	58	228
	181	SEM412	SCJLST1022C09.g	(ct)8(ga)7	CAAGGCTGCTTCTGGTGTC	CCTCTTTGGGTTCTCTGCTC	58	246
	182	SEM415	SCMCST1050H06.g	(tc)8	CAGCAGACGAGACGAGAGAG	AGGGTGATGAAGGGAATGAG	56	163
	183	SEM417	SCQGST1032E05.g	(agga)9	GTCTCCTCCCCCTCCTCTC	AGAAGGAGTCGCTCATCTCG	60	167
	184	SEM418	SCQGST1032G11.g	(gt)8	CGGACGTCTCATGTTCTTTG	CAGTGTCCAGTGCAAGTTCC	55	244
	185	SEM419	SCSFST1066E06.g	(gcc)8	TGCGTGGTTGATTGAAGAAG	AGAAGCCTCTTCTGCTGCTG	60	199
	186	SEM421	SCSGST1069F04.g	(gga)5(ctc)8	CACCCTGCTGGTCTCCTC	TCGACGTCGTGTAGTGAACC	59	170
	187	SEM422	SCSGST1072B03.g	(ag)8	GAAGAGTGGGGACGTCTCAG	GCCAGAGGATGTGGTAGAGG	59	199
	188	SEM425	SCSFAD1070E12.g	(gcc)5	GTGCCACCAGCAGCAAT	TCTCGTAGCTGCTCGACTTC	56	244
	189	SEM426	SCVPAM1059C01.g	(at)5	TCGAGAGCGGTTTCATCTTT	CTTTCCTGTCAGCCAAGTGA	56	471
	190	SEM427	SCSBFL1105H11.b	(ca)6	AAGTAGCGGAAGCATTAGTTCA	CCAAGTTCCTCCTCACCAGTA	57	277
	191	SEM428	SCSGLV1008C05.g	(cg)7	CAGGAAGAAACAGTAGGAAGCA	AGGTACTTGGCGGTCTTGAT	57	178
	192	SEM430	SCRUSB1064F09.g	(cgg)5	TCCGACTACCTCAAGTGCAAG	GACGGCATCTTCTTCTTCTCC	55	224
	193	SEM432	SCJLST1019B07.g	(gc)6	CGCGTCCGTAGATTAGTAGCTC	AGCGAGTAGATGTTGATGACCC	56	195
	194	SEM433	SCSBST3094H07.g	(cga)6	GACACGCCCAAAGGAAAAG	GAGATCCGGACACACATGG	54	245
	195	SEM434	SCEZLB1007E12.g	(ta)7	TTCTTGCTTCTTTCTTTCCGTC	TCAAATCGTGCTTGCTTGAG	52	236
	196	SEM435	SCQGLR1041A05.g	(ga)5	AGGCTGAGAGAGCAAAGAAAGA	CCTAGGATCCTTCGGGTTTC	55	164
	197	SEM436	SCJLRT1021D04.g	(tcc)5	GGTCCCATACATAACACAAGCA	TGCATGAAGAAGCTCAGGTG	57	248
	198	SEM437	SCQSRT2031C10.g	(tc)5	CCTGGTTCCTGCACTTGTCT	CATCACTTGCCATCTGCATT	57	217
	199	SEM439	SCACSB1117C07.g	(cgg)6	CGTCAAGCTGTAGTCCGAGAG	CTCGTCCCAGACCAGGAG	59	197
	200	SEM440	SCACSD1018E05.g	(gac)5	AGCAACCTAATCACAGCAACAA	CCATCATCCGATCATCCTTC	56	229
	201	SEM442	SCMCST1057C10.g	(gct)5	CATTTATTTGCCACCTAGAAGGG	AAACAGAAACCGGACAGCAC	56	195
	202	SEM443	SCRLAD1043B06.g	(ggt)7	GGAATGGGAACAGCCACTAAC	AAGAAGGCTATCGAGGTGGG	55	323
	203	SEM444	SCBGAD1027C03.g	(ggc)7	CACGGTTCTCCTGCTGAAAG	GACGGGGTTGTTGAAGGTG	55	313
	204	SEM446	SCCCCL3001D10.b	(ccg)5	GAGCAGTCCCTTGCCATGT	GCCGTCGAGTACACCGTC	59	389
	205	SEM447	SCEZFL5083C02.g	(gc)5	TGAGTTCAGTTCCTTCCCC	AGAACTCCAAGGAGCAGCAG	56	300
	206	SEM449	SCEZLB1006B07.g	(gcc)5	TGGTGTGAGTTAGTGCCTGAGT	TAGAAGGTGTTGATGATGAGCG	55	265
	207	SEM450	SCEZLB1007E12.g	(ta)7	TTCTTGCTTCTTTCTTTCCGTC	AGATGAACACATAGTTGCACCG	56	189
	208	SEM453	SCBFRZ2045E11.g	(ggc)5	AGCGACATGAGCTACCGTCT	TAGTACCGCGACAGACCTTTCT	58	287
	209	SEM454	SCSBRZ3122D09.g	(gga)6	GTAACTAGCAGCAACCCTAGCC	ATCCTCTTTTGCCTCCCCT	55	387
	210	SEM456	AY302083	(tgc)6	TCGTCCTACAACCACGACTACA	GAGAGGCAAGCAAGGAAAGAT	56	164
	211	SEST3	SCSFSB1097B02.g	(ta)8	CCCCGAAGATCAAGGATAGG	CGCATCTCAAATGGGAAAAT	56	413
_	212	SEST4	SCRLAD1040D08.g	(at)5	CAGGCACTGATGTCATGGAT	GAACTACACTCGCCGCTCAC	56	313

Supplimentary Table 1. Contd.

C/N	Morkor		E voluo		Allele	Mark	er number	Segre	gation ratio
3/IN	ivial kei	BLASI	E-value	FIC	number	S6	Phil6607	1:1	3:1
1	SEM1	hypothetical protein	3.0E-34	0.64	9	1	6	6	1
2	SEM2	glycosyl hydrolase family protein 17	6.0E-19	0.9	7	1	3	3	1
3	SEM7	Hit not found		0.61	8	1	5	5	0
4	SEM11	hypothetical protein OsJ_018777	1.0E-11	0.93	11	2	7	6	1
5	SEM13	lysine decarboxylase-like protein	3.0E-50	0.68	7	2	2	4	0
6	SEM14	Hit not found		0.83	10	4	3	5	1
7	SEM15	Hit not found		0.45	5	1	1	2	0
8	SEM16	harpin-induced protein 1 family (HIN1)-like	5.0E-14	0.91	3	1	0	0	0
9	SEM19	ARFE_ORYSJAuxin response factor 5	1.0E-177	0.86	13	2	7	7	1
10	SEM20	NADH-plastoquinone oxidoreductase subunit K	1.0E-100	0	6	2	3	4	0
11	SEM24	Hit not found		0	9	1	5	5	0
12	SEM27	mediator complex subunit SOH1	3.0E-54	0.9	14	3	7	8	0
13	SEM29	Probable mediator complex subunit SOH1	0.42	0.92	12	3	6	8	1
14	SEM36	Hit not found		0.69	5	1	4	3	0
15	SEM37	unknown protein	1.0E-30	0.88	7	2	4	5	1
16	SEM38	WD-repeat containing protein	0	0.9	4	1	4	1	1
17	SEM41	Hit not found		0.85	13	8	4	5	1
18	SEM42	hypothetical protein	2.0E-18	0.88	6	1	3	2	0
19	SEM46	pi starvation-induced protein	588	0.87	7	1	3	1	0
20	SEM53	hypothetical protein OsJ_026388	2.0E-18	0.77	10	1	7	6	0
21	SEM55	zinc transporter	1.0E-49	0.73	6	2	1	1	0
22	SEM57	Hit not found		0.91	11	2	8	6	0
23	SEM58	sugar-starvation induced protein	0.001	0.84	9	5	5	5	0
24	SEM60	unfertilized embryo sac 16	1.0E-53	0.86	8	2	4	3	2
25	SEM61	zinc-finger protein	1.0E-11	0.72	12	6	2	7	1
26	SEM63	Hit not found		0.12	9	3	1	1	1
27	SEM68	Hit not found		0.7	5	6	2	4	1
28	SEM72	30S ribosomal protein S17, chloroplast precursor	0.081	0.31	4	2	1	3	1
29	SEM76	cysteine proteinase	3.0E-53	0.92	15	4	9	0	0
30	SEM78	ubiquitin-protein ligase-like	4.0E-15	0	13	2	5	3	3
31	SEM79	Nitrilase-associated protein	1.0E-11	0.91	7	3	2	1	1
32	SEM80	heavy meromyosin-like	8.0E-19	0.92	5	1	1	1	0
33	SEM82	cbs domain-containing	6.0E-74	0.82	4	3	1	3	0
34	SEM83	Dof zinc finger protein MNB1A	5.0E-12	0.88	17	8	4	7	2

35	SEM84	Hit not found		0.91	10	2	2	4	0
36	SEM85	pectin-glucuronyltransferase	1.0E-37	0.91	4	1	2	0	1
37	SEM86	chitin-inducible gibberellin-responsive protein	1.0E-81	0.64	8	4	4	4	0
38	SEM90	hypothetical protein	9.0E-18	0.71	8	2	4	3	0
39	SEM92	bZIP transcription factor	7.0E-24	0.58	8	2	1	0	0
40	SEM94	Hit not found		0.82	6	0	3	2	1
41	SEM97	ankyrin-like protein	3.0E-17	0.83	17	0	2	0	1
42	SEM98	Hit not found		0.79	8	2	3	5	1
43	SEM99	Hit not found		0.9	11	1	3	2	0
44	SEM105	exocyst subunit EXO70 family protein	6.0E-46	0.92	10	2	2	3	0
45	SEM106	hypothetical protein	2.0E-10	0.91	5	2	2	3	0
46	SEM108	VP15	4.0E-30	0.66	7	3	5	2	1
47	SEM110	Cortical cell delineating protein precursor	3.0E-24	0.9	14	5	3	2	0
48	SEM112	S-adenosylmethionine decarboxylase	7.0E-31	0.92	8	3	3	6	0
49	SEM113	hypothetical protein	8.0E-39	0.92	11	6	3	5	2
50	SEM117	nuclease I	1.0E-71	0.76	6	2	1	2	0
51	SEM119	hypothetical protein Osl_018669	1.0E-35	0.41	7	3	1	3	1
52	SEM120	protein	1.0E-29	0.84	5	1	0	0	0
53	SEM124	bet v i allergen-like	4.0E-70	0.23	7	2	3	0	1
54	SEM125	hypothetical protein	1.0E-17	0.59	7	3	4	1	0
55	SEM127	Hit not found		0.92	7	2	1	3	0
56	SEM131	lipid transfer protein precursor	1.0E-28	0.85	4	4	4	3	0
57	SEM132	RRM-containing protein	1.0E-16	0.93	11	3	4	5	2
58	SEM136	Hit not found		0.93	6	2	2	3	1
59	SEM140	Hit not found		0.89	5	0	1	1	1
60	SEM141	GRC14_ORYSJPutative glutaredoxin-C14 precursor	1.0E-43	0.81	21	4	7	2	0
61	SEM143	Hit not found		0.74	3	5	4	7	0
62	SEM147	hypothetical protein OsJ_003463	1.0E-18	0.78	8	7	2	0	0
63	SEM148	Hit not found		0.91	4	3	1	2	0
64	SEM154	ribosomal protein L4/L1 family protein	8.0E-133	0.85	9	3	4	5	1
65	SEM158	Hit not found		0.72	10	2	5	5	1
66	SEM159	exhydrolase II	1.0E-18	0.91	10	4	2	4	0
67	SEM161	auxin efflux carrier	1.0E-37	0.68	6	6	2	6	0
68	SEM164	Hit not found		0.86	11	4	4	5	1
69	SEM166	Hit not found		0.62	12	5	3	4	0
70	SEM167	Hit not found		0.92	15	7	5	11	2

71	SEM168	glucanase	1.0E-42	0.5	7	3	3	4	0
72	SEM174	hypothetical protein	3.0E-05	0.2	4	6	3	2	0
73	SEM176	(DSRNA-BINDING PROTEIN 3); double-stranded RNA binding	1.0E-55	0.88	5	2	1	1	1
74	SEM179	receptor protein kinase PERK1	1.0E-50	0.89	6	4	1	2	0
75	SEM180	hypothetical protein Osl_012598	1.0E-12	0.58	8	2	3	4	1
76	SEM184	positive transcription elongation factor/ zinc ion binding	2.0E-46	0.92	6	1	4	3	0
77	SEM189	auxin efflux carrier	3.0E-62	0.91	15	0	3	2	2
78	SEM190	Hit not found		0.74	9	4	5	3	0
79	SEM191	Hit not found		0.61	4	1	2	1	0
80	SEM195	Hit not found		0.44	3	1	2	1	0
81	SEM199	hypothetical protein OsJ_007772	1.0E-29	0.66	11	3	7	3	0
82	SEM200	cytochrome p450	5.0E-66	0.9	8	2	4	0	2
83	SEM203	wd40 repeat protein	1.0E-171	0.79	5	0	5	0	0
84	SEM206	lysine decarboxylase-like protein	3.0E-86	0.86	12	3	2	5	1
85	SEM207	disease resistance protein	3.0E-104	0.72	5	0	4	0	1
86	SEM208	phytoene synthase	1.0E-76	0.83	9	1	7	7	1
87	SEM211	hypothetical protein Osl_020099	7.0E-38	0.5	5	2	4	1	0
88	SEM213	Hit not found		0.68	7	1	3	4	0
89	SEM214	Hit not found		0.87	4	2	2	1	0
90	SEM215	Hit not found		0.5	5	2	0	2	0
91	SEM217	hypothetical protein	3.0E-16	0.91	6	1	4	0	1
92	SEM219	zinc finger	1.0E-32	0.37	14	3	3	4	2
93	SEM220	Chitin-inducible gibberellin-responsive protein 1	2.0E-56	0.82	6	5	4	2	0
94	SEM221	calcium-responsive transcription coactivator	1.0E-54	0.92	17	4	1	5	1
95	SEM223	DNA-dependent RNA polymerase II	8.0E-24	0.81	14	8	9	4	0
96	SEM227	GT-2 factor	0.001	0.83	7	1	2	2	1
97	SEM229	diphosphate-fructose-6-phosphate 1-phosphotransferase	0	0.65	5	3	3	4	1
98	SEM231	lateral root primordia	3.0E-40	0.86	6	5	5	2	0
99	SEM232	ubiquitin C-terminal hydrolase	1.0E-101	0.9	9	0	3	2	1
100	SEM233	gene X-like protein	4.0E-49	0.77	6	0	6	1	0
101	SEM234	family transcription factor containing protein	6.0E-11	0.79	5	0	4	0	0
102	SEM235	Auxin-responsive GH3-like protein 1	5.0E-34	0.93	11	1	4	2	1
103	SEM236	S-receptor kinase homolog precursor-like	4.0E-04	0.87	5	2	3	2	0
104	SEM237	hypothetical protein	0.011	0.12	3	3	2	5	3
105	SEM238	protein kinase domain containing	5.0E-15	0.79	13	11	4	5	0
106	SEM239	CAD1 (constitutively activated cell death 1);oxidoreductase	3.0E-21	0.83	6	1	3	4	1

107 SEM246 hypothetical protein 5.5 0.64 8 3 4 2 0 108 SEM250 flavonol 4'-sulfotransferase 5.0E-13 0.62 4 4 0 2 0 109 SEM255 hypothetical protein Osl_008638 1.0E-16 0.64 9 5 4 0 0 111 SEM257 Hit not found 0.88 9 6 5 7 1 0 0 4 4 0 0 112 SEM256 hypothetical protein Osl_008782 1.0E-12 0.93 12 2 7 7 0 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>										
108 SEM250 flavonol 4'-sulfotransferase 5.0E-13 0.62 4 4 0 2 0 109 SEM254 uv-damaged dna-binding 3.0E-92 0.88 9 6 5 7 1 110 SEM255 hypothetical protein Osl_00838 1.0E-16 0.64 9 5 4 0 0 111 SEM255 Hit not found 0.89 4 0 4 2 1 0 112 SEM261 hypothetical protein 1.0E-16 0.61 7 1 5 3 0 114 SEM263 hypothetical protein 0.08782 1.0E-12 0.93 12 2 7 7 0 115 SEM265 liverleat whitefly-induced protein 9.0E-77 0.56 5 1 2 2 2 1 0 118 SEM275 iron deficiency protein lds3 3.0E-12 0.93 7 1 3 0 3 1 120 SEM279 phospholipid transfer protein 1.0E-19 0.81	107	SEM246	hypothetical protein	5.5	0.64	8	3	4	2	0
109 SEM254 uv-damaged dna-binding 3.0E-92 0.88 9 6 5 7 1 110 SEM255 hypothetical protein Osl_008838 1.0E-16 0.64 9 5 4 0 0 111 SEM257 Hit not found 0.89 4 0 4 2 1 0 112 SEM258 TPA_exp: GRP21 7.7 0.92 10 4 2 1 0 113 SEM261 hypothetical protein osl_008782 1.0E-12 0.93 12 2 7 7 0 116 SEM271 silverleaf whitefly-induced protein 1 9.0E-77 0.56 5 1 2 2 2 2 1 0 3	108	SEM250	flavonol 4'-sulfotransferase	5.0E-13	0.62	4	4	0	2	0
110 SEM255 hypothetical protein Osl_00838 1.0E-16 0.64 9 5 4 0 111 SEM257 Hit not found 0.89 4 0 4 0 112 SEM258 TPA_exp: GRP21 7.7 0.92 10 4 2 1 0 113 SEM261 hypothetical protein Osl_008782 1.0E-12 0.93 12 2 7 7 0 115 SEM263 Hit not found 0.85 6 0 2 0 0 116 SEM273 silverleaf whitefly-induced protein 1 9.0E-77 0.56 5 1 2 2 2 1 0 118 SEM275 iron deficiency protein lds3 3.0E-12 0.93 7 1 3 0 3 1 120 SEM279 phospholipid transfer protein 1.0E-19 0.81 10 3 2 0 0 121 SEM280 retrotransposon protein, putative, Ty1-copia subclass 1.0E-75 0.83 9 1 3 3 <	109	SEM254	uv-damaged dna-binding	3.0E-92	0.88	9	6	5	7	1
111 SEM258 Hit not found 0.89 4 0 4 4 0 112 SEM258 TPA_exp: GRP21 7.7 0.92 10 4 2 1 0 113 SEM261 hypothetical protein 1.0E-12 0.93 12 2 7 7 0 114 SEM265 Hit not found 0.85 6 0 2 0 0 115 SEM265 Hit not found 0.85 6 0 2 2 2 0 116 SEM275 indeferminate spikelet protein 1 9.0E-77 0.56 5 1 2 2 1 0 3 119 SEM276 indeferminate spikelet 1 3.0E-96 0.76 6 1 4 4 1 120 SEM279 phospholipid transfer protein 1.0E-19 0.81 10 3 3 1 122 SEM282 retrotransposon protein, putative, Ty1-copia subclass 1.0E-75 0.83 9 1 3 3 1 1 0	110	SEM255	hypothetical protein OsI_008838	1.0E-16	0.64	9	5	4	0	0
112 SEM258 TPA_exp: GRP21 7.7 0.92 10 4 2 1 0 113 SEM261 hypothetical protein 1.0E-08 0.61 7 1 5 3 0 114 SEM265 Hit not found 0.85 6 0 2 0 0 115 SEM265 Hit not found 0.85 6 0 2 2 2 117 SEM273 cdc2 protein kinases-like 1.0E-126 0.68 5 2 2 1 0 3 118 SEM276 indeterminate spikelet 1 3.0E-12 0.93 7 1 3 0 3 1 120 SEM276 indeterminate spikelet 1 3.0E-12 0.83 9 2 1 3 1 121 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 122 SEM285 renotransposon protein, putative, Ty1-copia subclass 1.0E-140 0.79 12 2 5 4 0	111	SEM257	Hit not found		0.89	4	0	4	4	0
113 SEM261 hypothetical protein 1.0E-08 0.61 7 1 5 3 0 114 SEM263 hypothetical protein Osl_008782 1.0E-12 0.93 12 2 7 7 0 115 SEM265 Hit not found 0.85 6 0 2 0 0 116 SEM271 silverleaf whitefly-induced protein 1 9.0E-77 0.56 5 1 2 2 2 1 0 118 SEM273 cdc2 protein kinases-like 1.0E-126 0.68 5 2 2 1 0 119 SEM275 indeferminate spikelet 1 3.0E-96 0.76 6 1 4 4 1 120 SEM279 phospholipid transfer protein 1.0E-19 0.81 10 3 2 0 0 121 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 1 0 0 0 0 0 0 0 0 0 0 0 <td>112</td> <td>SEM258</td> <td>TPA_exp: GRP21</td> <td>7.7</td> <td>0.92</td> <td>10</td> <td>4</td> <td>2</td> <td>1</td> <td>0</td>	112	SEM258	TPA_exp: GRP21	7.7	0.92	10	4	2	1	0
114 SEM263 hypothetical protein OsJ_008782 1.0E-12 0.93 12 2 7 7 0 115 SEM265 Hit not found 0.85 6 0 2 0 0 116 SEM271 silverleaf whitefly-induced protein 1 9.0E-77 0.56 5 1 2 2 1 0 118 SEM275 iron deficiency protein lds3 3.0E-12 0.93 7 1 3 0 3 119 SEM276 indeterminate spikelet 1 3.0E-96 0.76 6 1 4 4 1 120 SEM279 phospholipid transfer protein 1.0E-19 0.81 10 3 2 0 0 121 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 1 0 0 123 SEM285 retrotransposon protein, putative, Ty1-copia subclass 2.0E-75 0.91 5 1 1 0 0 124 SEM285 ring-P12 finger proteinexpressed 1.0E-126	113	SEM261	hypothetical protein	1.0E-08	0.61	7	1	5	3	0
115 SEM265 Hit not found 0.85 6 0 2 0 0 116 SEM271 silverleat whitefly-induced protein 1 9.0E-77 0.56 5 1 2 2 2 117 SEM273 cdc2 protein kinases-like 1.0E-77 0.56 5 1 2 2 1 0 118 SEM275 iron deficiency protein lds3 3.0E-12 0.93 7 1 3 0 3 119 SEM276 indeterminate spikelet 1 3.0E-96 0.76 6 1 4 4 1 120 SEM279 phospholipid transfer protein 1.0E-19 0.81 10 3 2 0 0 121 SEM280 retrotransposon protein, putative, Ty1-copia subclass 2.0E-75 0.83 9 1 3 3 1 1 0 0 123 SEM287 tranched-chain amino acid aminotransferase 9.0E-38 0.74 11 6 1 5 0 126 SEM290 Proteasome subunit alpha type 4-1	114	SEM263	hypothetical protein OsJ_008782	1.0E-12	0.93	12	2	7	7	0
116 SEM271 silverleaf whitefly-induced protein 1 9.0E-77 0.56 5 1 2 2 1 117 SEM273 cdc2 protein kinases-like 1.0E-126 0.88 5 2 2 1 0 118 SEM275 iron deficiency protein lds3 3.0E-12 0.93 7 1 3 0 3 119 SEM276 indeterminate spikelet 1 3.0E-96 0.76 6 1 4 4 1 120 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 122 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 123 SEM285 retrotransposon protein, putative, Ty1-copia subclass 2.0E-75 0.83 9 1 3 3 1 1 0 0 124 SEM285 retrotransposon protein, putative, Ty1-copia subclass 1.0E-140 0.79 12 2 5 4 0 124 SEM287 branched-chain amino acid aminotra	115	SEM265	Hit not found		0.85	6	0	2	0	0
117 SEM273 cdc2 protein kinases-like 1.0E-126 0.68 5 2 2 1 0 118 SEM275 iron deficiency protein lds3 3.0E-12 0.93 7 1 3 0 3 119 SEM276 indeterminate spikelet 1 3.0E-96 0.76 6 1 4 4 1 120 SEM279 phospholipid transfer protein 1.0E-19 0.81 10 3 2 0 0 121 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 122 SEM285 retrotransposon protein, putative, Ty1-copia subclass 2.0E-75 0.83 9 1 3 3 1 123 SEM287 branched-chain amino acid aminotransferase 9.0E-38 0.74 11 6 1 5 0 124 SEM280 Proteasome subunit alpha type 4-1 5.0E-80 0.89 13 3 1 1 1 1 0 0 2 1 0 0 2 1	116	SEM271	silverleaf whitefly-induced protein 1	9.0E-77	0.56	5	1	2	2	2
118 SEM275 iron deficiency protein Ids3 3.0E-12 0.93 7 1 3 0 3 119 SEM276 indeterminate spikelet 1 3.0E-96 0.76 6 1 4 4 1 120 SEM279 phospholipid transfer protein 1.0E-19 0.81 10 3 2 0 0 121 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 122 SEM285 retrotransposon protein, putative, Ty1-copia subclass 2.0E-75 0.83 9 1 3 3 1 123 SEM285 retrotransposon protein, putative, Ty1-copia subclass 1.0E-75 0.91 5 1 1 0 0 124 SEM287 branched-chain amino acid aminotransferase 9.0E-38 0.74 11 6 1 5 0 125 SEM288 ring-A2 finger proteinexpressed 1.0E-12 0.61 5 3 2 1 0 126 SEM290 Proteasome subunit alpha type 4-1 5.0E-80	117	SEM273	cdc2 protein kinases-like	1.0E-126	0.68	5	2	2	1	0
119 SEM276 indeterminate spikelet 1 3.0E-96 0.76 6 1 4 4 1 120 SEM279 phospholipid transfer protein 1.0E-19 0.81 10 3 2 0 0 121 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 122 SEM282 retrotransposon protein, putative, Ty1-copia subclass 2.0E-75 0.83 9 1 3 3 1 123 SEM285 retrotransposon protein, putative, Ty1-copia subclass 1.0E-75 0.91 5 1 1 0 0 124 SEM287 branched-chain amino acid aminotransferase 9.0E-38 0.74 11 6 1 5 0 125 SEM288 ring-h2 finger proteinexpressed 1.0E-140 0.79 12 2 5 4 0 126 SEM290 Proteasome subunit alpha type 4-1 5.0E-80 0.89 13 3 1 1 1 127 SEM294 Hypothetical protein OsJ_014087 1.0E-12<	118	SEM275	iron deficiency protein Ids3	3.0E-12	0.93	7	1	3	0	3
120 SEM279 phospholipid transfer protein 1.0E-19 0.81 10 3 2 0 0 121 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 122 SEM282 retrotransposon protein, putative, Ty1-copia subclass 2.0E-75 0.83 9 1 3 3 1 123 SEM285 retrotransposon protein, putative, Ty1-copia subclass 1.0E-75 0.91 5 1 1 0 0 124 SEM287 branched-chain amino acid aminotransferase 9.0E-38 0.74 11 6 1 5 0 125 SEM288 ring-h2 finger proteinexpressed 1.0E-140 0.79 12 2 5 4 0 126 SEM290 Proteasome subunit alpha type 4-1 5.0E-80 0.89 13 3 1 1 1 127 SEM294 hypothetical protein OSJ_014087 1.0E-12 0.61 5 3 2 1 0 128 SEM295 Hit not found 0.83 <td< td=""><td>119</td><td>SEM276</td><td>indeterminate spikelet 1</td><td>3.0E-96</td><td>0.76</td><td>6</td><td>1</td><td>4</td><td>4</td><td>1</td></td<>	119	SEM276	indeterminate spikelet 1	3.0E-96	0.76	6	1	4	4	1
121 SEM280 peroxidase atp8a 6.0E-147 0.89 9 2 1 3 1 122 SEM282 retrotransposon protein, putative, Ty1-copia subclass 2.0E-75 0.83 9 1 3 3 1 123 SEM285 retrotransposon protein, putative, Ty1-copia subclass 1.0E-75 0.91 5 1 1 0 0 124 SEM287 branched-chain amino acid aminotransferase 9.0E-38 0.74 11 6 1 5 0 125 SEM288 ring-h2 finger proteinexpressed 1.0E-140 0.79 12 2 5 4 0 126 SEM290 Proteasome subunit alpha type 4-1 5.0E-80 0.89 13 3 1 1 1 127 SEM297 g-patch domain containing 3.0E-104 0.87 11 0 6 3 2 1 0 128 SEM297 g-patch domain containing 3.0E-104 0.87 11 0 6 3 2 1 1 130 SEM302 <td>120</td> <td>SEM279</td> <td>phospholipid transfer protein</td> <td>1.0E-19</td> <td>0.81</td> <td>10</td> <td>3</td> <td>2</td> <td>0</td> <td>0</td>	120	SEM279	phospholipid transfer protein	1.0E-19	0.81	10	3	2	0	0
122 SEM282 retrotransposon protein, putative, Ty1-copia subclass 2.0E-75 0.83 9 1 3 3 1 123 SEM285 retrotransposon protein, putative, Ty1-copia subclass 1.0E-75 0.91 5 1 1 0 0 124 SEM287 branched-chain amino acid aminotransferase 9.0E-38 0.74 11 6 1 5 0 125 SEM288 ring-h2 finger proteinexpressed 1.0E-140 0.79 12 2 5 4 0 126 SEM290 Proteasome subunit alpha type 4-1 5.0E-80 0.89 13 3 1 1 1 1 127 SEM294 hypothetical protein OS_014087 1.0E-12 0.61 5 3 2 1 0 128 SEM295 Hit not found 0.88 7 1 3 0 0 129 SEM292 Hit not found 0.83 8 1 2 3 0 130 SEM303 hypothetical protein 8.0E-23 0.9 5 2 <td>121</td> <td>SEM280</td> <td>peroxidase atp8a</td> <td>6.0E-147</td> <td>0.89</td> <td>9</td> <td>2</td> <td>1</td> <td>3</td> <td>1</td>	121	SEM280	peroxidase atp8a	6.0E-147	0.89	9	2	1	3	1
123 SEM285 retrotransposon protein, putative, Ty1-copia subclass 1.0E-75 0.91 5 1 1 0 0 124 SEM287 branched-chain amino acid aminotransferase 9.0E-38 0.74 11 6 1 5 0 125 SEM288 ring-h2 finger proteinexpressed 1.0E-140 0.79 12 2 5 4 0 126 SEM290 Proteasome subunit alpha type 4-1 5.0E-80 0.89 13 3 1 1 1 127 SEM294 hypothetical protein OsJ_014087 1.0E-12 0.61 5 3 2 1 0 128 SEM297 g-patch domain containing 3.0E-104 0.87 11 0 6 3 2 130 SEM298 Hit not found 0.72 8 4 3 3 0 131 SEM302 hit not found 0.72 8 4 3 2 1 1 0 132 SEM303 hypothetical protein 8.0E-23 0.9 5 2	122	SEM282	retrotransposon protein, putative, Ty1-copia subclass	2.0E-75	0.83	9	1	3	3	1
124 SEM287 branched-chain amino acid aminotransferase 9.0E-38 0.74 11 6 1 5 0 125 SEM288 ring-h2 finger proteinexpressed 1.0E-140 0.79 12 2 5 4 0 126 SEM290 Proteasome subunit alpha type 4-1 5.0E-80 0.89 13 3 1 1 1 127 SEM294 hypothetical protein OsJ_014087 1.0E-12 0.61 5 3 2 1 0 128 SEM295 Hit not found 0.88 7 1 3 0 0 129 SEM297 g-patch domain containing 3.0E-104 0.87 11 0 6 3 2 130 SEM298 Hit not found 0.83 8 1 2 3 0 131 SEM302 Hit not found 0.72 8 4 3 3 0 133 SEM308 hypothetical protein 8.0E-23 0.9 5 2 1 1 0 133 SEM	123	SEM285	retrotransposon protein, putative, Ty1-copia subclass	1.0E-75	0.91	5	1	1	0	0
125 SEM288 ring-h2 finger proteinexpressed 1.0E-140 0.79 12 2 5 4 0 126 SEM290 Proteasome subunit alpha type 4-1 5.0E-80 0.89 13 3 1 1 1 127 SEM294 hypothetical protein OsJ_014087 1.0E-12 0.61 5 3 2 1 0 128 SEM295 Hit not found 0.88 7 1 3 0 0 129 SEM297 g-patch domain containing 3.0E-104 0.87 11 0 6 3 2 0 130 SEM298 Hit not found 0.83 8 1 2 3 0 131 SEM302 Hit not found 0.72 8 4 3 3 0 133 SEM303 hypothetical protein 8.0E-23 0.9 5 2 1 1 0 133 SEM306 ccr4-not transcription complex subunit 7 2.0E-14 0 6 3 2 1 1 134	124	SEM287	branched-chain amino acid aminotransferase	9.0E-38	0.74	11	6	1	5	0
126 SEM290 Proteasome subunit alpha type 4-1 5.0E-80 0.89 13 3 1 1 1 127 SEM294 hypothetical protein OsJ_014087 1.0E-12 0.61 5 3 2 1 0 128 SEM295 Hit not found 0.88 7 1 3 0 0 129 SEM297 g-patch domain containing 3.0E-104 0.87 11 0 6 3 2 130 SEM298 Hit not found 0.83 8 1 2 3 0 131 SEM302 Hit not found 0.72 8 4 3 3 0 132 SEM303 hypothetical protein 8.0E-23 0.9 5 2 1 1 0 133 SEM306 ccr4-not transcription complex subunit 7 2.0E-14 0 6 3 2 1 1 134 SEM307 Hit not found 0.77 7 0 4 2 1 135 SEM308 Hit not found 0	125	SEM288	ring-h2 finger proteinexpressed	1.0E-140	0.79	12	2	5	4	0
127 SEM294 hypothetical protein OsJ_014087 1.0E-12 0.61 5 3 2 1 0 128 SEM295 Hit not found 0.88 7 1 3 0 0 129 SEM297 g-patch domain containing 3.0E-104 0.87 11 0 6 3 2 130 SEM298 Hit not found 0.83 8 1 2 3 0 131 SEM302 Hit not found 0.72 8 4 3 3 0 132 SEM303 hypothetical protein 8.0E-23 0.9 5 2 1 1 0 133 SEM306 ccr4-not transcription complex subunit 7 2.0E-14 0 6 3 2 1 1 134 SEM307 Hit not found 0.77 7 0 4 2 1 135 SEM308 Hit not found 0.77 7 0 4 2 1 136 SEM310 Hit not found 0.89 10 6	126	SEM290	Proteasome subunit alpha type 4-1	5.0E-80	0.89	13	3	1	1	1
128 SEM295 Hit not found 0.88 7 1 3 0 0 129 SEM297 g-patch domain containing 3.0E-104 0.87 11 0 6 3 2 130 SEM298 Hit not found 0.83 8 1 2 3 0 131 SEM302 Hit not found 0.72 8 4 3 3 0 132 SEM303 hypothetical protein 8.0E-23 0.9 5 2 1 1 0 133 SEM306 ccr4-not transcription complex subunit 7 2.0E-14 0 6 3 2 1 1 0 133 SEM307 Hit not found 0.7 7 0 4 2 1 134 SEM308 Hit not found 0.93 5 2 5 7 2 136 SEM310 Hit not found 0.89 10 6 3 4 0 137 SEM313 bicoid-interacting 3 6.0E-52 0.9 6 3 </td <td>127</td> <td>SEM294</td> <td>hypothetical protein OsJ_014087</td> <td>1.0E-12</td> <td>0.61</td> <td>5</td> <td>3</td> <td>2</td> <td>1</td> <td>0</td>	127	SEM294	hypothetical protein OsJ_014087	1.0E-12	0.61	5	3	2	1	0
129 SEM297 g-patch domain containing 3.0E-104 0.87 11 0 6 3 2 130 SEM298 Hit not found 0.83 8 1 2 3 0 131 SEM302 Hit not found 0.72 8 4 3 3 0 132 SEM303 hypothetical protein 8.0E-23 0.9 5 2 1 1 0 133 SEM306 ccr4-not transcription complex subunit 7 2.0E-14 0 6 3 2 1 1 0 134 SEM307 Hit not found 0.77 7 0 4 2 1 135 SEM308 Hit not found 0.93 5 2 5 7 2 136 SEM310 Hit not found 0.89 10 6 3 4 0 137 SEM313 bicoid-interacting 3 6.0E-52 0.9 6 3 3 0 0 138 SEM314 zinc transporter 9.0E-56 0.83	128	SEM295	Hit not found		0.88	7	1	3	0	0
130 SEM298 Hit not found 0.83 8 1 2 3 0 131 SEM302 Hit not found 0.72 8 4 3 3 0 132 SEM303 hypothetical protein 8.0E-23 0.9 5 2 1 1 0 133 SEM306 ccr4-not transcription complex subunit 7 2.0E-14 0 6 3 2 1 1 0 134 SEM307 Hit not found 0.7 7 0 4 2 1 135 SEM308 Hit not found 0.93 5 2 5 7 2 136 SEM310 Hit not found 0.89 10 6 3 4 0 137 SEM313 bicoid-interacting 3 6.0E-52 0.9 6 3 3 0 0 138 SEM314 zinc transporter 9.0E-56 0.83 8 1 5 0 0 139 SEM315 membrane protein-like 1.0E-41 0.91	129	SEM297	g-patch domain containing	3.0E-104	0.87	11	0	6	3	2
131 SEM302 Hit not found 0.72 8 4 3 3 0 132 SEM303 hypothetical protein 8.0E-23 0.9 5 2 1 1 0 133 SEM306 ccr4-not transcription complex subunit 7 2.0E-14 0 6 3 2 1 1 0 134 SEM307 Hit not found 0.7 7 0 4 2 1 135 SEM308 Hit not found 0.93 5 2 5 7 2 136 SEM310 Hit not found 0.89 10 6 3 4 0 137 SEM313 bicoid-interacting 3 6.0E-52 0.9 6 3 3 0 0 138 SEM314 zinc transporter 9.0E-56 0.83 8 1 5 0 0 139 SEM315 membrane protein-like 1.0E-41 0.91 8 5 0 2 2	130	SEM298	Hit not found		0.83	8	1	2	3	0
132 SEM303 hypothetical protein 8.0E-23 0.9 5 2 1 1 0 133 SEM306 ccr4-not transcription complex subunit 7 2.0E-14 0 6 3 2 1 1 134 SEM307 Hit not found 0.7 7 0 4 2 1 135 SEM308 Hit not found 0.93 5 2 5 7 2 136 SEM310 Hit not found 0.89 10 6 3 4 0 137 SEM313 bicoid-interacting 3 6.0E-52 0.9 6 3 3 0 0 138 SEM314 zinc transporter 9.0E-56 0.83 8 1 5 0 0 139 SEM315 membrane protein-like 1.0E-41 0.91 8 5 0 2 2	131	SEM302	Hit not found		0.72	8	4	3	3	0
133 SEM306 ccr4-not transcription complex subunit 7 2.0E-14 0 6 3 2 1 1 134 SEM307 Hit not found 0.7 7 0 4 2 1 135 SEM308 Hit not found 0.93 5 2 5 7 2 136 SEM310 Hit not found 0.89 10 6 3 4 0 137 SEM313 bicoid-interacting 3 6.0E-52 0.9 6 3 3 0 0 138 SEM314 zinc transporter 9.0E-56 0.83 8 1 5 0 0 139 SEM315 membrane protein-like 1.0E-41 0.91 8 5 0 2 2	132	SEM303	hypothetical protein	8.0E-23	0.9	5	2	1	1	0
134 SEM307 Hit not found 0.7 7 0 4 2 1 135 SEM308 Hit not found 0.93 5 2 5 7 2 136 SEM310 Hit not found 0.89 10 6 3 4 0 137 SEM313 bicoid-interacting 3 6.0E-52 0.9 6 3 3 0 0 138 SEM314 zinc transporter 9.0E-56 0.83 8 1 5 0 0 139 SEM315 membrane protein-like 1.0E-41 0.91 8 5 0 2 2	133	SEM306	ccr4-not transcription complex subunit 7	2.0E-14	0	6	3	2	1	1
135 SEM308 Hit not found 0.93 5 2 5 7 2 136 SEM310 Hit not found 0.89 10 6 3 4 0 137 SEM313 bicoid-interacting 3 6.0E-52 0.9 6 3 3 0 0 138 SEM314 zinc transporter 9.0E-56 0.83 8 1 5 0 0 139 SEM315 membrane protein-like 1.0E-41 0.91 8 5 0 2 2	134	SEM307	Hit not found		0.7	7	0	4	2	1
136SEM310Hit not found0.89106340137SEM313bicoid-interacting 36.0E-520.963300138SEM314zinc transporter9.0E-560.8381500139SEM315membrane protein-like1.0E-410.9185022	135	SEM308	Hit not found		0.93	5	2	5	7	2
137 SEM313 bicoid-interacting 3 6.0E-52 0.9 6 3 3 0 0 138 SEM314 zinc transporter 9.0E-56 0.83 8 1 5 0 0 139 SEM315 membrane protein-like 1.0E-41 0.91 8 5 0 2 2	136	SEM310	Hit not found		0.89	10	6	3	4	0
138 SEM314 zinc transporter 9.0E-56 0.83 8 1 5 0 0 139 SEM315 membrane protein-like 1.0E-41 0.91 8 5 0 2 2	137	SEM313	bicoid-interacting 3	6.0E-52	0.9	6	3	3	0	0
139 SEM315 membrane protein-like 1.0E-41 0.91 8 5 0 2 2	138	SEM314	zinc transporter	9.0E-56	0.83	8	1	5	0	0
	139	SEM315	membrane protein-like	1.0E-41	0.91	8	5	0	2	2
140 SEM319 Hit not found 0.67 5 1 2 1 1	140	SEM319	Hit not found		0.67	5	1	2	1	1
141 SEM320 Hit not found 0.5 6 2 3 2 1	141	SEM320	Hit not found		0.5	6	2	3	2	1
142 SEM321 6b-interacting protein 1 3.0E-40 0.5 10 1 2 2 0	142	SEM321	6b-interacting protein 1	3.0E-40	0.5	10	1	2	2	0

143	SEM327	peroxisomal Ca-dependent solute carrier	1.0E-84	0.93	9	3	5	1	0
144	SEM328	Transcriptional corepressor LEUNIG	3.0E-28	0.93	7	0	4	3	0
145	SEM329	beta-1,3-glucanase precursor	3.0E-36	0.91	5	1	1	2	0
146	SEM332	rna recognition motif-containing	2.0E-89	0.72	7	3	3	3	1
147	SEM336	ubiquitin-conjugating enzyme -like	8.0E-45	0.81	5	2	2	3	0
148	SEM337	Hit not found		0.66	9	4	7	4	0
149	SEM338	nodulin21 family	5.0E-73	0.7	20	1	13	12	2
150	SEM339	Hypoxia induced protein conserved region containing protein,	6.0E-18	0.91	15	5	0	4	0
151	SEM341	Glucan 1,3-beta-glucosidase precursor	3.0E-46	0.75	15	4	3	3	1
152	SEM344	enhancer of rudimentary	6.0E-53	0.5	2	1	5	6	1
153	SEM349	symbiosis-related protein-like protein	6.0E-62	0.93	6	2	3	0	1
154	SEM350	ring-h2 zinc finger protein	5.0E-51	0.87	6	0	5	0	0
155	SEM351	Hit not found		0.92	5	2	3	0	0
156	SEM353	reverse transcriptase family member	1.0E-120	0.71	4	1	2	3	1
157	SEM355	Hypoxia induced protein conserved region containing protein	8.0E-23	0.64	6	4	1	2	0
158	SEM358	Hit not found		0.92	8	2	5	3	0
159	SEM361	Hit not found		0.93	11	4	3	6	0
160	SEM366	Hit not found		0.9	6	4	1	0	0
161	SEM367	Hit not found		0.88	6	4	0	4	0
162	SEM368	protein tyrosine phosphatase	2.0E-84	0.77	10	2	3	2	0
163	SEM369	ethylene-responsive transcriptional coactivator	2.0E-71	0.93	7	0	2	1	4
164	SEM371	phosphatidate cytidylyltransferase family	5.0E-53	0.64	8	4	4	2	0
165	SEM372	hypothetical protein	3.0E-14	0.8	13	6	7	2	0
166	SEM373	hypothetical protein Osl_028313	1.0E-50	0.88	4	1	3	1	0
167	SEM374	mitochondrial carrier protein	8.0E-50	0.65	7	3	3	1	0
168	SEM375	ETCHED1 protein	4.0E-20	0.9	11	4	6	8	2
169	SEM377	wound-responsive protein-related	3.0E-11	0.75	5	2	3	3	1
170	SEM379	hypothetical protein	8.0E-26	0.93	8	1	7	1	0
171	SEM384	Hit not found		0.86	4	0	3	2	1
172	SEM390	cytochrome p450	1.0E-57	0.92	13	7	5	3	0
173	SEM391	Hit not found		0.92	6	2	2	0	1
174	SEM392	hypothetical protein OsJ_000721	1.0E-59	0.76	3	0	1	0	0
175	SEM398	Hit not found		0.91	4	2	1	3	0
176	SEM400	Hit not found		0.93	8	0	3	3	0
177	SEM401	Alcohol dehydrogenase 2	3.0E-100	0.41	10	10	8	2	0
178	SEM403	hypothetical protein	3.0E-13	0.69	6	1	2	0	2

179 SEM407 diphosphate-fructose-6-phosphate 1- phosphotransferase 4.0E-69 0.83 4 1 5 1 0 180 SEM408 growth-regulating factor 6 5.0E-72 0.83 14 4 8 4 2 181 SEM417 Hit not found 0.33 14 4 8 4 2 182 SEM417 Int not found 0.83 28 1 3 0 0 184 SEM418 Hit not found 0.83 9 1 2 0 0 185 SEM417 Inportein factor iib 7.0E-114 0.83 9 1 2 0 0 186 SEM421 hypothetical protein Oci 10647 1.0E-16 0.91 6 3 3 0 0 187 SEM422 Sugar transporter family protein 1.0E-14 0.81 13 2 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2										
180 SEM402 growth-regulating factor 6 5.0E-72 0 6 1 3 3 2 181 SEM412 Hit not found 0.93 14 4 8 4 2 181 SEM417 Hit not found 0.93 14 4 8 4 2 183 SEM417 transcription factor ib 7.0E-114 0.93 28 1 3 0 0 184 SEM418 Hit not found 0.8 9 1 2 0 0 185 SEM42 hypothetical protein OS1_010647 1.0E-16 0.91 11 2 3 2 2 186 SEM426 Suctores -16-bisphosphatase, chloroplast precursor (FBPase) 2.0E-60 0.8 10 3 4 2 0 187 SEM426 Suctores synthase 3.0E-70 0.91 7 6 4 5 0 188 SEM425 fructores-16-bisphosphatase 3.0E-70 0.92 11 0 3 2 0 2 2 0	179	SEM407	diphosphate-fructose-6-phosphate 1- phosphotransferase	4.0E-69	0.83	4	1	5	1	0
181 SEM412 Hit not found 0.33 14 4 8 4 2 182 SEM415 Rop ramily GTPase ROP5 8.0E-65 0.9 4 1 2 1 0 184 SEM415 Hit not found 0.8 9 1 2 0 0 184 SEM412 hypothetical protein cols_010647 0.0E-16 0.91 6 3 3 0 0 185 SEM422 cytochrome p450 8.0E-32 0.89 8 6 4 4 0 186 SEM422 cytochrome p450 8.0E-32 0.89 8 6 4 4 0 189 SEM425 rutose-16-bisphosphatase, chloroplast precursor (FBPase) 2.0E-26 0.58 10 3 4 2 0 0 2 2 2 2 2 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0	180	SEM408	growth-regulating factor 6	5.0E-72	0	6	1	3	3	2
182 SEM415 Rop family GTPase ROP5 8.0.6 0.9 4 1 2 1 0 183 SEM417 transcription factor iib 7.0E-114 0.93 28 1 3 0 0 184 SEM418 Hit not found 0.8 9 1 2 3 1 1 185 SEM412 hypothetical protein Col_010647 1.0E-16 0.91 6 3 3 0 0 186 SEM425 ructose-1,6-bisphosphatase, chloroplast precursor (FBPase) 2.0E-26 0.58 10 3 4 2 0 189 SEM426 Sugar transporter family protein 1.0E-16 0.91 7 6 4 5 0 191 SEM428 sucrose synthase 1.0E-50 0.91 7 6 4 1 0 192 SEM433 sucrose synthase 1.0E-160 0.91 7 2 0 0 2 0 1 1 0 1 1 0 1 1 0 1 0	181	SEM412	Hit not found		0.93	14	4	8	4	2
183 SEM417 transcription factor iib 7.0E-114 0.93 28 1 3 0 0 184 SEM418 Hit not found 0.8 9 1 2 0 0 184 SEM419 serine threonine protein kinase 0.60E-16 0.91 11 2 3 1 1 185 SEM421 hypothetical protein Osl_010647 1.0E-16 0.91 6 3 3 0 0 187 SEM425 cytochrome p450 8.0E-32 0.58 10 3 4 2 0 188 SEM425 Fructose-16-bisphosphatae, chloroplast precursor (FBPase) 2.0E-26 0.58 10 3 4 2 0 189 SEM425 ducrose 4-5-deptydratase 1.0E-50 0.91 7 6 4 5 0 1 1 191 SEM433 diposphate fuctose-6-phosphate 1-phosphotransferase 3.0E-47 0.92 11 1 4 1 0 1 0 1 0 1 0 1 0 1 </td <td>182</td> <td>SEM415</td> <td>Rop family GTPase ROP5</td> <td>8.0E-65</td> <td>0.9</td> <td>4</td> <td>1</td> <td>2</td> <td>1</td> <td>0</td>	182	SEM415	Rop family GTPase ROP5	8.0E-65	0.9	4	1	2	1	0
184 SEM418 Hit not found 0.8 9 1 2 0 0 185 SEM419 serine threonine protein kinase 6.0E-16 0.91 16 3 0 0 185 SEM421 hypothetical protein Col_010647 1.0E-16 0.91 6 3 3 0 0 188 SEM425 Fructose-1,6-bisphosphatase, chloroplast precursor (FBPase) 2.0E 0.58 10 3 4 2 0 188 SEM426 Sugar transporter family protein 1.0E-14 0.8 13 2 3 2 2 191 SEM427 TDD-glucose 4-6-dehydratase 1.0E-50 0.91 7 6 4 5 0 191 SEM430 sucrose synthase 3.0E-70 0.92 11 1 4 1 0 192 SEM430 disease resistance protein family protein 3.0E-70 0.27 11 1 4 1 0 193 SEM431 disease resistance protein homologue 2.0E-40 0.76 9 2 2 </td <td>183</td> <td>SEM417</td> <td>transcription factor iib</td> <td>7.0E-114</td> <td>0.93</td> <td>28</td> <td>1</td> <td>3</td> <td>0</td> <td>0</td>	183	SEM417	transcription factor iib	7.0E-114	0.93	28	1	3	0	0
186 SEM419 serine threonine protein kinase 6.0E-16 0.91 11 2 3 1 1 186 SEM421 hypothetical protein Osl_010647 1.0E-16 0.91 6 3 3 0 0 188 SEM422 cytochrome p450 8.0E-32 0.89 8 6 4 4 0 188 SEM425 Fructose-1,6-bisphosphatase, chloroplast precursor (FBPase) 2.0E-26 0.58 10 3 4 2 0 189 SEM426 fructose-1,6-bisphosphatase, chloroplast precursor (FBPase) 2.0E-26 0.58 10 3 1 1 191 SEM423 stogar transporter family protein 1.0E-50 0.91 7 6 4 2 0 192 SEM433 diptosphate-functose-6-phosphate 1-phosphotransferase 3.0E-07 0.76 9 2 3 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <td< td=""><td>184</td><td>SEM418</td><td>Hit not found</td><td></td><td>0.8</td><td>9</td><td>1</td><td>2</td><td>0</td><td>0</td></td<>	184	SEM418	Hit not found		0.8	9	1	2	0	0
186 SEM421 hypothetical protein OsI_010647 1.0E-16 0.91 6 3 3 0 0 187 SEM422 cytochrome p450 8.0E-32 0.89 8 6 4 4 0 188 SEM425 Fructose 1.6-bisphosphatase, chloroplast precursor (FBPase) 2.0E-26 0.58 10 3 4 2 0 188 SEM427 dTDP-glucose 4-6-dehydratase 1.0E-50 0.91 7 6 4 5 0 191 SEM428 fructose-bisphosphate adolase 3.0E-70 0.92 11 0 3 1 1 192 SEM433 diptosphate-fructose-chopsphate 1-phosphotransferase 3.0E-70 0.76 9 2 3 2 0 195 SEM434 disease resistance protein f11 1.0E-31 0.88 9 1 2 2 0 195 SEM435 disease resistance erotein homologue 2.0E-16 0.83 14 3 2 1 0 1 0 196 SEM437 NBS-LRR disease resistanc	185	SEM419	serine threonine protein kinase	6.0E-16	0.91	11	2	3	1	1
187 SEM422 cytochrome p450 8.0E-32 0.89 8 6 4 4 0 188 SEM425 Fructose-1,6-bisphosphatase, chloroplast precursor (FBPase) 2.0E-26 0.58 10 3 4 2 0 188 SEM425 Gructose-1,6-bisphosphatase, chloroplast precursor (FBPase) 2.0E-26 0.58 10 3 4 2 0 191 SEM425 Gructose-1,6-bisphosphate family protein 1.0E-50 0.91 7 6 4 5 0 191 SEM430 sucrose synthase 7.0E-40 0.12 7 2 0 0 2 193 SEM433 diphosphate-fructose-6-phosphate 1-phosphotransferase 3.0E-70 0.27 11 1 4 1 0 195 SEM433 disease resistance protein (TIR-NBS-LRR class) 8.0E-67 0.76 9 2 3 2 0 195 SEM435 stress-induced protein sti1 1.0E-31 0.89 9 1 2 2 0 2 2 0 2 0 <td< td=""><td>186</td><td>SEM421</td><td>hypothetical protein OsI_010647</td><td>1.0E-16</td><td>0.91</td><td>6</td><td>3</td><td>3</td><td>0</td><td>0</td></td<>	186	SEM421	hypothetical protein OsI_010647	1.0E-16	0.91	6	3	3	0	0
188 SEM425 Fructose-1,6-bisphosphatase, chloroplast precursor (FBPase) 2,0E-26 0,58 10 3 4 2 0 189 SEM426 Sugar transporter family protein 1,0E-14 0.8 13 2 3 2 2 191 SEM427 dTDP-glucose 4-6-dehydratase 1,0E-14 0.8 13 2 0 0 2 191 SEM438 fructose-bisphosphate aldolase 3,0E-70 0.92 11 0 3 1 1 192 SEM433 diptosphate-fructose-6-phosphate 1-phosphotransferase 3,0E-70 0,7C 9 2 3 2 0 195 SEM434 disease resistance protein (TIR-NBS-LRR class) 8,0E-07 0,76 9 2 3 2 0 196 SEM435 disease resistance response protein homologue 2,0E-16 0,83 14 3 2 1 0 197 SEM430 disease resistance responsive family protein 2,0E-16 0,83 14 3 2 1 0 198 SEM437 N	187	SEM422	cytochrome p450	8.0E-32	0.89	8	6	4	4	0
189 SEM426 Sugar transporter family protein 1.0E-14 0.8 13 2 3 2 2 190 SEM427 dTDP-glucose 4-6-dehydratase 1.0E-50 0.91 7 6 4 5 0 191 SEM428 fructose-bisphosphate aldolase 3.0E-70 0.27 11 1 4 1 0 192 SEM432 Sugar transporter family protein 3.0E-70 0.27 11 1 4 1 0 194 SEM432 disease resistance protein (TIR-NBS-LRR class) 8.0E-07 0.76 9 2 3 2 0 195 SEM434 disease resistance protein related/dirigent protein-related 6.0E-45 0.7 8 1 0 1 0 196 SEM435 stress-induced protein BR-1 2.0E-16 0.83 14 3 2 0 0 197 SEM436 disease resistance protein nomologue 2.0E-19 0.2 5 2 0 2 0 0 198 SEM439 Pathogenesis-related protein PR-1<	188	SEM425	Fructose-1,6-bisphosphatase, chloroplast precursor (FBPase)	2.0E-26	0.58	10	3	4	2	0
190 SEM427 dTDP-glucose 4-6-dehydratase 1.0E-50 0.91 7 6 4 5 0 191 SEM428 fructose-bisphosphate aldolase 3.0E-07 0.92 11 0 3 1 1 192 SEM430 sucrose synthase 7.0E-40 0.12 7 2 0 0 2 193 SEM432 diphosphate-fructose-6-phosphate 1-phosphotransferase 3.0E-70 0.76 9 2 3 2 0 194 SEM434 disease resistance protein (TIR-NBS-LRR class) 8.0E-07 0.76 9 2 3 2 0 195 SEM434 disease resistance protein sti1 1.0E-31 0.89 9 1 2 2 0 198 SEM437 NBS-LRR disease resistance protein-related/dirigent protein-related 6.0E-45 0.7 8 1 0 1 0 1 0 198 SEM437 NBS-LRR disease resistance protein PR-1 2.0E-19 0.2 5 2 0 2 0 190 SEM442 <td< td=""><td>189</td><td>SEM426</td><td>Sugar transporter family protein</td><td>1.0E-14</td><td>0.8</td><td>13</td><td>2</td><td>3</td><td>2</td><td>2</td></td<>	189	SEM426	Sugar transporter family protein	1.0E-14	0.8	13	2	3	2	2
191 SEM428 fructose-bisphosphate aldolase 3.0E-07 0.92 11 0 3 1 1 192 SEM430 sucrose synthase 7.0E-40 0.12 7 2 0 0 2 193 SEM433 diphosphate-fructose-6-phosphate 1-phosphotransferase 3.0E-70 0.76 9 2 3 2 0 195 SEM434 disease resistance protein (TIR-NBS-LRR class) 8.0E-07 0.76 9 2 3 2 0 196 SEM436 disease resistance protein sti1 1.0E-31 0.89 9 1 2 2 0 197 SEM437 NBS-LRR disease resistance protein homologue 2.0E-16 0.83 14 3 2 1 0 198 SEM439 Pathogenesis-related protein PR-1 2.0E-16 0.83 14 3 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1	190	SEM427	dTDP-glucose 4-6-dehydratase	1.0E-50	0.91	7	6	4	5	0
192 SEM430 sucrose synthase 7.0E-40 0.12 7 2 0 0 2 193 SEM432 Sugar transporter family protein 3.0E-70 0.27 11 1 4 1 0 194 SEM433 diphosphate-fructose-6-phosphate 1-phosphotransferase 3.0E-42 0.85 5 2 3 2 0 194 SEM434 disease resistance protein (TIR-NBS-LRR class) 8.0E-07 0.76 9 2 2 0 196 SEM435 stress-induced protein sti1 1.0E-31 0.89 9 1 2 2 0 197 SEM436 disease resistance protein homologue 2.0E-16 0.83 14 3 2 1 0 198 SEM437 NBS-LRR disease resistance protein PR-1 2.0E-16 0.83 14 3 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 <	191	SEM428	fructose-bisphosphate aldolase	3.0E-07	0.92	11	0	3	1	1
193 SEM432 Sugar transporter family protein 3.0E-70 0.27 11 1 4 1 0 194 SEM433 diphosphate-fructose-6-phosphate 1-phosphotransferase 3.0E-42 0.85 5 2 3 2 0 195 SEM434 disease resistance protein (TIR-NBS-LRR class) 8.0E-07 0.76 9 2 3 2 0 196 SEM436 disease resistance protein (TIR-NBS-LRR class) 8.0E-07 8.0E-07 8 1 0 1 0 197 SEM436 disease resistance protein related/dirigent protein-related 6.0E-45 0.7 8 1 0 1 0 198 SEM437 NBS-LRR disease resistance protein homologue 2.0E-16 0.83 14 3 2 0 2 0 200 SEM440 disease resistance-responsive family protein 2.0E-18 0.4E 10 3 1 0 1 0 201 SEM440 disease resistance-responsive family protein 2.0E-13 0.31 12 2 1 1 0	192	SEM430	sucrose synthase	7.0E-40	0.12	7	2	0	0	2
194 SEM433 diphosphate-fructose-6-phosphate 1-phosphotransferase 3.0E-42 0.85 5 2 3 2 0 195 SEM434 disease resistance protein (TIR-NBS-LRR class) 8.0E-07 0.76 9 2 3 2 0 196 SEM435 stress-induced protein stil 1.0E-31 0.89 9 1 2 2 0 197 SEM436 disease resistance response protein-related/dirigent protein-related 6.0E-45 0.7 8 1 0 1 0 198 SEM437 NBS-LRR disease resistance protein homologue 2.0E-16 0.83 14 3 2 0 2 0 199 SEM439 Pathogenesis-related protein PR-1 2.0E-19 0.2 5 2 0 2 0 201 SEM444 disease resistance protein homologue 2.0E-24 0.46 12 0 2 2 0 202 SEM444 dehydration responsive element-binding protein 2D (DREB2D protein) 9.0E-15 0.82 13 1 5 3 0 1	193	SEM432	Sugar transporter family protein	3.0E-70	0.27	11	1	4	1	0
195 SEM434 disease resistance protein (TIR-NBS-LRR class) 8.0E-07 0.76 9 2 3 2 0 196 SEM435 stress-induced protein sti1 1.0E-31 0.89 9 1 2 2 0 197 SEM436 disease resistance response protein-related/dirigent protein-related 6.0E-45 0.7 8 1 0 1 0 198 SEM437 NBS-LRR disease resistance protein honologue 2.0E-16 0.83 14 3 2 0 2 0 199 SEM430 disease resistance protein PR-1 2.0E-16 0.83 14 3 2 0 2 0 200 SEM440 disease resistance protein 2.0E-24 0.46 12 0 2 2 0 201 SEM441 dehydration responsive element binding protein 9.0E-13 0.31 12 2 1 1 0 202 SEM444 Dehydration-responsive element-binding protein 2D (DREB2D protein) 9.0E-15 0.82 13 1 5 3 0	194	SEM433	diphosphate-fructose-6-phosphate 1-phosphotransferase	3.0E-42	0.85	5	2	3	2	0
196 SEM435 stress-induced protein sti1 1.0E-31 0.89 9 1 2 2 0 197 SEM436 disease resistance response protein-related/dirigent protein-related 6.0E-45 0.7 8 1 0 1 0 198 SEM437 NBS-LRR disease resistance protein homologue 2.0E-16 0.83 14 3 2 1 0 199 SEM430 Pathogenesis-related protein PR-1 2.0E-19 0.2 5 2 0 2 0 200 SEM440 disease resistance protein 2.0E-49 0.46 12 0 2 2 0 201 SEM442 disease resistance protein 4.0E-49 0.85 10 3 3 1 0 202 SEM443 dehydration responsive element-binding protein 2D (DREB2D protein) 9.0E-15 0.82 13 1 5 3 0 203 SEM444 Dehydration-responsive protein-like 4.0E-12 0.37 3 0 1 1 1 1 1 0 204 </td <td>195</td> <td>SEM434</td> <td>disease resistance protein (TIR-NBS-LRR class)</td> <td>8.0E-07</td> <td>0.76</td> <td>9</td> <td>2</td> <td>3</td> <td>2</td> <td>0</td>	195	SEM434	disease resistance protein (TIR-NBS-LRR class)	8.0E-07	0.76	9	2	3	2	0
197SEM436disease resistance response protein-related/dirigent protein-related6.0E-450.781010198SEM437NBS-LRR disease resistance protein homologue2.0E-160.83143210199SEM439Pathogenesis-related protein PR-12.0E-190.252020200SEM440disease resistance-responsive family protein2.0E-240.46120220201SEM442disease resistance protein4.0E-490.85103310202SEM443dehydration responsive element binding protein 2D (DREB2D protein)9.0E-150.82131530203SEM444Dehydration-responsive element-binding protein 2D (DREB2D protein)9.0E-150.82131530204SEM445cold shock protein-11.0E-290.9211111111205SEM447low temperature and salt responsive protein-like4.0E-120.3730110206SEM449Heat shock protein 81-12.0E-460.3642110207SEM450light-dependent short hypocotyl 12.0E-460.3642110208SEM453cold induced protein-like4.0E-260.9352310208SEM454 <td>196</td> <td>SEM435</td> <td>stress-induced protein sti1</td> <td>1.0E-31</td> <td>0.89</td> <td>9</td> <td>1</td> <td>2</td> <td>2</td> <td>0</td>	196	SEM435	stress-induced protein sti1	1.0E-31	0.89	9	1	2	2	0
198 SEM437 NBS-LRR disease resistance protein homologue 2.0E-16 0.83 14 3 2 1 0 199 SEM439 Pathogenesis-related protein PR-1 2.0E-19 0.2 5 2 0 2 0 200 SEM440 disease resistance-responsive family protein 2.0E-24 0.46 12 0 2 2 0 201 SEM42 disease resistance protein 4.0E-49 0.85 10 3 3 1 0 202 SEM443 dehydration responsive element binding protein 9.0E-13 0.31 12 2 1 1 0 203 SEM444 Dehydration-responsive element-binding protein 2D (DREB2D protein) 9.0E-15 0.82 13 1 5 3 0 204 SEM446 cold shock protein-1 1.0E-29 0.92 11 1 1 1 1 1 0 205 SEM445 logt-dependent shork protein 81-1 5.0E-99 0.89 17 2 2 2 0 206 SEM450	197	SEM436	disease resistance response protein-related/dirigent protein-related	6.0E-45	0.7	8	1	0	1	0
199SEM439Pathogenesis-related protein PR-12.0E-190.252020200SEM440disease resistance-responsive family protein2.0E-240.46120220201SEM442disease resistance protein4.0E-490.85103310202SEM43dehydration responsive element binding protein9.0E-130.31122110203SEM444Dehydration-responsive element-binding protein 2D (DREB2D protein)9.0E-150.82131530204SEM446cold shock protein-11.0E-290.921111111205SEM447low temperature and salt responsive protein-like4.0E-120.3730110206SEM449Heat shock protein 81-15.0E-990.89172220207SEM450light-dependent short hypocotyl 12.0E-460.3642110208SEM454water-stress protein-like protein4.0E-160.842110208SEM454water-stress protein-like protein4.0E-160.842110208SEM454water-stress protein-like protein4.0E-160.842110208SEM454water-stress protein-like protein4.0E-160.84211<	198	SEM437	NBS-LRR disease resistance protein homologue	2.0E-16	0.83	14	3	2	1	0
200 SEM440 disease resistance-responsive family protein 2.0E-24 0.46 12 0 2 2 0 201 SEM442 disease resistance protein 4.0E-49 0.85 10 3 3 1 0 202 SEM443 dehydration responsive element binding protein 9.0E-13 0.31 12 2 1 1 0 203 SEM444 Dehydration-responsive element-binding protein 2D (DREB2D protein) 9.0E-15 0.82 13 1 5 3 0 204 SEM446 cold shock protein-1 1.0E-29 0.92 11 1 1 1 1 205 SEM447 low temperature and salt responsive protein-like 4.0E-12 0.37 3 0 1 1 0 206 SEM449 Heat shock protein 81-1 2.0E-46 0.36 4 2 1 1 0 207 SEM450 light-dependent short hypocotyl 1 2.0E-46 0.36 4 2 1 1 0 208 SEM453 cold induced protein-like prote	199	SEM439	Pathogenesis-related protein PR-1	2.0E-19	0.2	5	2	0	2	0
201 SEM442 disease resistance protein 4.0E-49 0.85 10 3 3 1 0 202 SEM443 dehydration responsive element binding protein 9.0E-13 0.31 12 2 1 1 0 203 SEM444 Dehydration-responsive element-binding protein 2D (DREB2D protein) 9.0E-15 0.82 13 1 5 3 0 204 SEM446 cold shock protein-1 1.0E-29 0.92 11 0 2 2 2 0 0 1 1 0 2 1 1 0 2 1 1 0 2 0 0 1 1 0 2 1 1 0<	200	SEM440	disease resistance-responsive family protein	2.0E-24	0.46	12	0	2	2	0
202SEM443dehydration responsive element binding protein9.0E-130.31122110203SEM444Dehydration-responsive element-binding protein 2D (DREB2D protein)9.0E-150.82131530204SEM446cold shock protein-11.0E-290.921111111205SEM447low temperature and salt responsive protein-like4.0E-120.3730110206SEM449Heat shock protein 81-15.0E-990.89172220207SEM450light-dependent short hypocotyl 12.0E-460.3642110208SEM453cold induced protein-like protein4.0E-160.842110208SEM454water-stress protein-like protein4.0E-160.842110209SEM454water-stress protein-like protein4.0E-160.842110210SEM456Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNASaccharum0.4152001211SEST4early-responsive to dehydration protein6.0E-590.65191110212SEST4early-responsive to dehydration protein6.0E-590.65191110	201	SEM442	disease resistance protein	4.0E-49	0.85	10	3	3	1	0
203SEM444Dehydration-responsive element-binding protein 2D (DREB2D protein)9.0E-150.82131530204SEM446cold shock protein-11.0E-290.921111111205SEM447low temperature and salt responsive protein-like4.0E-120.3730110206SEM449Heat shock protein 81-15.0E-990.89172220207SEM450light-dependent short hypocotyl 12.0E-460.3642110208SEM453cold induced protein-like4.0E-260.9352310209SEM454water-stress protein-like protein4.0E-160.8421110210SEM456Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNASaccharum0.4152001211SEST3disease resistance protein I22.0E-140.5452520212SEST4early-responsive to dehydration protein6.0E-590.65191110Note: Markers highlighted with blue have been reported from other studies.	202	SEM443	dehydration responsive element binding protein	9.0E-13	0.31	12	2	1	1	0
204SEM446cold shock protein-11.0E-290.9211111111205SEM447low temperature and salt responsive protein-like4.0E-120.3730110206SEM449Heat shock protein 81-15.0E-990.89172220207SEM450light-dependent short hypocotyl 12.0E-460.3642110208SEM453cold induced protein-like4.0E-260.9352310209SEM454water-stress protein-like protein4.0E-160.8421110210SEM456Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNASaccharum0.4152001211SEST3disease resistance protein I22.0E-140.5452520212SEST4early-responsive to dehydration protein6.0E-590.65191110Note: Markers highlighted with blue have been reported from other studies.5.0E-990.65191110	203	SEM444	Dehydration-responsive element-binding protein 2D (DREB2D protein)	9.0E-15	0.82	13	1	5	3	0
205SEM447low temperature and salt responsive protein-like4.0E-120.3730110206SEM449Heat shock protein 81-15.0E-990.89172220207SEM450light-dependent short hypocotyl 12.0E-460.3642110208SEM453cold induced protein-like4.0E-260.9352310209SEM454water-stress protein-like protein4.0E-160.8421110210SEM456Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNASaccharum0.4152001211SEST3disease resistance protein l22.0E-140.5452520212SEST4early-responsive to dehydration protein6.0E-590.65191110Note: Markers highlighted with blue have been reported from other studies.	204	SEM446	cold shock protein-1	1.0E-29	0.92	11	1	1	1	1
206SEM449Heat shock protein 81-15.0E-990.89172220207SEM450light-dependent short hypocotyl 12.0E-460.3642110208SEM453cold induced protein-like4.0E-260.9352310209SEM454water-stress protein-like protein4.0E-160.8421110210SEM456Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNASaccharum0.4152001211SEST3disease resistance protein I22.0E-140.5452520212SEST4early-responsive to dehydration protein6.0E-590.65191110Note: Markers highlighted with blue have been reported from other studies.5191110	205	SEM447	low temperature and salt responsive protein-like	4.0E-12	0.37	3	0	1	1	0
207SEM450light-dependent short hypocotyl 12.0E-460.3642110208SEM453cold induced protein-like4.0E-260.9352310209SEM454water-stress protein-like protein4.0E-160.8421110210SEM456Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNASaccharum0.4152001211SEST3disease resistance protein I22.0E-140.5452520212SEST4early-responsive to dehydration protein6.0E-590.65191110Note: Markers highlighted with blue have been reported from other studies.	206	SEM449	Heat shock protein 81-1	5.0E-99	0.89	17	2	2	2	0
208SEM453cold induced protein-like4.0E-260.9352310209SEM454water-stress protein-like protein4.0E-160.8421110210SEM456Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNASaccharum0.4152001211SEST3disease resistance protein I22.0E-140.5452520212SEST4early-responsive to dehydration protein6.0E-590.6519110Note: Markers highlighted with blue have been reported from other studies.	207	SEM450	light-dependent short hypocotyl 1	2.0E-46	0.36	4	2	1	1	0
209SEM454water-stress protein-like protein4.0E-160.842110210SEM456Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNASaccharum0.4152001211SEST3disease resistance protein I22.0E-140.5452520212SEST4early-responsive to dehydration protein6.0E-590.6519110Note: Markers highlighted with blue have been reported from other studies.	208	SEM453	cold induced protein-like	4.0E-26	0.93	5	2	3	1	0
210SEM456Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNASaccharum0.4152001211SEST3disease resistance protein I22.0E-140.5452520212SEST4early-responsive to dehydration protein6.0E-590.6519110Note: Markers highlighted with blue have been reported from other studies.	209	SEM454	water-stress protein-like protein	4.0E-16	0.84	2	1	1	1	0
211SEST3disease resistance protein I22.0E-140.5452520212SEST4early-responsive to dehydration protein6.0E-590.6519110Note: Markers highlighted with blue have been reported from other studies.	210	SEM456	Saccharum hybrid cultivar soluble acid invertase (ShinvA) mRNA	Saccharum	0.41	5	2	0	0	1
212 SEST4 early-responsive to dehydration protein 6.0E-59 0.65 19 1 1 0 Note: Markers highlighted with blue have been reported from other studies.	211	SEST3	disease resistance protein I2	2.0E-14	0.54	5	2	5	2	0
Note: Markers highlighted with blue have been reported from other studies.	212	SEST4	early-responsive to dehydration protein	6.0E-59	0.65	19	1	1	1	0
		Note: Mar	kers highlighted with blue have been reported from other studies.							

Supplemental Table 2. Details of the new 191 EST–SSR markers developed from the SUCEST database.

					Timo	Expected			Simplex		Double
MarkerClusterSEM1SCEPRZSEM2SCACADSEM7SCAGLB2SEM11SCAGRTSEM13SCBFAMSEM14SCBGAMSEM15SCBGLRSEM16SCCCADSEM17SCCCLASEM20SCCCCLASEM24SCCCCLASEM36SCCCLRSEM37SCCCLRSEM38SCCCLRSEM39SCCCCRSEM41SCCCCRSEM53SCEPAMSEM55SCEPAMSEM56SCEPAMSEM61SCEQAWSEM63SCEQAWSEM63SCEQARSEM63SCEQRTSEM63SCEQRTSEM78SCEZRTSEM80SCEZRTSEM80SCEZRTSEM80SCEZRTSEM81SCEZRTSEM82SCEZRTSEM83SCEZRTSEM84SCEZSBSEM85SCJFADSEM86SCUFAD	Cluster	Motif	Forward primer	Reverse primer	(°C)	size (bp)	PIC	number	Phil6 607	S6	simplex
SEM1	SCEPRZ1008B02.g	(agc)10	ACCATCGCAATCGATGTTTA	AACTGGATGGCGTACAATCA	56	215	0.6	9	5	1	1
SEM2	SCACAD1035F09.g	(cg)7(ct)14	ACACCGAGCTGTCCCAAT	GCATCTGATGAGCCTGTGAA	56	164	0.9	7	2	1	1
SEM7	SCAGLB2047G03.g	(tttc)15	GGAAGGTATGGGTGCTATGC	ACAGGGCAATAACAGGGGTA	58	167	0.6	8	4	1	0
SEM11	SCAGRT2041A11.g	(tg)16	AGGGCTTGGAAGAAAGGAAT	TGGCAAGCAACAGCTAAAAC	58	190	0.9	11	4	2	1
SEM13	SCBFAM2022D09.g	(gaaa)11	GCGAGAGAAGCTAGGAAGCA	CGCAGATCCTCTTGAACCTC	62	161	0.7	7	2	2	0
SEM14	SCBGAM1091A05.g	(ta)10(cag)5	GAGCAACGAGCTGAAAAGTG	TGTCCTGACCTAGGATGTGC	59	245	0.8	10	2	4	1
SEM15	SCBGLR1119D12.g	(ta)26(at)5	TGTCCACAATTTTGGCTGAT	GTTGCTTGCCTGATCATTGT	56	200	0.5	5	0	2	0
SEM16	SCCCAD1003H03.g	(aag)15	CCTTCCTTGGCCTCTTCTCT	TGCTGGTCGCAGTACTTGAT	58	248	0.9	3	0	0	0
SEM19	SCCCCL4002A08.g	(gca)5(caa)13	CAGCCCATTAACCAAGCAAT	GAAGCAGCTGTTGCTCACTG	58	184	0.9	13	5	2	1
SEM20	SCCCCL4004D08.g	(ataga)12	CCGGCTGTGAAAATTAGGTT	TCGAATTGGTCAAGACTCTCC	58	219	0	6	2	2	0
SEM24	SCCCCL4015G07.g	(ct)10(ac)5	CAATTCGTGGCTTGTGTTTG	AGCAGAATCGGCAAGGTAAA	58	197	0	9	4	1	0
SEM36	SCCCLR1078G05.g	(ta)12	CCATGTGCAGCATTTAACAA	TGGACATGCTAATGACTACTGC	56	152	0.7	5	3	0	0
SEM37	SCCCLR1079D03.g	(ga)15	CTTCCTGCTTCGAACATTTG	ACGAGGTAGATCCCGAAGG	56	214	0.9	7	3	2	1
SEM38	SCCCLR1080G12.g	(ca)10	TGAATTGCACAAAACACCAA	GACGGTGTAAACAAGCTGTGA	55	249	0.9	4	1	3	0
SEM41	SCCCRT2001B06.g	(ag)24	CCCCCTTGACACCTCTGTAT	TAGAACGAACCAGACGACCA	59	248	0.9	13	4	8	1
SEM42	SCCCRZ2004G11.g	(aag)7(ta)15	GACTTCGGGAAGAAGGAGGT	ACCAAGCACATCCAGCAGTA	59	285	0.9	6	2	0	0
SEM53	SCEPAM1020C01.g	(ct)20(ct)20	CCGCCTTCTCCTTAGTGACA	CCACAAGCCTAATACAGCTCAA	62	192	0.8	10	6	0	0
SEM55	SCEPAM2057B09.g	(ct)15(ct)5	ACGGCATCAGATTCAGATCA	ATGGCTTTCCATCTCGTGAC	56	277	0.7	6	1	2	1
SEM57	SCEPRT2048F09.g	(cag)11	TCCAGAAGTACGTGGAGACG	ACGACAGCAGGTCGAACAT	56	222	0.9	11	4	2	0
SEM58	SCEPSB1130G10.g	(cacta)15	CCAACCAACCTCGACATTCT	CCATGTGATCTGACCTGGTG	60	209	0.8	9	4	2	1
SEM60	SCEQAM1041B03.g	(ag)12	TGCTAACACATTTCAAGAAAGAGA	GATCCAATCCGAGGAAAAGT	58	155	0.9	8	4	0	3
SEM61	SCEQAM1041H02.g	(ct)12	GTTCAGAACACGTGCAGCAT	CACGCTTGACATGAGAGGAA	59	165	0.7	12	3	5	2
SEM63	SCEQHR1078A09.g	(ag)25	GGTCGGTGCTCTGTTCTTTT	CCTGCAGCAGAGACGAGAT	59	197	0.1	9	1	0	2
SEM68	SCEQRT1032H07.g	(ta)6(ac)11(tc)6	CCCTGAGGTCTCTCTCCACT	TGCCATAGGACAAGAGTTTAACA	64	239	0.7	5	1	3	1
SEM72	SCEQSD2075F10.g	(ag)14	GAACCTTATCGGTAGCCTCCT	GAGCGCCATAGGAGAAGTG	58	158	0.3	4	1	2	1
SEM78	SCEZRT2023F09.g	(ggt)5(atag)14	GTGGTCGCAGACGAGGTC	CTCCGCATTAGCCATTTCC	58	222	0	13	3	0	3
SEM79	SCEZRT2024C04.g	(ac)13	GATGGAACAGATGCGACAAG	GTTCATCGTAACCTGCTGGA	58	207	0.9	7	1	2	1
SEM80	SCEZRZ3015G05.g	(ta)27	GCAGATGAGAGGGCAAAAGT	CGCCTGCAGATGAATCATAG	59	244	0.9	5	0	1	0
SEM82	SCEZRZ3017G04.g	(ga)12	AGTACAAGGCACAGCCAGAG	GGACATGAGGTACACCCAGA	62	197	0.8	4	1	3	0
SEM83	SCEZRZ3096G10.g	(atg)10	TCCTCCTCTTGTTGCAGTTG	GTCGTCGTCACGATCATCTC	58	184	0.9	17	1	6	2
SEM84	SCEZSB1094A08.g	(tc)10	TGTAGCAATTCCTTGCGTTG	CAACAAATACAATGCCAATCG	58	229	0.9	10	3	4	3
SEM85	SCJFAD1011F07.b	(ga)10(agag)5	CACCTAGTGAAAGGGGCAAA	CCTGAAGCCTTGGTAGCATC	59	242	0.9	4	2	0	0
SEM86	SCJFLR1035E04.g	(ga)10	CGAGAACTAGCATAGCACAAGA	AACAACTGGTGCAAGTCCAT	58	172	0.6	8	1	2	1

051400	0015070040004	()47	00100001441404001044	00040700040447077077	00	400	0.7	0	0	2	^
SEM90	SCJFRZ2010C01.g	(ag)17			60 50	190	0.7	8	0	3	0
SEM92	SCJFSB1010B12.g	(tc)10	TGTGCCGTTGCCTAATAACA	GGCAAGCTTCCTCAGTTTCTT	56	209	0.6	8	0	2	2
SEM94	SCJFST1014E07.g	(tc)10		CIGGCIGGGGGGGGGGCACII	56	196	0.8	6	2	0	1
SEM98	SCJLRT1019D02.g	(tg)15	GCCAGCAGAATGCTTAACAA		58	233	0.8	8	3	2	1
SEM99	SCJLRT3076A02.g	(ta)12	TTACCTCCGGCAACGTTAAA	TGCAGGCATATGGTAGTCCA	56	175	0.9	11	5	0	0
SEM105	SCMCAM1100G01.g	(ctttt)18	AGGGGCCTCAAGTTGTTCTT	CGGTCTCATGGTCACCTTTT	58	220	0.9	10	1	5	2
SEM106	SCMCCL6027C07.g	(tc)24	AGGTTGCTGATGGTCCTCAC	CAAGAAGGGAAGCAGGGACT	62	197	0.9	5	1	2	0
SEM108	SCMCFL5008F03.g	(ag)10	CGACTTGTGTGGAGGTGAAA	TGGATCAATGTGAACAAAATCG	58	164	0.7	7	2	2	0
SEM112	SCMCST1057D03.g	(tc)14	CCTTCTGCAGACGAGTTGAA	ACCTGACCAGCAAATCAACA	58	159	0.9	8	3	3	0
SEM113	SCPIRT3024F01.g	(ga)17(gga)5	TTCCGGTTTACCCTGCATAG	TTCCTCAGGGCCCTTTTATT	58	232	0.9	11	2	3	2
SEM117	SCQGLV1018G08.g	(at)41	GCGTGGCACTGACTACAAGT	CAATGTTCTGTGGTCTGCACT	56	246	0.8	6	3	1	1
SEM119	SCQSHR1020F04.g	(ct)16	CCGCGTGCTCTCTCTCTCT	ATTGCCATCACCTCATGCTT	56	206	0.4	7	1	2	1
SEM124	SCRFLB1055F01.g	(tcc)11	CCTTGATGTGCTTGACGAG	CCAACGAGCAAAAGTAAACG	56	270	0.2	7	3	0	2
SEM125	SCRFRT3058D07.g	(ct)16	TATTCTCTCCGGATCCCCTA	ATTCAAAGCGCAACACAGTC	58	160	0.6	7	2	3	0
SEM131	SCRUFL4024B04.g	(ac)18(cgc)6	AAAGGAAAGCAAACCCAAGG	GCAGTCGTTGTCGTAGCAGA	58	245	0.9	4	0	1	2
SEM132	SCRURT2010E12.g	(ct)18	CCCTCCACCTCTTTGCTC	TAGAAAGACCTGCCCTCCTG	58	202	0.9	11	3	2	1
SEM136	SCSBAM1085C09.g	(cgg)12	CTCTGACCCGAGCAAAGG	GCCAATAAACAGCAGGGGTA	56	238	0.9	6	1	2	1
SEM140	SCSFAD1114H02.g	(at)23	GTGTTTTGGAGACCGTGTCA	CGATTGTTGCGCTGTACATC	58	127	0.9	5	1	0	1
SEM141	SCSFFL4083B01.g	(ac)16(ag)13(gt)5	ATCATCCACAGCTAGCAGCA	GGTTTTGCCTTGGTTTTTGA	56	174	0.8	21	6	6	2
SEM143	SCSFHR1045G08.g	(ct)9(ct)12	CCCCTCTCCCTCAGTCTTCT	CCATGCTGTCAGGATCCAC	60	279	0.7	3	1	1	1
SEM147	SCSGHR1070F11.g	(tcc)10	GCCTCTTCCTCCTCCACTC	GACGACCGTCCTTGTTGAG	58	250	0.8	8	1	2	0
SEM148	SCSGLR1025D03.g	(tca)12	GCTACCGGATGGATAAAAGC	CTGACCGAAATGATCAAGGA	56	245	0.9	4	1	3	0
SEM154	SCUTCL6035D02.q	(ct)14	ACCGAGGTAGGAGGGAGTGT	GCTCGCCATGAATAGAAAGG	58	219	0.9	9	4	1	1
SEM158	SCVPCL6044A06.g	(ag)12	GGATGGTTAAAGCGGAAACA	GGAAACAGTGTACGCCCAGT	56	151	0.7	10	4	1	1
SEM159	SCVPHR1089A09.g	(ag)13	CTGGTGGAATAACTCGCTGA	CTCAAGGCAAGAACGAATCC	60	279	0.9	10	4	3	1
SEM161	SCVPHR1094C01.g	(agg)10	GAACTGCTCACTGGCTCCTC	GTAGAAGTCCGTCGCCGTAA	58	186	0.7	6	1	1	1
SEM164	SCVPLR2019H04.a	(ag)18	GAGGTTATGGGGAAACCAGA	GATTGCAGCCGTAAACTTGA	56	211	0.9	11	1	4	1
SEM166	SCVPRT2080G09.g	(at)22	AGCGCATCTTGCTTATTTGA	ATGCATGATCATCGAGGAAG	56	171	0.6	12	4	1	1
SEM167	SCVPRT2083D03.g	(at)30	CGGATCTTGGCTCCTTCTCT	AGCCTTGATTGGCAATGGTA	58	223	0.9	15	4	7	2
SEM168	SCVPRZ2037E02.g	(ct)11	AACGTCAGCCGCTACAACTT	CTTCCCTTTTGCGAAGAAAA	56	143	0.5	7	2	2	0
SEM174	SCQGFL3059G12.g	(ta)11	CTCACCGCAGCTCTTTTTCT	CACAAGCTATGCGGTCAAAA	58	249	0.2	4	0	1	0
SEM176	SCRFFL1029H06.a	(cctc)5(ct)10	CGCCATAACCATAACCACAG	CCTCCCTCCGCTACTTCCTA	58	188	0.9	5	1	2	0
SEM179	SCSBFI 1101G01.g	(aaag)10	TATTCCACCGGGAACAAGAA	GGGATTGTAGCGACGAGTTG	58	210	0.9	6	0	2	0
SEM180	SCSBFI 1104F01.b	(ct)12(tac)6	TTCCACATCAAGCAAGCAAG	ATGACATCAGGAGGGAGACC	58	206	0.6	8	2	2	1
SEM184	SCVPEL 1073A11 g	(aa)10(aac)7	ACCAACGCGACGAGAGAG	GCCTGAACTGGTCGTAGGTC	58	206	0.9	6	-	0	0
SEM189	SCJFAD1013F12.g	(agg)6(ggaa)8	GAACTGCTCACTGGCTCCTC	GTAGAAGTCCGTCGCCGTAA	59	209	0.9	15	4	3	2
SEM100	SCRI AD1098A04 g	(ct)9		AGATCTGTTGGGTGCTCGTC	59	189	0.7	9	2	3	0
00000	5 51 (L) (B 1000) (07.9	(01)0	0110010000111101000		55	100	0.1	5	2	5	v

SEM191	SCRLAD1138A05.g	(gcc)8(cca)5	CCAGTCGCGATTCTTCCAC	AAGGGACGGGGAGAAAAATA	55	176	0.6	4	2	0	1
SEM195	SCSGAD1008F08.g	(ggc)9(gag)5	CTTCCCGTCGCTCTTACCT	CTCCTCCTCCTCCTCCAC	60	183	0.4	3	0	1	0
SEM199	SCEPAM1021B02.g	(tg)9	CTCTCGAGGAGGTGGATGAG	CTGCAAGTTTGTTGGCTGAA	56	237	0.7	11	6	3	1
SEM200	SCEPAM1050A03.g	(tc)9	CTGCAGGATCACCTGGAAC	TAAACCCACGCTGACAGACA	56	238	0.9	8	2	1	4
SEM203	SCEQAM1036D03.g	(cgc)6(cgc)8	GCGGCCTCATACGTGTAGAT	TCTCTTCCCCTCACCAGAAA	56	237	0.8	5	3	0	0
SEM206	SCVPAM1056A04.g	(tctt)9	CATGGTAGCTCCGCTTCTTC	GCGAGAAGCTAGGAAGCACA	59	197	0.9	12	2	3	1
SEM207	SCACAM2043G03.g	(gct)8	GGCACACCTCGAGAGACC	ACTCCTCCTCCTCGCTTAGG	60	151	0.7	5	3	0	1
SEM211	SCCCAM2001E04.g	(cgc)8	CGGTCGTCTCTTCCTCCTC	CTACTACCACCCGGACCAGA	59	212	0.5	5	1	1	1
SEM213	SCCCAM2C08B11.g	(tc)5(tc)5(ct)5(ct)6	CTCTCCGACTCGTCTTCCAC	GCGGACTGCAAAAGAGAGAT	56	241	0.7	7	3	1	0
SEM214	SCEQAM2037C11.g	(cag)8(cg)5	ATCGGCTCCAGTCAGAGAGA	CCTGGTGAAGGCTCATGATT	59	323	0.9	4	1	2	1
SEM215	SCEZAM2033H10.g	(tc)8	GCCGAAGAGGAATCTACGAG	GTTTGTCTTCCTCCTGTGC	56	193	0.5	5	0	3	0
SEM217	SCEZAM2096F07.g	(ga)9	CACGGGGAGACGAGAGAC	CCAACAACAACCAGAATATCG	54	174	0.9	6	3	0	1
SEM219	SCMCAM2084A04.g	(cag)6(cag)5(gca)5(c ag)5	AAGTACGGAGCGCAGTGTAG	ACCGCCTTGTACTCCAAATC	56	228	0.4	14	3	1	2
SEM220	SCMCAM2084F10.b	(at)8	AAGCTCCTTGCCTGCTACTC	CAAAGGGCATCCTTTCTGAT	55	218	0.8	6	1	2	1
SEM221	SCQGAM2028B01.g	(ccg)8	GCCTCTCTCTGCTCAGCCTA	CTCCTCATCTCTCGCCAAA	56	170	0.9	17	5	1	2
SEM223	SCSGAM2076E10.g	(tc)8	CACAGCACTTGCCAAGCTAA	AGTTTCACAAAGGGCGACTG	56	216	0.8	14	7	4	0
SEM227	SCCCCL3005D03.b	(ct)8	GCTACAGTGCCTCTCCCTCT	CTAGAAGCAGAAGTGGAGTGCT	59	287	0.8	7	2	1	0
SEM231	SCCCCL4013B10.g	(cgt)5(gcg)9(cg)5	CCGTTCTACACCTCCAACAT	GACCGTGACCATCTGCTG	57	426	0.9	6	1	2	0
SEM232	SCCCCL4014F09.g	(ga)8	CAACTCCAGCTCCAGTCTCC	CTTTTCGCGAAGTGAACACA	58	311	0.9	9	4	1	0
SEM233	SCCCCL4015B01.g	(tgt)8	TTGCTTGGGACAAAAGGCTA	ATCTTGCAAAGGAAGGAGCA	55	336	0.8	6	3	0	0
SEM234	SCACCL6009D08.g	(acc)8	GGACATGCTGCTCCCTACAT	AGGAGGACTGGTGGTTGAGG	60	211	0.8	5	3	0	0
SEM235	SCACCL6010C05.g	(tc)9	CATCGGCTCATCATAACGAA	AGCTACTTCAGCCCCAAGTG	55	250	0.9	11	5	0	1
SEM236	SCCCCL6003H04.g	(ct)9	CCCTTTGCTTCCCCTTTACT	GAGGCGCCTTACTGTTCTTG	56	193	0.9	5	2	1	0
SEM237	SCEPCL6023G01.g	(gca)8	AGGGAAAGAGACGAGGGAGA	CGTATCTCCGACCACTCCAC	59	167	0.1	3	1	1	0
SEM238	SCEPCL6029D06.g	(gcg)8	CTCTCCCCCAACTCTCTCTG	TCCGACGTCAACGTCTCAG	59	176	0.8	13	3	7	2
SEM239	SCRLCL6030D09.g	(ct)9	CGAGAAACCGTGTCCCCTA	CCCTCTCCCTCTTCCTCCT	59	155	0.8	6	1	1	0
SEM246	SCJLFL4097F08.b	(cg)5(gaaa)8	AATCGATCTTAGGGCCGGTA	ACGCCGACGAGTGAGGAC	58	276	0.6	8	2	3	1
SEM254	SCBGFL5080G03.g	(cgg)8	ACCTTACAGAGCCCACTGCT	TCGCGATAATGAGATTGAGC	59	152	0.9	9	4	4	1
SEM255	SCCCFL5062D10.g	(ag)8	CGGCGTCCACTGAAAGAG	CAGCCTCGAGTTGGGATG	56	178	0.6	9	1	0	0
SEM257	SCEZFL5084A01.g	(tg)8	TGCTGGAGACGGAGTAGCTT	ATCAGGCAAGCACACAATCA	57	159	0.9	4	1	1	1
SEM258	SCEZFL5091D04.g	(cac)9	GGAAGAGGAGGCTTCGAGAT	CTGGATAATCACGCCCAAAT	55	343	0.9	10	1	4	1
SEM261	SCAGFL8042E05.g	(cgg)8	CCATCCATCCTCTCATCTCC	AAGAGTGCTTGAGCGGATCT	56	187	0.6	7	4	1	1
SEM263	SCRLFL8053B05.g	(gga)5(gca)8	AGCCTCTGACGCTAAGATCC	CACACGCTGCAGATGTTGTT	56	208	0.9	12	7	0	0
SEM265	SCAGHR1018C11.g	(cca)8	ACACTAGCTAGCCAGCCACA	GAAGCGAGGCTATGGCTATG	57	163	0.9	6	0	0	0
SEM271	SCJFHR1034E09.g	(ccg)9	AGCAGATTCACTTCGCCACT	CGATGAGCTTGGAGAGGAG	55	157	0.6	5	2	0	2

SEM27 SOCSHRID2803.g (etil) TITCITTOGTCADACCCAAT ACTCCCGTCACCCTORAC 55 180 0.7 5 1 2 0 SEM275 SOCSHRID2803.g (gap)9 TICGTATGGATTCACAACA GGGACGTTGGTAATGGT 55 241 0.8 6 1 1 1 SEM285 SOCGLB1036F11.g (gcc)9 GAACCTGGAGTTCTACAA CACTACCTGCCTTCTTCTCG 56 191 0.8 9 4 1 2 SEM285 SOCALR106FDF.g (gsc)8 CCCTACCCCGACCTCTCCCC GCTGCAGCACAAACAACAC 58 227 0.8 1.2 1 4 SEM285 SOCCLR106FDF.g (gsc)8(cac)6 CACCTACCAACACACACCCCCC GCTGCTCGCTGAACA 56 176 0.9 7 2 1 3 3 2 0 SEM285 SOCCLR1075010.g (gsc)8(cac)6 CACCACAAACACACACCCCCTGAACC 59 180 0.8 8 3 2 0 SEM285 SOCCLR107504.g (gsc)8(gsg)8 CACGCAAAAGAAGACACACCCTCTAACACCTGAACCACACACCCCTGAAC												
SEMUP: SCRUMERUPATION GGGCACCTTCGTANTGGT 55 242 0.9 7 1 0 1 SEMUPS SCRUMERUSFIG (gsc)glengis AACCTGCATTCTTCTCCCA CACAGAGGAATTTCCCATG 55 241 0.8 9 4 1 2 SEM28 SCVPLB1020B05.9 (gsc)glengisficity TCCTGAACCTCGCAGTCTT CACACTCGCACATGACACATCACAGACACGATGACACAT 58 191 0.8 1 1 2 SEM28 SCACLINGFED7 (gsl)gglschichty TCCTGAACCACATGACACATGACACATGATCTTGC 54 182 0.6 5 2 3 0 SEM28 SCACLINGFED7.9 (gsl)gglschichty TCCGAACCTGTGTGACAT 54 214 0.9 11 5 1 1 SEM29 SCACLINGFEM29 (gsl)gglschichty CACCAAACGAGGAACACACACCTGTGACTGTACAT 54 242 0.9 1 1 2 0 SEM29 SCACLINGFEM29 (gsl)gglschichty CACCAAACGAGGAACACACACGCTGTACACAGCAGCACACACGCGTGTGT 55 130 0.8 2 0 2	SEM273	SCQSHR1022B03.g	(cat)9	TTTCTTTTCGTCACACCCAAT	ACTCCCGTCACTCACCTGAC	55	180	0.7	5	1	2	0
SEM27 SCSEHRIGHAFL2g (highlighed) AACCGATCTTCTCCCTA CAGAGGAGATTCTCCCGATGT 55 241 0.8 6 1 1 SEM282 SCOLEN108F11g (goc)8 TCCTTGAACCTGCGAGTCTC CTACCTGCCTTCTCGTTCC 54 192 0.9 5 1 1 2 SEM285 SCACLRIGHTOR (gabliget)5(rd)7 TCCGTGAACCATCGCGAGTCTC CTACCTGCCACCACATCTTCTC 55 184 0.6 5 2 3 0 SEM295 SCCCLRIGHTOR (cap)8 CACCTCCCCAACACTTTCCG GTACACCATGCACACACTCTGCTGAACA 54 142 1 1 3 SEM295 SCCCLRIVTSDIQ (cap)8(req)6 CACCACACACACCACCACACACACACC 55 183 0.8 8 3 2 0 SEM305 SCCLRIVTGAALQ (cap)8(req)6 CACACACACACCACACACACCACCACACACACACCC 55 193 0.9 5 0 3 4 1 SEM305 SCLRIVTAALQ (gap)8(req)6(req)7 CAAAACCCTAACACACACCACACACACACACACACACAC	SEM275	SCRUHR1074E09.g	(gag)9	TCTCATCGGATTCACACACA	GGGCAGCTTCGTAATGGT	55	242	0.9	7	1	0	1
SEM28 SCOLB 8103FH 1.g. (gor)9 CAACCTCGCATCTTCACAA CACTACCTGCCTTTCTTCTCC 65 191 0.8 9 4 1 2 SEM285 SCVLRIBGTED7 (gor)8(gor)8(ct)8(7) TCCGATCACATCACAGACC GGTCGAGCAGAAACT 58 227 0.8 12 1 1 4 SEM285 SCCCLRIBGFED7 (gor)8(gor)8(ct)8(ct)87 TCCGATCACATCACGGACCTCCC GGTCGAGCACATCACTCTTC GGTCGAGCACATCACTCTTC 56 144 0.6 5 2 3 0 SEM295 SCCCLRIBGFED7 (gor)8(gor)8 CACCAAACGACTCGCATTTC CGGACCACCGACACGACACG 59 163 0.8 8 3 2 0 SEM295 SCCCLRIBGFED7 (gor)8(gor)8 CGAAACCCTCAAACCCTCACACCCCCACACGCACCACCCCCCCACACGACCACCC 59 163 0.8 8 3 2 0 SEM305 SCCLRIBTGAAD (gor)8(gor)8 CGAAACCCTCCAATCACCCCCCACACGCCCCCAACGACACACC 59 193 0.9 5 0 3 0 SEM305 SCCLRIBTGAADD (gor)8(gor)8 <t< td=""><td>SEM276</td><td>SCSFHR1043F12.g</td><td>(tg)5(tg)8(ag)5</td><td>AACCCGTTCTTCTTCCCCTA</td><td>CAGAGGGAGATTTGCCATGT</td><td>55</td><td>241</td><td>0.8</td><td>6</td><td>1</td><td>1</td><td>1</td></t<>	SEM276	SCSFHR1043F12.g	(tg)5(tg)8(ag)5	AACCCGTTCTTCTTCCCCTA	CAGAGGGAGATTTGCCATGT	55	241	0.8	6	1	1	1
SEM28 SCVPLB1020805.g (pc)B TCCTTCAACCTOGCAGTCT CTACCTGOCACAAACAACA 54 12 1 1 2 SEM284 SACALRISFED7.g (ps)8(grijk)gr CCCATACACATACAACAACAACACACACC GATGCTGCACAAAAACAACT 58 227 0.8 12 1 1 4 SEM294 SACCLRIGED07.g (ps)8(grijk) CCCATACACATACACACACACCTCGCACAAACAACT 58 148 0.6 5 2 3 0 SEM295 SCCCLRIGED10 (ps)8(grijk) CACAAACAACTCGTGACACAACACCTCAAACAACACTCGCACACACC 59 163 0.8 8 3 2 0 SEM303 SCEPLRI00810.g (ps)8(grijk) CCGAAACACCTCAAACCACA CTCCCTAACACAACACACCTCAAACCACCACAACCACCAC	SEM282	SCQGLB1038F11.g	(gcc)9	GAACCTCGCAGTCTTCACAA	CACTACCTGCCTTTCTCTCG	56	191	0.8	9	4	1	2
SEM28 SCACR1057E07.g (gs)Rgs/gs/seldy17 TCCGATCACATTCACAGACC GCTGCGACGATACACAACT 58 27 0.8 12 1 4 SEM294 SCCCLR1066D7.g (gca)R/gca) CCATACCCTGTACCGTACCC GCTGCAGCAGACACATCGTGAGG 55 184 0.6 5 2 3 0 SEM295 SCCCLR1066F12g (tb) CACCTOCCAACTCTTCTCC GTGACACATCGTGACACC 56 176 0.9 7 2 1 3 SEM295 SCCCLR1076AUA (ga)R CACCTCCAACCCTTAACCCTGAACCCTGACTCGACTCGA	SEM285	SCVPLB1020B05.g	(gcc)9	TCCTTGAACCTCGCAGTCTT	CTACCTGCCTCTCTCGTTCC	54	192	0.9	5	1	1	2
SEM24 SCCCLR1066D7.g (cca)(sccg)(8 CCATACCCTGTACCGTACCC GATCGTTCGTGACGTACTCCTG 55 184 0.6 5 2 3 0 SEM295 SCCCLR106F12.g (ca)8 CACCTACCAGACTTTCTCC GTGACACCATGGTCCTGAAG 56 176 0.9 7 2 1 3 SEM297 SCCCLR1075D10.g (cg)8(ca)6 CACCAAACGAGACTGCATTA GTGAGACACGACGACACAC 59 163 0.8 8 3 2 0 SEM303 SCEPLR1080H10.g (cg)8(ca)6 CGAAAACCCTCAAACCCTAA CTCCTCTAGCTTCAACAG 56 227 0 6 1 2 0 5 0 3 0 SEM303 SCLIR1017A10 (ca)8(ca)9 ACCACCAATACCAACGTCAAACATCCACGACAC CGGAGCATACCAAGGTAACAT 55 242 0.9 5 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 0 1 2 2 1 1 2	SEM288	SCACLR1057E07.g	(ga)8(gct)5(ctg)7	TCCGATCACAATCACAGACC	GCTGCAGCAGATGACAAACT	58	227	0.8	12	1	1	4
SEK263 SCCCLR1075010.g (top8) CACCTCOCAGACTCTTCCC GGACACAGACGCAGGTCGAAGAT 54 116 0.9 7 2 1 3 SEM297 SCCCLR1075010.g (top8)(cac)6 CACCAAACAGACTCGCATT CGGACAGACGACACAGC 59 163 0.8 8 3 2 0 SEM308 SCCCLR107504.0.g (top8)(cop3)8 GCGGTTTCTTCTTTTCTTC ACCACACACACACCCACAAC 56 222 0.7 8 3 4 1 SEM305 SCJFLR1013A40.g (top3)(cop3)8 CGGAATACCACACACCC TCGCACTGCAAGAGGAA 55 242 0.7 7 4 0 1 2 0 SEM305 SCJFLR1013A40.g (top3)(cop3)8 ACCACCATATCCACAGCACACACACGCAGAAGA 55 242 0.9 5 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 1 1 1	SEM294	SCCCLR1066D07.g	(cca)5(ccg)8	CCATACCCTGTACCGTACCC	GATGCTTGCATTCATCCTTG	55	184	0.6	5	2	3	0
SEN297 SCCCLR1075D10.g (goc)8(cac)6 CACCAAACGACTCGCATTT CCGATCGAACTCGTGACACT 54 214 0.9 11 5 1 1 SEM302 SCCCLR1075A04.g (ca)8 ACGCGAGAGGAGAGATA GTCAGCAGCACACACG 59 163 0.8 8 3 2 0 SEM302 SCEPLR1003D011.g (gog)8(cag)8 CGGATTCTTGTTTTCCTTC ACCACGAACACCCGATCACCCTA 55 193 0.9 5 0 3 0 SEM303 SCJELR1017AH.0.g (ca)8(cag)8(cag)8 ACGACCAACACCACCCAC CTCGACGTGAGATGGAAGGAAGA 54 244 0.7 7 4 0 1 2 SEM303 SCJLR1107AH.0.g (ca)8(cag)8(cag)9 ACACCAACACCCCTCAACCC CGGACAACACACCCCTGAAGC 55 242 0.9 5 1 1 2 SEM313 SCGLR108402.g (gog)9 GAGGGAACACATCCCTCTACC CGGAGGACCGAT 55 20 0.8 2 2 2 SEM313 SCGLR109601.g (a)864CTCGCAGGAGACACA GTCTGCCCGTAGATGAAGC	SEM295	SCCCLR1066F12.g	(tc)8	CACCTCCCAGACTCTTCTCC	GTGACACCATGGTCCTGAAG	56	176	0.9	7	2	1	3
SEM28 SCCCLR1076A04.g (ca)8 ACGCGACAGCAGGAGAGATA GCCCACACACCACACC 59 163 0.8 8 3 2 0 SEM302 SCEPLR1030H10.g (gg0)6(cg0)8 GCGATTCTTGTTTCTTCT ACCACGACCTCAATCCAAC 56 282 0.7 8 3 4 1 SEM303 SCEPLR1030H10.g (gg0)8 CGAAAACCTCACACCCAC CTCCTCAGCTTCGAGAG 56 247 0 6 1 2 0 SEM305 SCJLR10174A10.g (ac)5(ca)8(ag)7 CAAACTTTCCCCTAATCACC CGGACACAAACGTCGAGGA 55 242 0.9 5 1 1 2 SEM305 SCOLR101010.0 (gg)8 AAGGAACCACCCTCCATACA CGGACACAAGACCTCT 56 241 0.9 6 3 3 0 SEM315 SCOLR1084A02.g (gr0)9 GAGGAACCATCCCTTCTC CGCGACAGAAGACTCTCT 56 211 0.9 6 3 3 0 SEM315 SCOLR1084A02.g (gr0)8 AAGGGAACCATCCCTTCTCTC CGCGAGAGACATGCTCT <td< td=""><td>SEM297</td><td>SCCCLR1075D10.g</td><td>(cgc)8(cac)6</td><td>CACCAAACAGACTCGCATTT</td><td>CGGATCGAACTCTGTGACAT</td><td>54</td><td>214</td><td>0.9</td><td>11</td><td>5</td><td>1</td><td>1</td></td<>	SEM297	SCCCLR1075D10.g	(cgc)8(cac)6	CACCAAACAGACTCGCATTT	CGGATCGAACTCTGTGACAT	54	214	0.9	11	5	1	1
SEH302 SCEPLR:1008H10.g (ggc)6(cg)8 GCGGTTCTTGTTTCCTTC ACACGACACCTCAAACCCT ACACGACAACCTCAAACCCT ACACGACAACCTCAAACCCT ACACGACAACACCACCAC TCGAAGTTGACATGACAG 56 222 0.7 8 3 4 1 SEM303 SCEPLR:1031A08.g (cag)8(cag)9 ACACCACATACCACCACCAC TCGAAGTTGACAGAG 56 247 0 6 1 2 0 SEM304 SCJLLR:101404.0.g (ac)5(ca)8(ag)7 CAAACTTTGCCCCATATCACC CGGAACAACACCCCAAAGGA 55 242 0.9 5 1 1 2 SEM303 SCGLR:1016(10.g (ga)8 ACGAACCACACCCCTAAGC GTGAGGCAGCGCGGGTAAT 55 240 0.9 10 2 4 1 SEM313 SCGLR:1016404.0.g (ga)8 ACGAACCACACCCCTTACC GCGCTGAGGCACTGAAT 56 211 0.9 6 3 3 0 SEM315 SCACLR:2007A01.g (ca)8(ag)9 GAGGCACCTCGAACACC GTCGGCCCGTAGGTAT 56 150 0.7 5 2 1 0	SEM298	SCCCLR1076A04.g	(ca)8	ACGCGAGAGGGGAGAGAGATA	GTCAGCAGCACGAACAGC	59	163	0.8	8	3	2	0
SEM303 SCEPLER1030D11.g (agg)8 CGAAAACCCTCAAACCCTAA CTCCTCTAGCTCGCGTTGT 55 193 0.9 5 0 3 0 SEM306 SCLFLR1013A08.g (cag)8(cag)8 ACCACCACACCACCACC CTCCGACGTGGACATACCAAGTGAAG 54 244 0.7 7 4 0 1 2 SEM307 SCLLR1014101F02.g (gt)8 TCTCGACTCCCCTAATCACC CGGAACGAAAGACTCGCGTTG 55 242 0.9 5 1 1 2 SEM307 SCGLR108140.g (gt)8 ACAGAACCATCCCTTCT CGGAGCACACACTCCTTCT 56 211 0.9 6 3 3 0 SEM313 SCGLR108140.g (gt)99 GAGGACACACACTCCTTCT CGCCTTAGATCACTCGT 58 250 0.8 8 2 1 1 SEM315 SCACLR2007A01.g (ca)(s(cg)7) GAATATAACCGCCACCTTGC TGGCTTCGCCTACTACT 58 100 7 5 2 1 0 5 2 1 0 5 2 1 1 1 5 5 2 1 1 1 1 1	SEM302	SCEPLR1008H10.g	(ggc)5(cgg)8	GCGGTTTCTTGTTTTCCTTC	ACCACGACCTCGATCTCAAC	56	282	0.7	8	3	4	1
SEM306 SCJFLR1013A08.g (cag)8(cag)9 ACCACCATACCACCACCA TCGACGTTGACATGG 56 247 0 6 1 2 0 SEM307 SCJFLR10174A10.g (ac)5(ca)8(ag)17 CAAACTTTGCCCGATAGCT CGGACCAAACGCACACA 55 242 0.9 5 1 1 2 SEM308 SCGLILR1101FC10.g (ga)8 AAGAAACCAACCCTCCAAAGC CGGACGAAAGATCGCACGATA 55 230 0.9 10 2 4 1 SEM318 SCGUR1019C10.g (ga)8 AAGAAACCAACCTCTCTC CGGATCGAAGAAGACCTC 56 211 0.9 6 3 3 0 SEM315 SCACLR207A01.g (ac)5(ag)9 GAAGTCACGCACCTTGC TGGCTTCCACTGCGACGACCACTGCT 60 152 0.9 8 2 1 0 SEM319 SCACLR2027A01.g (ag)8(ag)16 GTCGTCACTCGGACGACAC GTCGGTCCAGTGGTGAGTA 56 150 0.7 5 2 1 0 SEM319 SCACLR2020205.g (ag)8(ag)16 GTCCGTCTCCACTGCAGAACAC GCGGTGAGGTGGAGGTG 59 222 0.5 10 4 1 1 <td>SEM303</td> <td>SCEPLR1030D11.g</td> <td>(agg)8</td> <td>CGAAAACCCTCAAACCCTAA</td> <td>CTCCTCTAGCTTCCGCTTGT</td> <td>55</td> <td>193</td> <td>0.9</td> <td>5</td> <td>0</td> <td>3</td> <td>0</td>	SEM303	SCEPLR1030D11.g	(agg)8	CGAAAACCCTCAAACCCTAA	CTCCTCTAGCTTCCGCTTGT	55	193	0.9	5	0	3	0
SEM307 SCJFLR1074A10.g (ac)5(ca)9(ag)7 CAAACTTTTGCCCGATAGGT CGGAGCATACCAAGTGAAGA 54 244 0.7 7 4 0 1 SEM308 SCJLLR1101F02.g (gt)8 TCTGGACTCCCTAATCACC CGGACAGAAAGATCCCAGTAG 55 242 0.9 5 1 1 2 SEM310 SCOGLR1019C10.g (ga)8 AAGAAACCAACCCTCAAAGC GTAGGTAGCGCTGGGTAGT 55 230 0.9 10 2 4 1 SEM313 SCSGLR104AA02.g (gcg)9 GAGGGAACACATCCCTTCC GCCGTAGTAGCAACCTCCT 58 250 0.8 8 2 1 1 SEM314 SCVPLR1049G12.g (cl)8(cl)5(cgc)7 GAATTAACCCCACCCTTCC TGGCTTTCACTGCGCAGAGTG 68 150 0.7 5 2 1 0 5 SEM319 SCACLR2007A01.g (ca)9(ag)17 GAGGCAGCTCGACAACC GTCGCCCGAGGAGCACGAGTGG 69 10 0.7 5 2 1 0 5 5 10 4 1 1 5 SEM320 SCCCLR2002P05.g (ag)9(ag)17 GAGGCAGCTCGACGACAC GCCGTC	SEM306	SCJFLR1013A08.g	(cag)8(cag)9	ACCACCAATACCACCACCAC	TCGACGTTGGACTTGAGAAG	56	247	0	6	1	2	0
SEM308 SCJLLR1101F02.g (g)8 TCTCGACTCCCCTAATCACC CGGACAGAAAGATCGCAGTA 55 242 0.9 5 1 1 2 SEM310 SCQGLR1019C10.g (g)8 AAGAAACCAACCCTCAAAGC GTAGGGTAGCGCTGGGTAAT 55 230 0.9 10 2 4 1 SEM313 SCSGLR104A02.g (g)8 AAGAAACCATCCCTTCTC GCGGTAGTGAAGACCTCTCT 56 211 0.9 8 2 1 1 SEM314 SCVPLR1049G12.g (g)8(q)7 GAATATAACCGCCACCTTGC TGGCTTTCCATCTCGTGACT 56 150 0.7 5 2 1 1 SEM315 SCACLR2007A01 g (q)8(q)7 GAAGCACTCGCAGAAATGC CACCGGGAGCACTGAGTA 56 150 0.7 5 2 1 0 SEM320 SCCCLR2002F05.g (q)8(q)7 GAAGCACTCGACCAACC GTCAGCTCGACGAGGAGTAG 55 239 0.9 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SEM307	SCJFLR1074A10.g	(ac)5(ca)9(ag)7	CAAACTTTTGCCCGATAGGT	CGGAGCATACCAAGTGAAGA	54	244	0.7	7	4	0	1
SEM310 SCQGLR1019C10.g (ga)8 AAGAAACCAACCCTCAAAGC GTAGGGTAGCGCTGGGTAAT 55 230 0.9 10 2 4 1 SEM313 SCSGLR1084A02.g (gcq)9 GAGGGAACACATCCTTCTC GCCGTAGAGAAGACCCTC 56 211 0.9 6 3 3 0 SEM315 SCSGLR1084A02.g (ct)8(ct)5(cgc)7 GAATATAACCGCCACCTTGC TGGCTTCCATCGTGAACTGT 60 152 0.9 8 2 2 2 2 2 2 2 2 2 2 1 0 5 56 10 0.7 5 2 1 0 5 56 2 9 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3	SEM308	SCJLLR1101F02.g	(gt)8	TCTCGACTCCCCTAATCACC	CGGACAGAAAGATCGCAGTA	55	242	0.9	5	1	1	2
SEM313 SCSGLR1084A02.g (gcg)9 GAGGGAACACATCCCTTCTC GCCGTAGATGAAGACCTCCT 56 211 0.9 6 3 3 0 SEM314 SCVPLR1049G12.g (ct)8(ct)5(cgc)7 GAATATAACCGCCACCTTGC TGCTTTCACTCTCGTGACT 58 250 0.8 8 2 1 1 SEM315 SCACLR2007A01.g (ca)5(ag)9 GAGGCACGACAGAG GTCTGGCCGTAAGCTGT 60 152 0.9 8 2 2 2 SEM319 SCAGLR2022600.5 (cap)8 ATCGTCATCGCAAAATGC CAACCGGAGACGAGTGAG 59 222 0.5 10 4 1 1 SEM320 SCCCLR2002F05.g (ag)8(ag)7 GAGGCAGCTCGACGACAC GCGGTGAGGTGGAGGTGG 59 222 0.5 10 4 1 1 SEM321 SCCCRT100160.g (ct)18 CTCCCCTCTGCTCATCA AGGTGACGAGTGGAGGTGG 59 222 0.9 7 4 0	SEM310	SCQGLR1019C10.g	(ga)8	AAGAAACCAACCCTCAAAGC	GTAGGGTAGCGCTGGGTAAT	55	230	0.9	10	2	4	1
SEM314 SCVPLR1049G12.g (ct)8(ct)5(cgc)7 GAATATAACCGCCACCTTGC TGGCTTTCCATCTCGTGACT 58 250 0.8 8 2 1 1 SEM315 SCACLR2007A01.g (ca)5(cg)9 GAGGTCCTGGGAGAGACAGA GTCTGGCCCGTAAGCTGT 60 152 0.9 8 2 2 2 SEM319 SCAGLR2026D5.g (cg)8 ATCGTCATCGCAAAATGC CAACCGGAGGCACTGAGTA 56 150 0.7 5 2 1 0 SEM320 SCCCR2002F05.g (ag)9(ag)7 GAGGCACTCGACACCAC GTCAGCTCACCGCACTGGT 62 11 0.5 6 2 2 1 1 SEM321 SCQGLR2032D06.g (ga)8(gc)5 GTCCGTCTCCACTCGAAAAC GCGGTTGAGGTGGGGAG 59 196 0.9 9 1 3 1 SEM321 SCCCRT1001G10.g (cct)8 CTCCCCTCTGCTCATCA AGGTGACTCGAGGTGGGGG 59 222 0.9 5 1 1 0 0 SEM322 SCCRT1001G10.g (ct)8 CTCCCCACGACGAAAGCACTT GCCGTAAAGCAGGAGGGGGGGG 5 22 0.9 5 1 1 </td <td>SEM313</td> <td>SCSGLR1084A02.g</td> <td>(gcg)9</td> <td>GAGGGAACACATCCCTTCTC</td> <td>GCCGTAGATGAAGACCTCCT</td> <td>56</td> <td>211</td> <td>0.9</td> <td>6</td> <td>3</td> <td>3</td> <td>0</td>	SEM313	SCSGLR1084A02.g	(gcg)9	GAGGGAACACATCCCTTCTC	GCCGTAGATGAAGACCTCCT	56	211	0.9	6	3	3	0
SEM315 SCACLR2007A01.g (ca)5(ag)9 GAGGTCCTGGGAGAGACAGA GTCTGGCCCGTAAGCTGT 60 152 0.9 8 2 2 2 SEM319 SCACLR2026005.g (cg)8 ATCGTCATCGCAAAATGC CAACCGGAGGCACTGAGTA 56 150 0.7 5 2 1 0 SEM320 SCCCLR2002F05.g (ag)9(ag)7 GAGGCAGTCGACGACAC GTCAGCTCCGCTCGTCT 62 111 0.5 6 2 2 1 SEM321 SCCQGLR2032D06.g (ga)8(ap)5 GTCCCCTCTCGCTCATCA AGGTTGACGATGGTGGTGAG 59 222 0.5 10 4 1 SEM327 SCCCRT1001610.g (ct)18 CTCCCCTCTGCTCATCA AGGTTGCAGGTGTGCAGG 59 122 0.9 7 4 0 0 SEM328 SCCCRT1003H03.g (ct)16 TCTGCCGTTCCATCACT GCCGTGAAAGCCTCCGTGTG 59 222 0.9 5 1 1 0 SEM328 SCLRT1009B09.g (gg)8 CACCCAGGACAACACTT GCAGTGGAAGCACACTGTGTG 55 202 0.7 7 1 2 0 0 <	SEM314	SCVPLR1049G12.g	(ct)8(ct)5(cgc)7	GAATATAACCGCCACCTTGC	TGGCTTTCCATCTCGTGACT	58	250	0.8	8	2	1	1
SEM319 SCAGLR2026C05.g (cgc)8 ATCGTCATCGCAAAATGC CAACCGGAGGCACTGAGTA 56 150 0.7 5 2 1 0 SEM320 SCCCLR2002F05.g (ag)9(ag)7 GAGGCAGCTCGACCACC GTCAGCTCCGCTCCTCCT 62 111 0.5 6 2 2 1 SEM321 SCCGLR2032D06.g (a)8(gc)5 GTCCGTCTCCACTCGAAAAC GCGGTTGAGGTGGGGGAGC 59 222 0.5 10 4 1 SEM321 SCCCRT1001610.g (cc)8 CTCCCCCTCTGCTCTACT AGGTTGAGGTGGTGAC 59 196 0.9 9 1 3 1 SEM328 SCCCRT1003H03.g (ct)16 CTCCCCCTCTGCTCTCT ATTCGATTCCAATCCAAC 55 239 0.9 7 4 0 0 SEM328 SCCRT1003H03.g (ct)16 CTCCCCATCCAAGTAAGCA GCCTGTAAAAGCCTCCGTGTG 59 222 0.9 5 1 1 0 SEM336 SCJLRT1009B0.g (gg)8 CACCCAGGTCAAGTAGAT TTCGTATAGCCATCGTCAT 55 155 0.8 5 2 1 0 SEM336 <td< td=""><td>SEM315</td><td>SCACLR2007A01.g</td><td>(ca)5(ag)9</td><td>GAGGTCCTGGGAGAGACAGA</td><td>GTCTGGCCCGTAAGCTGT</td><td>60</td><td>152</td><td>0.9</td><td>8</td><td>2</td><td>2</td><td>2</td></td<>	SEM315	SCACLR2007A01.g	(ca)5(ag)9	GAGGTCCTGGGAGAGACAGA	GTCTGGCCCGTAAGCTGT	60	152	0.9	8	2	2	2
SEM320 SCCCLR2002F05.g (ag)9(ag)7 GAGGCAGCTCGACGACAC GTCAGCTCCGCTCTGCT 62 111 0.5 6 2 2 1 SEM321 SCQGLR2032D06.g (ga)8(gc)5 GTCCGTCTCCACTCGAAAAC GCGGTTGAGGTGGGGAC 59 222 0.5 10 4 1 1 SEM327 SCCCRT1001G10.g (cct)8 CTCCCCTCTCGCTCATCA AGGTTGACGATGGTGGTGAC 59 196 0.9 9 1 3 1 SEM328 SCCCRT1003H03.g (c1)16 TCTTGCTGTTCGTTCT ATTCCGATTCCAAC 55 239 0.9 7 4 0 0 SEM329 SCEQRT1025C10.g (cgg)8 CACCCAGGCAAGAAGAACACCTT GCAGTGAAAAGCCATCGTGGTGAC 59 222 0.9 5 1 0 SEM336 SCJLRT100809.g (ggc)8 CACCCAGGCAAAGAGA TTCGTATAGCCATCGTCAT 55 50.8 5 2 1 0 SEM337 SCJLRT1013F12.g (ga)8 AGCAATGGTACGCACAAGAG TTGCTAGTCGTGTGAGG 56 216 0.7 20 11 1 1 SEM338 SCJLRT1018	SEM319	SCAGLR2026C05.g	(cgc)8	ATCGTCATCGCAAAATGC	CAACCGGAGGCACTGAGTA	56	150	0.7	5	2	1	0
SEM321 SCQGLR2032D06.g (ga)8(gc)5 GTCCGTCTCCACTCGAAAAC GCGGTTGAGGTCGAGGTAG 59 222 0.5 10 4 1 1 SEM327 SCCCRT1001G10.g (cct)8 CTCCCCTCTGCGTCATCA AGGTTGACGATGGTGGTGAC 59 196 0.9 9 1 3 1 SEM328 SCCCRT1003H03.g (ct)16 TCTTGCCTGTCGCTCTCCT ATTCCGATTCCGATCCAAC 55 239 0.9 7 4 0 0 SEM329 SCCCRT1003H03.g (ct)16 TCTTGCCGTGTCAAGGA GCCTGTAAAAGCCTCTGGG 59 222 0.9 5 1 1 0 SEM332 SCJLRT109609.g (gg)28 CCGCAAGGAAGAACACCTT GCAGTGGGAGGTAGG 56 232 0.7 7 1 2 0 SEM336 SCJLRT1013F12.g (ga)8 ACCAATGGTACGACAAGAG TTGCTATGCGTGTTCTGG 55 202 0.7 9 1 </td <td>SEM320</td> <td>SCCCLR2002F05.g</td> <td>(ag)9(ag)7</td> <td>GAGGCAGCTCGACGACAC</td> <td>GTCAGCTCCGCTCCTGCT</td> <td>62</td> <td>111</td> <td>0.5</td> <td>6</td> <td>2</td> <td>2</td> <td>1</td>	SEM320	SCCCLR2002F05.g	(ag)9(ag)7	GAGGCAGCTCGACGACAC	GTCAGCTCCGCTCCTGCT	62	111	0.5	6	2	2	1
SEM327 SCCCRT1001G10.g (cct)8 CTCCCCTCTGGCTCATCA AGGTTGACGATGGTGGTGAC 59 196 0.9 9 1 3 1 SEM328 SCCCRT1003H03.g (ct)16 TCTTGCCTGTTCGTCTCCT ATTCCGATTCCAAC 55 239 0.9 7 4 0 0 SEM329 SCEQRT1025C10.g (cgg)8 CACCCAGCTCAAGTACAGCA GCCTGTAAAAGCCTCCTGTG 59 222 0.9 5 1 1 0 SEM329 SCJFRT1009B09.g (ggc)8 CCGCAAGGAAGAACACCTT GCAGTGGAAGTGACGCACTGGTG 56 232 0.7 7 1 2 0 SEM336 SCJLRT1016C08.g (at)5(aag)8 GCCAGGGTCTCAAGTGAT TTCGTCATAGCCATCGTCTTGG 55 202 0.7 9 1 1 1 SEM337 SCJLRT1013F12.g (ga)8 AGCAATGGATCGACGAAGAGGTTT ATACGACGAGGAGAGGGG 56 216 0.7 20 11 1 1 1 SEM338 SCJLRT1018C02.g (ga)8 AGCGAGCGTACACCAAAATC ACGGCTCCAGATGAGGGGG 58 163 0.9 15 2 2 0 <td>SEM321</td> <td>SCQGLR2032D06.g</td> <td>(ga)8(gc)5</td> <td>GTCCGTCTCCACTCGAAAAC</td> <td>GCGGTTGAGGTCGAGGTAG</td> <td>59</td> <td>222</td> <td>0.5</td> <td>10</td> <td>4</td> <td>1</td> <td>1</td>	SEM321	SCQGLR2032D06.g	(ga)8(gc)5	GTCCGTCTCCACTCGAAAAC	GCGGTTGAGGTCGAGGTAG	59	222	0.5	10	4	1	1
SEM328 SCCCRT1003H03.g (ct)16 TCTTGCCTGTTCGTCTTCCT ATTCCGATTCCGAC 55 239 0.9 7 4 0 0 SEM329 SCEQRT1025C10.g (cgg)8 CACCCAGCTCAAGTACAGCA GCCTGTAAAAGCCTCGTGG 59 222 0.9 5 1 1 0 SEM329 SCJFRT1009B09.g (ggc)8 CCGCAAGGAAGACACCTT GCAGTGGAAGTCGACGTAGG 56 232 0.7 7 1 2 0 SEM336 SCJLRT1006C08.g (at)5(aag)8 GCCAGGGTTCTTCAAGTGAT TTCGTCATAGCCATCGTCTTGG 55 202 0.7 9 1 1 1 SEM337 SCJLRT1013F12.g (ga)8 AGCAATGGTACGCACAAGAG TTGCTATGCGGTCGTTCTTGG 55 202 0.7 9 1 1 1 SEM338 SCJLRT1018602.g (ga)8 AGCGAGCGTACACCAAATC ACGGCTCAGAGGAGGAGGAGG 56 216 0.7 20 11 1 1 1 1 SEM339 SCJLRT1019C06.g (ag)8 AAGCGAGCGTACACCAAATC ACGGCTCAGATGGCAGTATCCAG 56 249 0.8 15 5 3<	SEM327	SCCCRT1001G10.g	(cct)8	CTCCCCTCTCGCTCATCA	AGGTTGACGATGGTGGTGAC	59	196	0.9	9	1	3	1
SEM329 SCEQRT1025C10.g (cgg)8 CACCCAGCTCAAGTACAGCA GCCTGTAAAAGCCTCCTGTG 59 222 0.9 5 1 1 0 SEM322 SCJFRT1009B09.g (ggc)8 CCGCAAGGAAGAACACCTT GCAGTGGAAGTCGACGTAGG 56 232 0.7 7 1 2 0 SEM336 SCJLRT1006C08.g (at)5(aag)8 GCCAGGGTTCTTCAAGTGAT TTCGTCATAGCCATCGTCAT 55 10.8 5 2 1 0 SEM337 SCJLRT1013F12.g (ga)8 AGCAATGGTACGCACAAGAG TTGCTATGCGTCGTTCTTGG 55 202 0.7 9 1 1 1 SEM338 SCJLRT1013F12.g (ga)8 AGCCAATGGTACGCACAAGAG TTGCTAGTCGTCGTTCTTGG 55 202 0.7 9 1 1 1 SEM339 SCJLRT1018G02.g (ga)8 AGCGAGCGTACACCAAATC ACGGCTCAGATGGTGAGAG 58 163 0.9 15 2 2 0 SEM341 SCAGRT2041D09.g (cgg)8 GTGGTTTGAGTACGCTCTCTCTCTCTCT ATTTGAGAGGAGGAGTAGCACACAC 57 171 0.5 2 0 1 1	SEM328	SCCCRT1003H03.g	(ct)16	TCTTGCCTGTTCGTCTTCCT	ATTCCGATTCCGATTCCAAC	55	239	0.9	7	4	0	0
SEM332 SCJFRT1009B09.g (ggc)8 CCGCAAGGAAGAACACCTT GCAGTGGAAGTCGACGTAGG 56 232 0.7 7 1 2 0 SEM336 SCJLRT1006C08.g (at)5(aag)8 GCCAGGGTTCTTCAAGTGAT TTCGTCATAGCCATCGTCAT 55 155 0.8 5 2 1 0 SEM337 SCJLRT1013F12.g (ga)8 AGCAATGGTACGCACAAGAG TTGCTAGTCGTCGTTCTTGG 55 202 0.7 9 1 1 SEM338 SCJLRT1018G02.g (ga)8 AGCCAGTGGAGGAGGAGTTT ATACGACGAGGAGGAGGTGG 56 216 0.7 20 11 1 SEM339 SCJLRT1019C06.g (ga)8 AAGCGAGCGTACACCAAATC ACGGCTCAGATGGTGGAGGAG 58 163 0.9 15 2 2 0 SEM341 SCAGRT2041D09.g (cgg)8 GTGGTTGGCGCTCTCTCTCTCT ATTTGAGATGGCTGCATCA 57 171 0.5 2 0 1 1 SEM344 SCEPRT2047A05.g (ct)15 CGAGAGGCCTTCTCTCTCTCT ATTTGAGATGGCTGGAGGAGAGA 59 180 0.9 6 3 2 0 SEM349 <td>SEM329</td> <td>SCEQRT1025C10.g</td> <td>(cgg)8</td> <td>CACCCAGCTCAAGTACAGCA</td> <td>GCCTGTAAAAGCCTCCTGTG</td> <td>59</td> <td>222</td> <td>0.9</td> <td>5</td> <td>1</td> <td>1</td> <td>0</td>	SEM329	SCEQRT1025C10.g	(cgg)8	CACCCAGCTCAAGTACAGCA	GCCTGTAAAAGCCTCCTGTG	59	222	0.9	5	1	1	0
SEM336 SCJLRT1006C08.g (at)5(aag)8 GCCAGGGTTCTTCAAGTGAT TTCGTCATAGCCATCGTCAT 55 155 0.8 5 2 1 0 SEM337 SCJLRT1013F12.g (ga)8 AGCAATGGTACGCACAAGAG TTGCTAGTCGTCGTTCTTGG 55 202 0.7 9 1 1 1 SEM338 SCJLRT1018G02.g (ga)8 GATCGGATCGAGAGGAGGTTTT ATACGACGAGGGACGAAGTGG 56 216 0.7 20 11 1 1 SEM339 SCJLRT1019C06.g (ag)8 AAGCGAGCGTACACCAAATC ACGGCTCAGATGGTTGAGAG 58 163 0.9 15 2 2 0 SEM341 SCAGRT2041D09.g (cgg)8 GTGGTTTGAGTACGCTCGTG AGAGGGATGGCAGTATCCAG 56 249 0.8 15 5 3 1 SEM344 SCEPRT2047A05.g (ct)15 CGTGCGCTCTCTCTCTCTC ATTTTGAGATGGCTGGATAGCTGGTAG 57 171 0.5 2 0 1 1 SEM349 SCEQRT2099E08.g (gca)8 CGAAGGGAGCACACTCCT GCGGACGTAGATGGAGAGAGA 59 180 0.9 6 3 2 0	SEM332	SCJFRT1009B09.g	(ggc)8	CCGCAAGGAAGAACACCTT	GCAGTGGAAGTCGACGTAGG	56	232	0.7	7	1	2	0
SEM337 SCJLRT1013F12.g (ga)8 AGCAATGGTACGCACAAGAG TTGCTAGTCGTCGTTCTTGG 55 202 0.7 9 1 1 SEM338 SCJLRT1013G02.g (ga)8 GATCGGATCGAGAGGAGTTTT ATACGACGAGGAGGAGTGG 56 216 0.7 20 11 1 SEM339 SCJLRT1019C06.g (ag)8 AAGCGAGCGTACACCAAATC ACGGCTCAGATGGTTGAGAG 58 163 0.9 15 2 2 0 SEM339 SCJLRT1019C06.g (ag)8 AAGCGAGCGTACACCAAATC ACGGCTCAGATGGTTGAGAG 58 163 0.9 15 2 2 0 SEM341 SCAGRT2041D09.g (cgg)8 GTGGTTTGAGTACGCTCGTG AGAGGGATGGCAGTATCCAG 56 249 0.8 15 5 3 1 SEM344 SCEPRT2047A05.g (ct)15 CGTGGCTCTCTCTCTCTCT ATTTGGACGCTGCATCA 57 171 0.5 2 0 1 1 SEM349 SCEQRT2099E08.g (gca)8 CGAGAGGACGACACTCCT GCGGACGTAGATGGAGAGAA 59 228 0.9 6 5 0 0 SEM350 SC	SEM336	SCJLRT1006C08.g	(at)5(aag)8	GCCAGGGTTCTTCAAGTGAT	TTCGTCATAGCCATCGTCAT	55	155	0.8	5	2	1	0
SEM338 SCJLRT1018G02.g (ga)8 GATCGGATCGAGAGGAGGAGTTTT ATACGACGAGGACGAAGTGG 56 216 0.7 20 11 1 1 SEM339 SCJLRT1019C06.g (ag)8 AAGCGAGCGTACACCAAATC ACGGCTCAGATGGTTGAGAG 58 163 0.9 15 2 2 0 SEM339 SCJLRT1019C06.g (ag)8 AAGCGAGCGTACACCAAATC ACGGCTCAGATGGTTGAGAG 58 163 0.9 15 2 2 0 SEM341 SCAGRT2041D09.g (cgg)8 GTGGTTTGAGTACGCTCGTG AGAGGGATGGCAGTATCCAG 56 249 0.8 15 5 3 1 SEM344 SCEPRT2047A05.g (ct)15 CGTGCGCTCTCTCTCTCTCT ATTTTGAGATGGCTGCATCA 57 171 0.5 2 0 1 1 SEM349 SCEQRT2099E08.g (gca)8 CGACAGGGAGCACTCCT GCGGGACGTAGATGGAGAGAG 59 180 0.9 6 3 2 0 SEM350 SCJFRT2057F04.g (gca)9 CCAATGGAGAGACACTCCT GCGGGACGAGTGCTAGCTGGTGCAGCT 57 119 0.9 5 2 1 1	SEM337	SCJLRT1013F12.g	(ga)8	AGCAATGGTACGCACAAGAG	TTGCTAGTCGTCGTTCTTGG	55	202	0.7	9	1	1	1
SEM339 SCJLRT1019C06.g (ag)8 AAGCGAGCGTACACCAAATC ACGGCTCAGATGGTTGAGAG 58 163 0.9 15 2 2 0 SEM341 SCAGRT2041D09.g (cgg)8 GTGGTTTGAGTACGCTCGTG AGAGGGATGGCAGTATCCAG 56 249 0.8 15 5 3 1 SEM341 SCEPRT2047A05.g (ct)15 CGTGCGCTCTCTCTCTCTCT ATTTTGAGATGGCTGCATCA 57 171 0.5 2 0 1 1 SEM349 SCEQRT2099E08.g (gca)8 CGAGAGGCCTTCTCTCTCTGT CGCTGACGTAGTCCTGGTAG 59 180 0.9 6 3 2 0 SEM350 SCJFRT2057F04.g (gca)9 CCAATGGAGAGACACTCCT GCGGACGTAGATGGAGAGAGA 59 228 0.9 6 5 0 0 SEM351 SCMCRT2085E08.g (tg)8 CGACTGTGGGAGGAGTTTGT TTGCAGCAGTTGCTAGCTGT 57 119 0.9 5 2 1 1 SEM358 SCAGRT3048C12.g (gaa)9 CTGGCCTCAAGAGGAAACTG ACCAACCTCTTGACCAGCAC 59 124 0.9 8 5 2 1 <	SEM338	SCJLRT1018G02.g	(ga)8	GATCGGATCGAGAGGAGTTTT	ATACGACGAGGACGAAGTGG	56	216	0.7	20	11	1	1
SEM341 SCAGRT2041D09.g (cgg)8 GTGGTTTGAGTACGCTCGTG AGAGGGATGGCAGTATCCAG 56 249 0.8 15 5 3 1 SEM344 SCEPRT2047A05.g (ct)15 CGTGCGCTCTCTCTCTCT ATTTTGAGATGGCTGCATCA 57 171 0.5 2 0 1 1 SEM349 SCEQRT2099E08.g (gca)8 CGAGAGGCCTTCTCTCTCTGT CGCTGACGTAGTCCTGGTAG 59 180 0.9 6 3 2 0 SEM350 SCJFRT2057F04.g (gca)9 CCAATGGAGAGACGACACTCCT GCGGGACGTAGGTGGCAGGAGAGA 59 228 0.9 6 5 0 0 SEM351 SCMCRT2085E08.g (tg)8 CGACTGTGGGAGGAGATTGT TTGCAGCAGTTGCTAGCTGT 57 119 0.9 5 2 1 1 SEM358 SCAGRT3048C12.g (gaa)9 CTGGCCTCAAGAGGAAACTG ACCAACCTCTTGACCAGCAC 59 124 0.9 8 5 2 1	SEM339	SCJLRT1019C06.g	(ag)8	AAGCGAGCGTACACCAAATC	ACGGCTCAGATGGTTGAGAG	58	163	0.9	15	2	2	0
SEM344 SCEPRT2047A05.g (ct)15 CGTGCGCTCTCTCTCTCTCT ATTTTGAGATGGCTGCATCA 57 171 0.5 2 0 1 1 SEM349 SCEQRT2099E08.g (gca)8 CGAGAGGCCTTCTCTCTCTG CGCTGACGTAGTCCTGGTAG 59 180 0.9 6 3 2 0 SEM350 SCJFRT2057F04.g (gca)9 CCAATGGAGAGACGACACTCCT GCGGACGTAGATGGAGAAGA 59 228 0.9 6 5 0 0 SEM351 SCMCRT2085E08.g (tg)8 CGACTGTGGGAGGAGATTGT TTGCAGCAGTTGCTAGCTGT 57 119 0.9 5 2 1 SEM358 SCAGRT3048C12.g (gaa)9 CTGGCCTCAAGAGGGAAACTG ACCAACCTCTTGACCAGCAC 59 124 0.9 8 5 2 1	SEM341	SCAGRT2041D09.g	(cgg)8	GTGGTTTGAGTACGCTCGTG	AGAGGGATGGCAGTATCCAG	56	249	0.8	15	5	3	1
SEM349 SCEQRT2099E08.g (gca)8 CGAGAGGCCTTCTCTCTCTG CGCTGACGTAGTCCTGGTAG 59 180 0.9 6 3 2 0 SEM350 SCJFRT2057F04.g (gca)9 CCAATGGAGACGACACTCCT GCGGACGTAGATGGAGAAGA 59 228 0.9 6 5 0 0 SEM351 SCMCRT2085E08.g (tg)8 CGACTGTGGGAGGAGTTTGT TTGCAGCAGTTGCTAGCTGT 57 119 0.9 5 2 1 1 SEM358 SCAGRT3048C12.g (gaa)9 CTGGCCTCAAGAGGGAAACTG ACCAACCTCTTGACCAGCAC 59 124 0.9 8 5 2 1	SEM344	SCEPRT2047A05.g	(ct)15	CGTGCGCTCTCTCTCTCTCT	ATTTTGAGATGGCTGCATCA	57	171	0.5	2	0	1	1
SEM350 SCJFRT2057F04.g (gca)9 CCAATGGAGACGACACTCCT GCGGACGTAGATGGAGAAGA 59 228 0.9 6 5 0 0 SEM351 SCMCRT2085E08.g (tg)8 CGACTGTGGGAGAGAGATTGT TTGCAGCAGTTGCTAGCTGT 57 119 0.9 5 2 1 1 SEM358 SCAGRT3048C12.g (gaa)9 CTGGCCTCAAGAGGAAACTG ACCAACCTCTTGACCAGCAC 59 124 0.9 8 5 2 1	SEM349	SCEQRT2099E08.g	(gca)8	CGAGAGGCCTTCTCTCTCTG	CGCTGACGTAGTCCTGGTAG	59	180	0.9	6	3	2	0
SEM351 SCMCRT2085E08.g (tg)8 CGACTGTGGGAGGAGTTTGT TTGCAGCAGTTGCTAGCTGT 57 119 0.9 5 2 1 1 SEM358 SCAGRT3048C12.g (gaa)9 CTGGCCTCAAGAGGAAACTG ACCAACCTCTTGACCAGCAC 59 124 0.9 8 5 2 1	SEM350	SCJFRT2057F04.g	(gca)9	CCAATGGAGACGACACTCCT	GCGGACGTAGATGGAGAAGA	59	228	0.9	6	5	0	0
SEM358 SCAGRT3048C12.g (gaa)9 CTGGCCTCAAGAGGAAACTG ACCAACCTCTTGACCAGCAC 59 124 0.9 8 5 2 1	SEM351	SCMCRT2085E08.g	(tg)8	CGACTGTGGGAGGAGTTTGT	TTGCAGCAGTTGCTAGCTGT	57	119	0.9	5	2	1	1
	SEM358	SCAGRT3048C12.g	(gaa)9	CTGGCCTCAAGAGGAAACTG	ACCAACCTCTTGACCAGCAC	59	124	0.9	8	5	2	1

SEXM6 SUBCH 300100B/g (cm)9 CTAGLOB IGLAGUATION CONTROL INCOMENDATION CONTROL IN	0 = 1 10 0 1	000007000/000	())		07007000177100100117		4=0				•	
SEMM6 SCERZ200102/g (rs)9 CCACCTENTCTECCAAGAAC CATCTTAAACCTOSECTACA 65 167 0.9 6 1 0 SEMM67 SCCCR2200102/g (rs)8 AGTCAGCATCCATCCATCTTCTTGTG CCCATGGTCACCACGAGT 59 241 0.8 10 3 1 SEMM68 SCCCR2200102/g (rs)8 CGCTTCCATCATTCTTTCTTGTG TGCTCCGCCTCCACCA 55 123 0.9 7 1 0 0 SEMM67 SCCR2200102/g (rs)8 GCGATCCATTCCTCTCTCTCTCGCGTCTCGCCTTTCTTT 54 238 0.6 8 1 2 1 SEMM7 SCVFR22036E01/g (rs)8 GCCACCAAATTGCCCGTAT CACCAGCTTTTCTTTT 54 23 0.8 5 3 0 1 SEMM7 SCCR23003081/g (rs)9 GCGGACACAACCAATGCCCCATACACCCCACCACGACGAACCTTA 55 23 0.8 5 1 0 0 SEMM7 SCLFR23003A81b (rs)919 ACGAGCACCAATGCGCCTTTTTCT 55 23 0.8 5 1 0	SEM361	SCCCRT3001D09.g	(ct)9	GTAGCCGTGGAGCATGAAGT	CTGCTGCCATTAGGAGCAAT	59	173	0.9	11	3	3	2
SEMAGE SCCCR22010C02 (ap)B AATCACCATCCATCCATC ATTICTCCTCCCCTCCTCCTC 59 196 0.9 6 1 0 SEMAGE SCCCR22010C02 (ap)B CACCTCCCTCCTCTCTT CATGGTACCACCACGAGET 59 241 0.8 10 3 1 SEMAGE SCLFR2015A100 (ap)B CACCTCCCTCCTCTCTTTTTTTTTTCTT 54 238 0.6 8 1 2 1 SEMAT SCVPR22036E01.g (ap)B CACCACCTATATCACCTCCTCTTTTTTTTTTTTTTTTT	SEM366	SCBFRZ2045C02.g	(ca)9	CCACCTCTTCTGCCAAGAAC	CATCTTAAACTCCGGTCCACA	55	167	0.9	6	0	2	0
SEM88 SCCCR22040Cb5.g (gcg)B AAACCCTCCCCTCCGATT CCCAATGGTACAGCAGAGAT 59 241 0.8 10 3 1 SEM888 SCLFRZ2015A10g (g)B CGGTCCCATACTTCTTTTGTG TGACTCCCGCGTCCCAACC 55 123 0.9 7 1 0 0 SEM871 SCLFRZ2034B06.g (tg)B GCGAGACATTTCACCACC CCCCCTTTTCTTT 54 238 0.6 8 1 2 1 SEM371 SCLFRZ2034B06.g (cc)B GCCAACTTCTCCCTCTTTCTA ACCACCGTTTTCTTCTGTGGTGAGACCCAAGAS 58 184 0.9 4 2 1 0 SEM371 SCLFRZ3020812.g (cc)B ACGAGGCCCCTATGAACCT CCCTATACGACCTAAGACCT 55 233 0.8 5 3 0 1 SEM371 SCLFRZ3020412.g (cc)B ACGAGGCCCATAGAACCT CCCAACGTCGATAGACCT 55 233 0.8 5 1 0 SEM371 SCLFRZ3020412.g (cc)B ACGAGGCCCATAGAACCT CCCACACCTCATAGACCT 55 234	SEM367	SCCCRZ2001C02.g	(ag)8	AGTCAGCATCCATCCAGTCC	ATTTCTCCTGCCCTCCTCTC	59	196	0.9	6	1	0	0
SEM39 SCIFR23018A010 (99)8 CECTTCCATACTTCTTCTTGE TEAACTCTCC205GTCCTACAC 55 123 0.9 7 1 0 0 SEM37 SCIFR22038B061g (61)8 GCCAAGCATAATAGCTGCTG ACCACCGTTTCTTTCTTGAC 57 205 0.8 13 4 4 0 SEM37 SCVPR22038E05g (cog)8 GCGACCAATCTGCCGTGT CATGTAGTCAGCCGAGAGA 58 189 0.9 4 2 1 0 SEM37 SCCPR22038E05g (cog)8 GCGAAGCATACCACCACCCCCCCCCTCCACTAA 55 141 0.9 4 2 1 0 SEM37 SCCPR2302612g (cog)8 GGAAGCACAACCACCACCACCACCACCACCACACA 55 123 0.8 5 3 0 1 SEM37 SCCPR2302612g (cog)8 GGAAGCACACCACCACCACCACCACCTCCATACA 56 221 0.9 8 5 1 0 SEM39 SCSERS100812g (cog)8 CCTRACACCACCACCCCCCACTACACCT CCCCACACCCTCCATACACCT 55 244 0.8	SEM368	SCCCRZ2004C05.g	(gcg)9	AAACCCTCGCCTCCGATT	CCCAATGGTACCAGCAGAGT	59	241	0.8	10	3	1	1
SEIM37 SCJFR22034806.g (tij)9 GGAGAAGCATTCAGCAACC CCCCGCTTTCTTCTCTAC 54 28 0.6 8 1 2 1 SEM37 SCVPR22038E0.g (coj)8 GCGACCAATTCGCGTAT CATGTAGTCGAGCGCAGGA 58 189 0.9 4 2 1 0 SEM373 SCVPR22038E0.g (coj)8 GCGCCCTCCTCCTCTCTTCTA GACTGGCTGGGAACCCTAA 59 141 0.7 7 0 2 1 SEM375 SCCPR22030E12.g (coj)8 GGGACGAACCCTACC CGCATTGCCCCCCACTTAA 55 174 0.9 14 4 0 SEM375 SCCFR230030A8.b (ctgtjg)9 ACGAGGCCACCATAGAACCT CGCACACGCCGCTTTCTT 55 228 0.9 4 2 0 0 2 3 0 1 0 2 3 0 2 3 0 1 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 3 1 0 2 <td>SEM369</td> <td>SCJFRZ2015A10.g</td> <td>(ga)8</td> <td>CGCTTCCATATCTTCTTCTTGG</td> <td>TGACTCTCCGGTCCCTACAC</td> <td>55</td> <td>123</td> <td>0.9</td> <td>7</td> <td>1</td> <td>0</td> <td>0</td>	SEM369	SCJFRZ2015A10.g	(ga)8	CGCTTCCATATCTTCTTCTTGG	TGACTCTCCGGTCCCTACAC	55	123	0.9	7	1	0	0
SEM37 SCVPR2208E619 (#b) GCCAAGCTAATAGCTGCTG ACCACCCUTTCTTTTCTTTCTTCTGCAC 57 205 0.8 13 4 4 0 SEM373 SCVPR2208E619 (eg)8 GCCAACCAAATCGCCGTAT CATGTAGTCGAGCGAAGGA 58 189 0.9 4 2 1 0 SEM374 SCCR22005019 (eg)8 GCCACCACTCCTCCTCTCTTTA GACTGGCTGCCACCAAA 55 174 0.9 11 4 4 0 SEM375 SCEPR23128005.9 (eg)80 GGAGGCACCATAGAACCTAC GCCATGTAGTGCTTTCA 55 230 0.8 5 3 0 1 SEM375 SCEPR23108109.112 (eg)9 ACGAGGCACCATAGAACCT GCCAAAGGTATTCTTTTTT 57 116 0.9 13 6 2 3 0 2 3 0 3 6 2 3 0 3 5 1 0 3 6 2 3 0 3 5 1 0 3 1 0 2	SEM371	SCJFRZ2034B06.g	(tg)9	GGAGAAGCATTTCAGCAACC	CCCGCTTTTCCTCTTTCTTT	54	238	0.6	8	1	2	1
SEM373 SCVPR22038E05.g (ccg)B GCGACCAAATCTCCCCTTAT CATGTAGTCGACCCACAGAA 58 189 0.9 4 2 1 0 SEM374 SCCPR23038B01.g (cl)6(tc)9 ATGGAGGCTCGTTGTCTTG GCCGACCAAACCTAA 55 174 0.9 11 4 4 0 SEM375 SCEPR23128D05.g (cl)6(tc)9 ATGGAGGCCCATACGC CCGTAATCGCCCTCACTTA 55 233 0.8 5 3 0 1 SEM377 SCEDR23028D1.g (cg)9 AGGAGGCACAAACCTAGC CCCATAGAACGTGTGTCTTT 55 238 0.8 5 1 0 5 584 0.8 5 1 0 5 55 228 0.9 4 2 0 0 5 55 228 0.9 4 2 0 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 0 2 3 3 1 0 2 <td< td=""><td>SEM372</td><td>SCVPRZ2036E01.g</td><td>(at)8</td><td>GCCAAGCTAAATAGCTGCTG</td><td>ACCACCGTTTCTTTCCTGAC</td><td>57</td><td>205</td><td>0.8</td><td>13</td><td>4</td><td>4</td><td>0</td></td<>	SEM372	SCVPRZ2036E01.g	(at)8	GCCAAGCTAAATAGCTGCTG	ACCACCGTTTCTTTCCTGAC	57	205	0.8	13	4	4	0
SEM37 SCCCR2300801.g [ap]9 GCCTCCTCCCTCCTCTTTA GACTGGCTCGAAACCCTA 59 141 0.7 7 0 2 1 SEM375 SCEPR23128D6.g (c)6(c)9 ATGGAGGCTCGTTGTTTTG CCGTAATCGCCACTAAA 55 174 0.9 11 4 4 0 SEM377 SCEPR23020E12.g (ap)8 GGAAGACCACAACCATAGAACT CCGCATTGACGCAGGTGTTGTGTG 56 221 0.9 8 5 1 0 SEM39 SCGRS81005B12.g (ap)9 GGGGAAGTAGTCTCAGGTCA GCCCACCACATATGTT 55 104 0.9 6 2 3 0 SEM39 SCGS81005B12.g (ap)9 GGGGAAGTAGTCCAGGTGTTTTT GCCAGACCCTCACATTACTCT 55 104 0.9 6 2 3 0 SEM398 SCGTS81005B12.g (ap)8 GTGCAACCCCCAATAGAC TCCCGATCATTGTCTGT 55 124 0.9 6 2 3 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2<	SEM373	SCVPRZ2038E05.g	(ccg)8	GCGACCAAATCTGCCGTAT	CATGTAGTCGAGCGCAGAGA	58	189	0.9	4	2	1	0
SEM37 SCEPR23128D05.g (u)b(tb)9 ATGGAGGCTCGTTGTTTTG CCGATTGATCGCCTCAAAA 55 174 0.9 11 4 4 0 SEM377 SCEQR23020E12.g (grg)8 GGAGAGGACGAACCCTAGC CCGCATTGACGCAGTTTCTT 55 233 0.8 5 3 0 1 SEM378 SCUFR23020410.g (gg)9 TAGTAGCACCCATAGACCAT GCACAAGGTGATTGTTGCTT 55 228 0.9 4 2 0 0 0 2 3 0 1 0	SEM374	SCCCRZ3003B01.g	(ag)9	GCCTCCTCCTCCTCTTCTA	GACTGGCTCGGAAACCCTA	59	141	0.7	7	0	2	1
SEM37 SCEORF2020E12.g (gcg)8 GGAGAGGACGAAACCTAGC CGATTGAACGAGTTTCTA 55 233 0.8 5 3 0 1 SEM379 SCJFR23C03A08.b (ctgj)9 ACGAGGCCACATAGAACAT GCACAAGGTGATTGTGCTGT 56 221 0.9 8 5 1 0 SEM39 SCUTR2103P01.g (cgg)9 TAGTACAAGCGAGGCGATA GTCTTTGCCTTTGATCTCT 55 104 0.9 13 6 2 3 SEM391 SCUTSB1033C02.g (a)9 GGGAAGTAGTCCACGGGATTTTT GCGACACACCTCACGTGTAGTGTGTAGACG 55 224 0.8 3 1 0 2 3 SEM392 SCUTSB1075H09.g (a)8 TCATCCTCACCAGCAACTCCATGTTGATAGCAGCGTA 54 184 0.9 4 0 2 1 3 SEM400 SCEPSD1081A02.g (ccg)8 CCTCCATTCATCTCCCC TTCCATCGAGTGAGAGAAGAGC 55 242 0.7 6 2 1 3 1 1 SEM400 SCECSD20077b12.g (cg)8 CC	SEM375	SCEPRZ3128D05.g	(ct)6(tc)9	ATGGAGGCTCGTTGTCTTTG	CCGTAATCGCCTCCACTAAA	55	174	0.9	11	4	4	0
SELM787 SCLFR2303A08.b. (rdgg)9 ACGAGGCCACCATAGAACAT GCACAAGGTGATTGTGCTGT 56 221 0.9 4 2 0 SEM384 SCUTRZ3103F01.g. (rgg)9 TAGTAGCAAGCGAGGCGATA GTCGTGTGCCTTTGATCGTG 55 228 0.9 4 2 0 SEM390 SCSGSB1005B12.g. (rgg)9 GGGGAAGTAGTCTCAGGTGCA GCCCACCCTCCATTATCTT 57 116 0.9 6 2 3 0 SEM391 SCUTSB1033002.g. (rgg)8 GTTCAGACTCGCAATAGT GCCCACACCTTCAGCGTGTAGAGG 55 234 0.8 3 1 0 2 1 SEM393 SCUTSB1075H08.g. (rg)8 CAGCTCATCCTCGTCAATAGT TGCCACATGTGTGTAGACGG 55 242 0.8 5 1 0 2 1 3 SEM400 SCESD1081A02.g. (rcg)8 CAGGCAACCACCACCACCACCACCACGTAGTGTAGTGGTGA 53 111 0.4 10 1 2 0 6 2 1 3 3 1 1 3 1 1 3 1 1 2 0 5 14	SEM377	SCEQRZ3020E12.g	(gcg)8	GGAGAGGACGAAACCCTAGC	CGCATTGAACGCAGTTTCTA	55	233	0.8	5	3	0	1
SEM384 SCUTR23103F01.g (cgg)9 TAGTAGCAAGCGAGGCGATA GTCGTTGCTTTGATCGTG 55 228 0.9 4 2 0 0 SEM390 SCSGSB1005B12.g (ag)8 GGGGAAGTAAGTCTCAGGTGA GCCACCACCCTCATTATCTT 57 116 0.9 13 6 2 3 SEM391 SCUTSB1037C9(2g) (ag)8 GTTCAGACTCGGGTGTTTTTT GCTGAGACCCTCAGTAAGGC 55 234 0.8 3 1 0 2 1 SEM393 SCUTSB1075H09.g (ta)8 TCATGCTACCAGCAAAGAC TCCCGATCATGTTGTGGCT 55 234 0.8 3 1 0 2 1 SEM400 SCEZSD1081A02.g (ccg)8 CAGCTCATCATTCCTCCT TTCGATCGATGATGGTGTG 55 242 0.7 6 2 1 3 SEM403 SCEQSD2077B12.g (cg)8 CCTGCATCATCCTCCACC GAAGGCGAGAGAGAGAGAGAGAGAGAGAGGG 5 14 3 1 1 2 1 3 1 1 2 1 3 1 1 2 1 3 1 1 2 1 1	SEM379	SCJFRZ3C03A08.b	(ctgtg)9	ACGAGGCCACCATAGAACAT	GCACAAGGTGATTGTGCTGT	56	221	0.9	8	5	1	0
SEM390 SCSGSB1005B12.g (ag)9 GGGGAAGTAAGTCTCAGGTCA GCCACCACCTCATTATCTT 57 116 0.9 13 6 2 3 SEM391 SCUTSB1075H09.g (a)8 GTCAGACTGCCGTGTTTTT GCGAGAGACCTCCACTGACGAGC 55 104 0.9 6 2 3 0 SEM391 SCUTSB1075H09.g (a)8 TCATGCTCACCAGCGAAGAC TCCCACTACGTGTGTAGACG 55 144 0.9 4 0 2 1 SEM393 SCEPSD1006D03.g (ta)9 CGTGCAAGCTCCAATATGAT TGCCACTGCATGAGGGAAGACAGCGCAGCGGAGAGAGAGA	SEM384	SCUTRZ3103F01.g	(cgg)9	TAGTAGCAAGCGAGGCGATA	GTCTGTTGCCTTTGATCGTG	55	228	0.9	4	2	0	0
SEM391 SCUTSB1033C02.9 (ag)8 GTTCAGACTCGCGTGTTTTT GCTGAGAACCCTTCAGCTT 55 104 0.9 6 2 3 0 SEM392 SCUTSB1075H09.9 (a)8 TCATGCTCACCAGCAAAGAC TCCCCATCAGTGTGAACG 55 234 0.8 3 1 0 2 SEM398 SCUTSB1006D03.9 (ta)9 CGTGCAACCTCACCACTGATATGAT TGCCACTGTATAGCAGCGAA 54 184 0.9 4 0 2 1 SEM400 SCEZSD1081402.9 (cog)8 CAGCTCATCCTCTCGCACCT TCCCTCTGCTGCTGTGTGA 53 111 0.4 10 1 2 0 SEM403 SCEQSD2077B12.9 (cog)8 CAGCGCACGCACGAAAGA TCCTCTGCTCCTCGTG 58 246 0.9 14 3 1 1 SEM408 SCLST1050H06.9 (ga)9 CAGCGCACGCACGAAGAA AGGGTGATGAAGGAAAGA 56 163 0.9 4 2 1 0 SEM415 SCMCST1050H06.9 (gb)7 CAAGGCGCCTCTTGGTGTC CCTCTTTGGGTCTCCTCGTG 58 246 0.9 14 3 1 1 <td< td=""><td>SEM390</td><td>SCSGSB1005B12.g</td><td>(ag)9</td><td>GGGGAAGTAAGTCTCAGGTCA</td><td>GCCACCACCTCCATTATCTT</td><td>57</td><td>116</td><td>0.9</td><td>13</td><td>6</td><td>2</td><td>3</td></td<>	SEM390	SCSGSB1005B12.g	(ag)9	GGGGAAGTAAGTCTCAGGTCA	GCCACCACCTCCATTATCTT	57	116	0.9	13	6	2	3
SEM392 SCUTSB1075H09.g (ta)8 TCATGCTCACCAGCAAAGAC TCCCGATCAGTGTGTAGACG 55 234 0.8 3 1 0 2 SEM398 SCEPSD100BD03.g (ta)9 CAGCTCATCATCACTAGCT TCCCGATCGTGTAGCGGA 54 184 0.9 4 0 2 1 SEM400 SCEPSD100BD03.g (ccg)8 CAGCTCATCCTCGTCAACCT TCCCGTCGTTGTTGCT 59 225 0.9 8 5 1 0 2 0 SEM401 SCMCSD1099609.g (ct)9 GCTCCATCATCTCTCCTCT TTCGACGATGATGATGTGTGG 55 242 0.7 6 2 1 3 SEM403 SCEQSD2077B12.g (cga)8 CCTGCATCAACCTCTCCAC GAAGGCGAGAGAGAGAGAGG 55 242 0.7 6 2 1 1 SEM403 SCLST1012C09.g (cd)8(ga)7 CAAGCAGAGAGAGAGAGA AGGCTGATGATGAGGGAATGAG 56 163 0.9 4 2 1 0 SEM419 SCSST1050H06.g (cc)8 CACCCTGCTGTGTGTATGAGAGA AGAGACGTGAGGAGAGACACGAGAGAGAGACC 59 170 0.9 6 1 <td< td=""><td>SEM391</td><td>SCUTSB1033C02.g</td><td>(ag)8</td><td>GTTCAGACTCGCGTGTTTTT</td><td>GCTGAGAACCCTTCAGCTCT</td><td>55</td><td>104</td><td>0.9</td><td>6</td><td>2</td><td>3</td><td>0</td></td<>	SEM391	SCUTSB1033C02.g	(ag)8	GTTCAGACTCGCGTGTTTTT	GCTGAGAACCCTTCAGCTCT	55	104	0.9	6	2	3	0
SEM398 SCEPSD1006D03.g (ta)9 CGTGCAAGCTCCAATATGAT TGCCACTGTATAGCAGCGTA 54 184 0.9 4 0 2 1 SEM400 SCEZSD1081A02.g (ccg)8 CAGCTCATCCTGTCACCT CTCCTTGCTCTTGTTGCT 59 225 0.9 8 5 1 0 SEM401 SCEZSD1081A02.g (ccg)8 CCTGCATCACTCTCTCCTC TTCGATCGATGGTTGA 53 111 0.4 10 1 2 0 SEM403 SCEQSD2077B12.g (cg)8 CCTGCATCAACCTCACC GAAGCGAGAGAGAGAGAGAGAGAGTGG 55 242 0.7 6 2 1 1 SEM408 SCJFST1048G04.g (ga)9 CAGAGCGAGCAGAGAGAGAG TCATCGTGTGCTGCTGGT 58 228 0 6 2 1 1 SEM419 SCJFST1068E06.g (gc)8 TCAGCGGGTGCTTGGGTGCTGCTGGT 58 246 0.9 14 3 1 1 5 SEM419 SCSFST1068E06.g (gc)8 TGCGCGGGTGCTCAG AGGGTGATGAAGGGAATGGAGGG 59 170 0.9 6 1 3 0 5 5242	SEM392	SCUTSB1075H09.g	(ta)8	TCATGCTCACCAGCAAAGAC	TCCCGATCAGTGTGTAGACG	55	234	0.8	3	1	0	2
SEM400 SCEZSD1081A02.g (ccg)8 CAGCTCATCCTCGTCAACCT CTCCTCTGCTCCTTGTTGCT 59 225 0.9 8 5 1 0 SEM401 SCMCSD1059G09.g (ct)9 GCTCCATTCATTTCCTCCTC TTCGATCGATGATGGTGAA 53 111 0.4 10 1 2 0 SEM403 SCEQSD2077B12.g (cga)8 CCTGCATCAACCTCTCCAC GAAGGCGAGAGAGAGTCG 55 242 0.7 6 2 1 3 SEM402 SCLIST102C09.g (ck)8(ga)7 CAAGGCTCTTCTGGTGCT 58 286 0.9 14 3 1 SEM412 SCLIST102C09.g (ck)8(ga)7 CAAGGCTGCTTCTGGTGC CCTCTTTGGTCTCCTC 58 246 0.9 14 3 1 SEM413 SCIST1050H06.g (tc)8 CAGCAGACGAGAGAGAGA AGGGTGATGAGGGAATGAG 56 163 0.9 4 2 1 0 SEM412 SCSIST1050H06.g (gc)8 TGGCGGGTGTTGATTGAAGAAG AGAGGTGGTGAGAGGGAATGAGG 59 170 0.9 6 1 3 0 SEM422 SCSGST1072B03.g (gg)8 </td <td>SEM398</td> <td>SCEPSD1006D03.g</td> <td>(ta)9</td> <td>CGTGCAAGCTCCAATATGAT</td> <td>TGCCACTGTATAGCAGCGTA</td> <td>54</td> <td>184</td> <td>0.9</td> <td>4</td> <td>0</td> <td>2</td> <td>1</td>	SEM398	SCEPSD1006D03.g	(ta)9	CGTGCAAGCTCCAATATGAT	TGCCACTGTATAGCAGCGTA	54	184	0.9	4	0	2	1
SEM401 SCMCSD1059G0.g (c19) GCTCCATTCATTTCCTCCTC TTCGATCGATGATGATGGTTGA 53 111 0.4 10 1 2 0 SEM403 SCEQSD2077B12.g (cga)8 CCTGCATCAACCTCTCCAC GAAGGCGAGAGAGAAGATCG 55 242 0.7 6 2 1 3 SEM403 SCLFST1048G04.g (ga)9 CAGAGCCAGCCAGGTAAAAG TCATCGTGTGCTGCTGCT 58 228 0 6 2 1 1 SEM403 SCLFST1048G04.g (ga)9 CAGAGCCAGCAGAGAGAAGA CACTCTTCGGTGCTC 58 246 0.9 14 3 1 SEM419 SCJLST1050060.g (tc)8 CAGCAGAGAGAGAGAGA AGGGTGATGAAGGAATGAGGGA 56 163 0.9 4 2 1 0 SEM419 SCSFST106606.g (gcc)8 TGCGTGGTTCATTGAGGAGAG AGGAGCGCGTCTCTGGTGTGCTGC 59 170 0.9 6 1 3 0 SEM421 SCSGST1072B03.g (ag)8 GAAGAGTGGGGACGTCTCAG GCCAGAGGAGATGTGGTAGAGG 59 199 0.9 8 3 2 1 SEM422 <td>SEM400</td> <td>SCEZSD1081A02.g</td> <td>(ccg)8</td> <td>CAGCTCATCCTCGTCAACCT</td> <td>CTCCTCTGCTCCTTGTTGCT</td> <td>59</td> <td>225</td> <td>0.9</td> <td>8</td> <td>5</td> <td>1</td> <td>0</td>	SEM400	SCEZSD1081A02.g	(ccg)8	CAGCTCATCCTCGTCAACCT	CTCCTCTGCTCCTTGTTGCT	59	225	0.9	8	5	1	0
SEH403 SCEQSD2077B12.g (cga)8 CCTGCATCAACCTCTCCAC GAAGGCGAGAGAGAGATCG 55 242 0.7 6 2 1 3 SEM408 SCJFST1048G04.g (ga)9 CAGAGCCAGCCAGGCAGGTAAAAG TCATCGTGTGCTCGCTG 58 228 0 6 2 1 1 SEM412 SCJLST1022C09.g (ct)8(ga)7 CAGCAGCGAGACGAGAGAG AGGGTGATGAGAGGGAATGAG 56 163 0.9 4 2 1 0 SEM413 SCMCST1050H06.g (tp)8 CAGCAGCGAGACGAGAGAGA AGGGTGATGAGAGAGAG 56 163 0.9 4 2 1 0 SEM413 SCSFST1069F04.g (gga)5(ctb)8 CACCCTGCTCCTC TCGACGTCGTGTGGTGAGAGG 59 170 0.9 6 1 3 0 SEM421 SCSGST1069F04.g (gga)5(ctb)8 CACCCTGCTCATC TCGACGTGGTGAGAGGGAGAGG 59 170 0.9 6 1 3 0 SEM422 SCSGST1072B03.g (ag)8 GAAGAGTGGGGACGTCTCAG GCCAGAGGAGTGTGAGAG 59 170 0.9 8 3 2 1 1	SEM401	SCMCSD1059G09.g	(ct)9	GCTCCATTCATTTCCTCCTC	TTCGATCGATTGATGGTTGA	53	111	0.4	10	1	2	0
SEM408 SCJFST1048G04.g (ga)9 CAGAGCCAGCCAGGTAAAAG TCATCGTGTGCTGCTGGT 58 228 0 6 2 1 1 SEM412 SCJLST1022C09.g (ct)8(ga)7 CAAGGCTGCTTCTGGTGC CCTCTTTGGGTTCTCGCTC 58 246 0.9 14 3 1 1 SEM415 SCMCST1050H06.g (tc)8 CAGCAGACGAGAGAGAG AGGGTGATGAAGGGAATGAG 56 163 0.9 4 2 1 0 SEM419 SCSFST1066E06.g (gcc)8 TGCGTGGTGCTCCTC TCGACGTGGTGATGAAGGGAACG 59 170 0.9 6 1 3 0 SEM421 SCSGST1069F04.g (gga)8 GAAGAGTGGGGACGTCCCAG GCCAGAGGAGTGTGGTGAAGGG 59 199 0.9 8 3 2 1 SEM422 SCSGST1072B03.g (ag)8 GAAGAGTGGGGACGTCCCAG GCCAGAGGAGTGGTGAAGAG 56 441 0.6 10 1 4 0 SEM426 SCVPAN1059C01.g (at)5 TCCGACACGAGGAATTATTTTCCTGTCAGCCAAGTGA 56 244 0.6 10 1 1 1 1 1 1 <t< td=""><td>SEM403</td><td>SCEQSD2077B12.g</td><td>(cga)8</td><td>CCTGCATCAACCTCTCCAC</td><td>GAAGGCGAGAGAGAAGATCG</td><td>55</td><td>242</td><td>0.7</td><td>6</td><td>2</td><td>1</td><td>3</td></t<>	SEM403	SCEQSD2077B12.g	(cga)8	CCTGCATCAACCTCTCCAC	GAAGGCGAGAGAGAAGATCG	55	242	0.7	6	2	1	3
SEM412 SCJLST1022C09.g (ct)8(ga)7 CAAGGCTGCTTCTGGTGC CCTCTTTGGGTTCTCGCTC 58 246 0.9 14 3 1 1 SEM412 SCMCST1050H06.g (tc)8 CAGCAGACGAGAGAG AGGGTGATGAAGGGAATGAG 56 163 0.9 4 2 1 0 SEM419 SCSFST1066E06.g (gc)8 TGCGTGGTTGATTGAAGAAG AGAAGCCTCTTCTGCTGCTG 60 199 0.9 11 2 3 1 SEM421 SCSGST1069F04.g (gga)5(ctc)8 CACCCTGCTGGTCTCCC TCGCACGAGGAGTGGTAGGAGGG 59 170 0.9 6 1 3 0 SEM422 SCSGST1072B03.g (gg)8 GAAGAGTGGGGACGTCTCAG GCCAGAGGATGGTAGAGG 59 199 0.9 8 3 2 1 SEM425 SCSFAD1070E12.g (gcc)5 GTGCACCAGCAGCAGTATCTTTT CTTCTGTGCTGCAGCTGAG 56 471 0.8 13 2 3 1 SEM425 SCSFAD1070E12.g (qc)6 AGGAGCGGTTTCATCTTT CTTTCTGTGCAGCAAGTGG 57 77 0.9 7 1 1 1 1	SEM408	SCJFST1048G04.g	(ga)9	CAGAGCCAGCCAGGTAAAAG	TCATCGTGTGCTGCTGGT	58	228	0	6	2	1	1
SEM415 SCMCST1050H06.g (tc)8 CAGCAGACGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	SEM412	SCJLST1022C09.g	(ct)8(ga)7	CAAGGCTGCTTCTGGTGTC	CCTCTTTGGGTTCTCTGCTC	58	246	0.9	14	3	1	1
SEM419 SCSFST1066E06.g (gcc)8 TGCGTGGTTGATGAAGAAG AGAAGCCTCTTCTGCTGCTG 60 199 0.9 11 2 3 1 SEM421 SCSGST1069F04.g (gga)5(ctc)8 CACCCTGCTGGTCTCCTC TCGACGTCGTGAGTGAACC 59 170 0.9 6 1 3 0 SEM422 SCSGST1072B03.g (ag)8 GAAGAGTGGGGACGTCTCAG GCCAGAGGATGTGGTAGAGG 59 199 0.9 8 3 2 1 SEM425 SCSGST1072B03.g (ag)8 GAAGAGTGGGGACGTCTCAG GCCAGAGGATGTGGTAGAGGG 59 199 0.9 8 3 2 1 SEM425 SCSFAD1070E12.g (gcc)5 GTGCCACCAGCAGCAAT TCTCGTAGCTGACTGCACAGTGG 56 471 0.8 13 2 3 1 SEM426 SCVPAM1059C01.g (at)5 TCGAGAGCGGATTAGTTCA CCAAGTCCTCACCAGCAGCAAG 56 471 0.8 13 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SEM415	SCMCST1050H06.g	(tc)8	CAGCAGACGAGACGAGAGAG	AGGGTGATGAAGGGAATGAG	56	163	0.9	4	2	1	0
SEM421 SCSGST1069F04.g (gga)5(ctc)8 CACCCTGCTGGTCTCCTC TCGACGTCGTGTAGTGAACC 59 170 0.9 6 1 3 0 SEM422 SCSGST1072B03.g (ag)8 GAAGAGTGGGGACGTCTCAG GCCAGAGGATGTGGTAGAGGG 59 199 0.9 8 3 2 1 SEM425 SCSGAD1070E12.g (gcc)5 GTGCCACCAGCAGCAAT TCTCGTAGCTGCTCGACTTC 56 244 0.6 10 1 4 0 SEM426 SCVPAM1059C01.g (at)5 TCGAGAGCGGTTCATCTTT CTTTCCTGTCAGCCAAGTGA 56 471 0.8 13 2 3 1 SEM426 SCVPAM1059C01.g (at)5 TCGAGAGCGGATTAGTTCA CTTTCCTGTCAGCCAGTAGT 57 277 0.9 7 1 1 1 SEM427 SCSBFL1105H11.b (cag)6 AAGTAGCGGAAGCATTAGTTCA CCAAGTTCCTCCTCACCAGTAG 57 277 0.9 7 1<	SEM419	SCSFST1066E06.g	(gcc)8	TGCGTGGTTGATTGAAGAAG	AGAAGCCTCTTCTGCTGCTG	60	199	0.9	11	2	3	1
SEM422 SCSGST1072B03.g (ag)8 GAAGAGTGGGGGACGTCTCAG GCCAGAGGATGTGGTAGAGG 59 199 0.9 8 3 2 1 SEM425 SCSFAD1070E12.g (gcc)5 GTGCCACCAGCAGCAAT TCTCGTAGCTGCTCGACTTC 56 244 0.6 10 1 4 0 SEM426 SCVPAM1059C01.g (at)5 TCGAGAGCGGTTCATCTTT CTTTCCTGTCAGCCAAGTGA 56 471 0.8 13 2 3 1 SEM426 SCVPAM1059C01.g (at)5 TCGAGAGCGGATTCATCTTT CTTTCCTGTCAGCCAAGTGA 56 471 0.8 13 2 3 1 SEM427 SCSBFL1105H11.b (ca)6 AAGTAGCGGAAGCATTAGTTCA CCAAGTTCCTCACCACAGTA 57 277 0.9 7 1 1 1 SEM430 SCRUSB1064F09.g (cgg)5 TCCGACTACCTCAAGTGAGGAG GACGGCATCTTCTTCTTCTCTC 55 224 0.1 7 1 0 1 SEM433 SCSBT3094H07.g (gc)6 CGCGTCCCTAAGATTAGTAGCTC AGGAGATCCTGGACACACATGG 54 245 0.9 5 1 1 0	SEM421	SCSGST1069F04.g	(gga)5(ctc)8	CACCCTGCTGGTCTCCTC	TCGACGTCGTGTAGTGAACC	59	170	0.9	6	1	3	0
SEM425SCSFAD1070E12.g(gc)5GTGCCACCAGCAGCAGCAGCAGTTCTCGTAGCTGCTCGACTTC562440.610140SEM426SCVPAM1059C01.g(at)5TCGAGAGCGGTTTCATCTTTCTTTCCTGTCAGCCAAGTGA564710.813231SEM427SCSBFL1105H11.b(ca)6AAGTAGCGGAAGCATTAGTTCACCAAGTTCCTCCTCACCAGTA572770.97111SEM430SCRUSB1064F09.g(cgg)5TCCGACTACCTCAAGTGCAAGGACGGCATCTTCTTCTTCC552240.17101SEM432SCJLST1019B07.g(gc)6CGCGTCCGTAGATTAGTAGCTCAGCGAGAGCAGTAGATGTTGATGACCC561950.311221SEM433SCSBST3094H07.g(cga)6GACACGCCCAAAGGAAAAGGAGATCCGGACACACATGG542450.95110SEM434SCEZLB1007E12.g(ta)7TTCTTGCTTCTTTCTTCCGTCTCAAATCGTGCTTGCTTGAGG522360.89012SEM435SCQGLR1041A05.g(ga)5AGGCTGAGAGAGCAAAGAAAGACCTAGGATCCTTCGGGTTTC551640.99213SEM436SCJLRT1021D04.g(tc)5GGTCCCATACATAACACAAGCATGCATGAAGAAGCTCAGGTG572480.78510SEM437SCOSBT2031C10.q(tc)5GGTCCCATACATAACACACAAGCATGCATGAAGAAGCTCAGGTG572480.78510SEM437SCOSBT2031C10.q(tc)5 <td< td=""><td>SEM422</td><td>SCSGST1072B03.g</td><td>(ag)8</td><td>GAAGAGTGGGGACGTCTCAG</td><td>GCCAGAGGATGTGGTAGAGG</td><td>59</td><td>199</td><td>0.9</td><td>8</td><td>3</td><td>2</td><td>1</td></td<>	SEM422	SCSGST1072B03.g	(ag)8	GAAGAGTGGGGACGTCTCAG	GCCAGAGGATGTGGTAGAGG	59	199	0.9	8	3	2	1
SEM426SCVPAM1059C01.g(at)5TCGAGAGCGGTTTCATCTTTCTTTCCTGTCAGCCAAGTGA564710.813231SEM427SCSBFL1105H11.b(ca)6AAGTAGCGGAAGCATTAGTTCACCAAGTTCCTCCTCACCAGTA572770.97111SEM430SCRUSB1064F09.g(cgg)5TCCGACTACCTCAAGTGCAAGGACGGCATCTTCTTCTTCTCC552240.17101SEM432SCJLST1019B07.g(gc)6CGCGTCCGTAGATTAGTAGCTCAGCGAGTAGATGTTGATGACCC561950.311221SEM433SCSBST3094H07.g(cga)6GACACGCCCAAAGGAAAAGGAGATCCGGACACACATGG542450.95110SEM434SCEZLB1007E12.g(ta)7TTCTTGCTTCTTTCTTTCCGTCTCAAATCGTGCTTGCTTGAG522360.89012SEM435SCQGLR1041A05.g(ga)5AGGCTGAGAGAGAGAAAGAACCTAGGATCCTTCGGGTTTC551640.99213SEM436SCJLRT1021D04.g(tc)5GGTCCCATACATAACACAAGCATGCATGAAGAAGCTCAGGTG572480.78510SEM437SCOSRT2031C10.g(tc)5CCIGGTICCTGCACTIGICTCATCACTIGCCATCIGCATT572170.814701	SEM425	SCSFAD1070E12.g	(gcc)5	GTGCCACCAGCAGCAAT	TCTCGTAGCTGCTCGACTTC	56	244	0.6	10	1	4	0
SEM427SCSBFL1105H11.b(ca)6AAGTAGCGGAAGCATTAGTTCACCAAGTTCCTCCTCACCAGTA572770.97111SEM430SCRUSB1064F09.g(cgg)5TCCGACTACCTCAAGTGCAAGGACGGCATCTTCTTCTTCTCC552240.17101SEM432SCJLST1019B07.g(gc)6CGCGTCCGTAGATTAGTAGTCCAGCGAGTAGATGTTGATGACCC561950.311221SEM433SCSBST3094H07.g(cga)6GACACGCCCAAAGGAAAAGGAGATCCGGACACACATGG542450.95110SEM434SCEZLB1007E12.g(ta)7TTCTTGCTTCTTTCTTTCCGTCTCAAATCGTGCTTGCTTGAG522360.89012SEM435SCQGLR1041A05.g(ga)5AGGCTGAGAGAGGAAAAGAACCTAGGATCCTTCGGGTTTC551640.99213SEM436SCJLRT1021D04.g(tc)5GGTCCCATACATAACACAAGCATGCATGAAGAAGCTCAGGTG572480.78510SEM437SCOSBT2031C10.g(tc)5CCTGGTTCCTGCACTTGTCTCATCACTTGCCATT572170.814701	SEM426	SCVPAM1059C01.g	(at)5	TCGAGAGCGGTTTCATCTTT	CTTTCCTGTCAGCCAAGTGA	56	471	0.8	13	2	3	1
SEM430SCRUSB1064F09.g(cgg)5TCCGACTACCTCAAGTGCAAGGACGGCATCTTCTTCTTCTC552240.17101SEM432SCJLST1019B07.g(gc)6CGCGTCCGTAGATTAGTAGCTCAGCGAGTAGATGTGAGACC561950.311221SEM433SCSBST3094H07.g(cga)6GACACGCCCAAAGGAAAAGGAGATCCGGACACACATGG542450.95110SEM434SCEZLB1007E12.g(ta)7TTCTTGCTTCTTTCTTCCGTCTCAAATCGTGCTTGCTGAG522360.89012SEM435SCQGLR1041A05.g(ga)5AGGCTGAGAGAGAGAAAGAACCTAGGATCCTTCGGGTTTC551640.99213SEM436SCJLRT1021D04.g(tc)5GGTCCCATACATAACACAAGCATGCATGAAGAAGCTCAGGTG572480.78510SEM437SCOSBT2031C10.g(tc)5CCTGGTTCCTGCACTTGTCTCATCACTTGCCATTGCATT572170.814701	SEM427	SCSBFL1105H11.b	(ca)6	AAGTAGCGGAAGCATTAGTTCA	CCAAGTTCCTCCTCACCAGTA	57	277	0.9	7	1	1	1
SEM432SCJLST1019B07.g(gc)6CGCGTCCGTAGATTAGTAGTAGTCCAGCGAGTAGATGTTGATGACCC561950.311221SEM433SCSBST3094H07.g(cga)6GACACGCCCAAAGGAAAAGGAGATCCGGACACACTGG542450.95110SEM434SCEZLB1007E12.g(ta)7TTCTTGCTTCTTTCTTTCCGTCTCAAATCGTGCTTGCTGAGG522360.89012SEM435SCQGLR1041A05.g(ga)5AGGCTGAGAGAGAGAAAGAACCTAGGATCCTTCGGGTTTC551640.99213SEM436SCJLRT1021D04.g(tc)5GGTCCCATACATAACACAAGCATGCATGAAGAAGCTCAGGTG572480.78510SEM437SCOSBT2031C10.g(tc)5CCTGGTTCCTGCACTTGTCTCATCACTTGCCATCTGCATT572170.814701	SEM430	SCRUSB1064F09.g	(cqq)5	TCCGACTACCTCAAGTGCAAG	GACGGCATCTTCTTCTTCTCC	55	224	0.1	7	1	0	1
SEM433SCSBST3094H07.g(cga)6GACACGCCCAAAGGAAAAGGAGATCCGGACACACATGG542450.95110SEM434SCEZLB1007E12.g(ta)7TTCTTGCTTCTTTCCGTCTCAAATCGTGCTTGCTTGAG522360.89012SEM435SCQGLR1041A05.g(ga)5AGGCTGAGAGAGAGAGAGAAAGACCTAGGATCCTTCGGGTTTC551640.99213SEM436SCJLRT1021D04.g(tc)5GGTCCCATACATAACACAAGCATGCATGAAGAAGCTCAGGTG572480.78510SEM437SCOSBT2031C10 g(tc)5CCTGGTTCCTGCACTTGTCTCATCACTTGCCATTGCATT572170.814701	SEM432	SCJLST1019B07.a	(ac)6	CGCGTCCGTAGATTAGTAGCTC	AGCGAGTAGATGTTGATGACCC	56	195	0.3	11	2	2	1
SEM434SCEZLB1007E12.g(ta)7TTCTTGCTTCTTTCCGTCTCAAATCGTGCTTGCTTGAG522360.89012SEM435SCQGLR1041A05.g(ga)5AGGCTGAGAGAGAGAAAGAAAGACCTAGGATCCTTCGGGTTTC551640.99213SEM436SCJLRT1021D04.g(tc)5GGTCCCATACATAACACAAGCATGCATGAAGAAGCTCAGGTG572480.78510SEM437SCOSBT2031C10 q(tc)5CCTGGTTCCTGCACTTGTCTCATCACTTGCCATCTGCATT572170.814701	SEM433	SCSBST3094H07.g	(cqa)6	GACACGCCCAAAGGAAAAG	GAGATCCGGACACACATGG	54	245	0.9	5	1	1	0
SEM435SCQGLR1041A05.g(ga)5AGGCTGAGAGAGAGAGAGAAGAAAGACCTAGGATCCTTCGGGTTTC551640.99213SEM436SCJLRT1021D04.g(tcc)5GGTCCCATACATAACACAAGCATGCATGAAGAAGCTCAGGTG572480.78510SEM437SCOSRT2031C10 g(tc)5CCTGGTTCCTGCACTTGTCTCATCACTTGCCATTGCATT572170.814701	SEM434	SCEZLB1007E12.a	(ta)7	TTCTTGCTTCTTTCTTTCCGTC	TCAAATCGTGCTTGCTTGAG	52	236	0.8	9	0	1	2
SEM436 SCJLRT1021D04.g (tcc)5 GGTCCCATACATAACACAAGCA TGCATGAAGAAGCTCAGGTG 57 248 0.7 8 5 1 0 SEM437 SCOSRT2031C10 g (tc)5 CCTGGTTCCTGCACTTGTCT CATCACTTGCCATCTGCCATT 57 217 0.8 14 7 0 1	SEM435	SCQGLR1041A05.a	(ga)5	AGGCTGAGAGAGCAAAGAAAGA	CCTAGGATCCTTCGGGTTTC	55	164	0.9	9	2	1	3
SEM437 SCOSRT2031C10 g (tc)5 CCTGGTTCCTGCACTTGTCT CATCACTTGCCATCTGCATT 57 217 0.8 14 7 0 1	SEM436	SCJLRT1021D04.a	(tcc)5	GGTCCCATACATAACACAAGCA	TGCATGAAGAAGCTCAGGTG	57	248	0.7	8	5	1	0
	SEM437	SCQSRT2031C10.g	(tc)5	CCTGGTTCCTGCACTTGTCT	CATCACTTGCCATCTGCATT	57	217	0.8	14	7	0	1

SEM439	SCACSB1117C07.g	(cgg)6	CGTCAAGCTGTAGTCCGAGAG	CTCGTCCCAGACCAGGAG	59	197	0.2	5	0	3	2
SEM440	SCACSD1018E05.g	(gac)5	AGCAACCTAATCACAGCAACAA	CCATCATCCGATCATCCTTC	56	229	0.5	12	0	2	3
SEM442	SCMCST1057C10.g	(gct)5	CATTTATTTGCCACCTAGAAGGG	AAACAGAAACCGGACAGCAC	56	195	0.9	10	2	2	1
SEM443	SCRLAD1043B06.g	(ggt)7	GGAATGGGAACAGCCACTAAC	AAGAAGGCTATCGAGGTGGG	55	323	0.3	12	1	3	3
SEM444	SCBGAD1027C03.g	(ggc)7	CACGGTTCTCCTGCTGAAAG	GACGGGGTTGTTGAAGGTG	55	313	0.8	13	1	3	2
SEM446	SCCCCL3001D10.b	(ccg)5	GAGCAGTCCCTTGCCATGT	GCCGTCGAGTACACCGTC	59	389	0.9	11	0	1	0
SEM447	SCEZFL5083C02.g	(gc)5	TGAGTTCAGTTCCTTCCCC	AGAACTCCAAGGAGCAGCAG	56	300	0.4	3	1	0	1
SEM449	SCEZLB1006B07.g	(gcc)5	TGGTGTGAGTTAGTGCCTGAGT	TAGAAGGTGTTGATGATGAGCG	55	265	0.9	17	2	2	2
SEM450	SCEZLB1007E12.g	(ta)7	TTCTTGCTTCTTTCTTTCCGTC	AGATGAACACATAGTTGCACCG	56	189	0.4	4	0	0	2
SEM453	SCBFRZ2045E11.g	(ggc)5	AGCGACATGAGCTACCGTCT	TAGTACCGCGACAGACCTTTCT	58	287	0.9	5	0	0	1
SEM454	SCSBRZ3122D09.g	(gga)6	GTAACTAGCAGCAACCCTAGCC	ATCCTCTTTTGCCTCCCCT	55	387	0.8	2	0	1	1
SEM456	AY302083	(tgc)6	TCGTCCTACAACCACGACTACA	GAGAGGCAAGCAAGGAAAGAT	56	164	0.4	5	1	1	0
SEST3	SCSFSB1097B02.g	(ta)8	CCCCGAAGATCAAGGATAGG	CGCATCTCAAATGGGAAAAT	56	413	0.5	5	0	3	1
SEST4	SCRLAD1040D08.g	(at)5	CAGGCACTGATGTCATGGAT	GAACTACACTCGCCGCTCAC	56	313	0.7	19	0	6	3