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DNA methylation is an indispensable epigenetic modification required for regulating the expression of 
mammalian genomes. Continued efforts have been made to unravel the methylation states genome-
wide, featuring the methyl-DNA immunoprecipitation (MeDIP) coupled with next-generation sequencing. 
Our method uses a single-CpG-resolution, whole-genome methylation caller designed specifically for 
MeDIP-seq data. It did not require external database for copy number adjustment. Furthermore, it 
effectively detected genomic regions potentially predisposed to oncogenesis through its prediction of 
methylation states. The above suggests that our method makes a handy and reliable tool to generate 
genome-wide methylation profiles. All source codes in PERL language are available upon request of the 
first author. 
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INTRODUCTION 
 
Methylation of DNA cytosine residues is a common 
epigenetic mark in many eukaryotes. It is the addition of a 
methyl group in the fifth carbon position of cytosines 
found predominantly at the site of CpG, but is also 
prevalent, though less common, in other sequence 
context-CHG and CHH (H = A, T, C) (Ramsahoye, 2000; 
Lister, 2009). DNA methylation is the only known 
epigenetic system that modifies the DNA molecule itself. 
It is most fundamental and an indispensable component 
of the so-called epigenetic mechanism. The phenotype of 
a cell is primarily determined by its expression profile and 
its response to environmental cues. Epigenetics provide 
stability and diversity to the cellular phenotype through 
chromatin marks that affect local transcriptional potential 
and are preserved or regenerated during cell division. 

Much of the human genome is CpG depleted with the 
exception of CpG islands which are defined as 200-bp 
stretches of DNA with a C+G content of 50% and an 
observed CpG/expected CpG exceeding 0.6(Gardiner-
Garden and Frommer, 1987). In the promotor region of 
genes CpG islands are abundant and non-methylated, 
but infrequent in highly tissue-specific genes (Bird, 1986). 

CpG islands tend to remain unmethylated throughout 
development, with the exception of those islands 
associated with genes on the inactive X chromosome and 
those associated with the silent allele of imprinted genes 
(Yoder et al., 1997). On the contrary, most of CpG 
dinucleotides outside CpG islands are methylated, 
especially those found in repeat DNA elements which 
make up 45% of the genome and contain the majority of 
5-methylcytosines (Jordà and Peinado, 2010). 

DNA methylation patterns vary in time, space and 
species. There’s a diverse spectrum of animals’ 
methylation levels. DNA methylation is detectable in all 
stages of Drosophila melanogaster development at a 
level of about one in 1000 to 2000 cytosine residues in 
adult flies (Gowher et al., 2000), mostly in CpT 
dinucleotides (Bird, 2002). Up the taxonomy, vertebrate 
genomes have the highest level of methyl-cytosines. For 
mice, early embryonic demethylation and following de 
novo methylation is critical in determining somatic DNA 
methylation pattern. After fertilization, paternal DNA is 
actively demethylated and the maternal DNA undergoes 
passive    demethylation.    The    consequence    of    this  
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remodeling of epigenetic marks is the parent-specific 
pattern of imprinting (reviewed in Carrell, 2012). 

The presence of CpG island is perhaps the most 
striking feature of vertebrate DNA methylation. Of all 
human genome sequences 0.05% annotated to be 
located in CpG islands (UCSC table browser, excluding 
sex chromosomes), many of which remain methylation-
free regardless of tissue-specific expression of 
associated genes. The coincidence of CpG islands and 
promoter is ubiquitous (Bird, 1986). About 31% of CpG 
islands are methylation-prone and CpG islands located in 
promoter regions are seldom methylated (Fan et al., 
2010). An active promoter CpG island might occur at the 
upstream, intron or exon of its associated gene. 
Hypermethylation of CpG islands located in the promoter 
regions of tumor suppressor genes is now firmly 
established as an important mechanism for gene 
inactivation. CpG island hypermethylation has been 
described in almost every tumor type (Esteller, 2002). 
CpG islands differ in their intrinsic susceptibility to de 
novo methylation, and suggest that the propensity for a 
CpG island to become aberrantly methylated can be 
predicted based on its sequence context (Feltus et al., 
2003). 

There are mainly three kinds of treatment which shall 
be matched with different analytical steps. Enzyme-based 
approaches involve digestion of genomic DNA by 
restriction enzymes which have differential impact on 
methylated and unmethylated versions of target CpG 
sites. In these approaches, only particular sequence 
motifs can be analyzed because specific restriction sites 
are required to be present (Jacinto et al., 2008). Coupled 
with either microarrays or capillary sequencing, they have 
been applied to genome-wide DNA methylation profiling 
of several organisms but are limited to the analysis of 
CpG sites located within the enzyme recognition site(s) 
(Down et al., 2008). Besides, potentially incomplete 
digestion may cause false positives (Yang et al., 2010). 

Being recognized as gold standard of high resolution 
methylation profiling (Eckhardt et al., 2006), bisulfite (BS) 
conversion technique is based on the reaction between 
DNA and sodium bisulfite which converts unmethylated 
cytosine into uracil and eventually to thymine after 
amplification, leaving methylated cytosine unchanged. It 
offers single-CpG resolution (the only one among three 
methods) and can be coupled with polymerase chain 
reaction (PCR) (Wang et al., 2008), microarrays or BS-
seq. However, following BS conversion, there are so 
many sequence versions corresponding to a specific 
genomic region that it is difficult to design enough probes 
for or accurately map those reads of reduced genomic 
complexity, posing bioinformatics problems to 
comprehensive analysis of BS-converted DNA (Down et 
al., 2008; Xi and Li, 2009; Iraola-Guzmán, 2011). With 
higher resolution though, BS-coupled methods also 
require specialized analysis software and a much higher 
coverage.   Besides,   BS-seq   is   currently   prohibitively  

 
 
 
 
expensive for routine analysis of large genomes, though 
this will likely not hold in the near future (Reinders et al., 
2008). A modified version of BS-seq, reduced 
representation bisulfite sequencing (RRBS), has recently 
been developed for efficient profiling of clinical samples 
(Gu et al., 2010). 

Methyl-DNA immunoprecipitation (MeDIP), introduced 
in 2005, is based on the direct immunoprecipitation of 
methylated DNA (Weber et al., 2005). Firstly, genomic 
DNA purified by standard procedures is sheared by 
sonication to produce random fragments ranging in size 
of 300 to 600 bp, which is a key to guaranteeing efficient 
immonoprecipitation and a reasonable level of resolution. 
After that, DNA must be denatured at 95°C to yield 
single-stranded DNA fragments. The rest of the assay is 
a standard immonoprecipitation protocol followed by 
incubation with anti-5-methylcytidine antibody. The 
immunoprecipitated DNA can be hybridized with 
microarrays or sequenced. MBD-isolated Genome 
Sequencing (MiGS) combines precipitation of methylated 
DNA by recombinant methyl-CpG binding domain of 
MBD2 protein and sequencing of the isolated DNA by a 
massively parallel sequencer (Serre et al., 2010; Lan et 
al., 2011). Another method “MIRA” uses a different 
combination of proteins to recover CpG islands, obtaining 
a resolution that is similar to bisulfate sequencing (Rauch 
and Pfeifer, 2010). In MethylCap-seq (Brinkman et al., 
2010), captured DNA is washed and eluted in a step-wise 
manner using increasing salt concentrations to obtain 
genome stratification with reduced complexity. The 
efficiency of immunoprecipitation in MeDIP depends on 
the density of methylated CpG sites, which vary greatly 
within any given mammalian genome, making it difficult to 
distinguish variations in enrichment from confounding 
CpG density effects (Weber et al., 2007). MeDIP 
combined with next generation sequencing (MeDIP-seq) 
have a great potential to become the most cost-effective 
and unbiased method in whole-genome methylome 
profiling. 

The key step in MeDIP-seq analysis is the identification 
and quantification of methylated regions. Batman (Down 
et al., 2008), short for “Bayesian tool for methylation 
analysis”; can estimate absolute DNA methylation levels, 
across a wide range of CpG densities, from MeDIP-
based experiments. Until then, it had not been possible to 
estimate absolute methylation levels from MeDIP, and 
analysis of regions with low CpG density has been 
assumed to be problematic (Weber et al., 2007). The 
work is also the first MeDIP-seq data to represent a high-
resolution whole-genome DNA methylation profile of a 
mammalian genome. Yang et al. (2010) used peak 
search (widely used in CHiP-seq data to find regions of 
high read density) based on Poisson model to identify 
methylated regions on a whole-genome scale, to deal 
with single-sample cases. As of multiple sample analysis, 
a recent study (Ruike et al., 2010) obtained DNA 
methylation profiles for 8 human breast  cancer  cell  lines  



 
 
 
 
and 1 normal human mammary epithelial cells. This study 
classified regions as hyper-, hypo- and not differentially 
methylated groups by pairwise comparisons of MeDIP-
seq depth. A similar categorization based on Batman 
DNAm score was used by Feber et al., 2011 to perform 
global analysis to identify directional changes in DNAm. 
Bismark (Krueger and Andrews, 2011) is a flexible tool 
for the analysis of bisulfite sequencing data which 
performs both read mapping and methylation calling in a 
single convenient step. Its mapping scheme aims to find 
a unique alignment by running four alignment processes 
corresponding to four sequence identity simultaneously 
which enables Bismark to uniquely determine the strand 
origin of a bisulfite read. Methylation calls in Bismark take 
the surrounding sequence context into consideration and 
discriminate between cytosines in CpG, CHG and CHH 
context. MeQA (Huang et al., 2011) is a pipeline for pre-
processing, data quality assessment and distribution of 
sequences reads and estimation of DNA methylation 
levels of MeDIP-seq datasets. Inspired by the valuable 
concept of Batman’s coupling factor, MEDIPS (Chavez et 
al., 2010) weighs the raw MeDIP-seq signals with respect 
to the estimated coupling factor-dependent normalization 
parameters. It is a time-efficient statistical method for 
normalizing and analyzing MeDIP-seq data. 
 
 
MATERIALS AND METHODS 
 
A detail of the data is described in the work of Feber et al. (2011). 
Three samples, each containing a pool of no more than 10 
individuals representing normal, neurofibroma (NF) and malignant 
nerve sheath tumor (MPNST), respectively, are sequenced and 
aligned to human genome NCBI build 36. Only sequences with 
mapping quality ≥ 10 are used, totaling 104.6, 104.8 and 103.0 
million 50-mer reads. Reads are counted for each CpG site in the 
hg18 reference genome (set to 0 if not present in retrieved reads).  

Hidden Markov model (HMM) is a stochastic method which has 
been used in various applications like speech processing, signal 
processing and character recognition. Apart from gene finding and 
annotation (Krogh, 1997; Zhu et al., 2006a) (early works reviewed 
in Durbin et al., 1998; Birney, 2001), its application in biological 
sequence analysis includes genome segmentation by introducing 
macros-states (Melodelima and Gautier, 2007), modeling length 
distribution of sequences (Zhu et al., 2006b) and splicing sites 
recognition (Dong and Sun, 2007). In our HMM model, methylation 
can be predicted at single CpGs. Each CpG site has a “hidden” 
state of being un-methylated non-CGI (UN, 1), methylated non-CGI 
(MN, 2), un-methylated CGI (UC, 3) or methylated CGI (MC, 4). The 
states of successive CpG sites are assumed to follow a Markov 
process. Standard Baum-Welch algorithm (Baum et al., 1970) is 
used with slight modification which is described below. Poisson 
emission probabilities are assumed for unmethylated states UN and 
UC, while normal distribution are applied within class MN and MC. 
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Where, {1,3}i   {2,4}j   is the inferred state at site i/j, 

/ ,    are the Poisson/normal parameters for corresponding 

state i  , ix  denotes the read count at the ith CpG site. Two sets 

of parameters are to be estimated: 24 transition probabilities 
(including four starting and four ending transitions), six 
Poisson/normal emission distribution parameters for four states, 
respectively. The initials are picked randomly under constrained 
conditions below: states 2 and 3 are mostly likely to remain in 
themselves; while a[4][4] is also relatively high given the density of 
CpG sites once this region becomes methylated. All transitions to 
states 2 and 3 are high. Transitions between states 4 and 1 are 

rare. The initial ( ) 's  are chosen through trial and error. To get 

rid of serious underflow and overflow problem, scaling parameters 

(Rabiner, 1990) to both forward 'f s and backward parameters 

'b s  are initially used and then merged: 
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geometric averages of two sets of scaling parameters are used as 

final scaling parameters and 'f s  and 'b s  are re-calculated 

afterwards. Standard forward and backward f’s and b’s are 
calculated for each of 22 training sequences (chromosomes) 
(Durbin et al., 1998), transition parameters (a’s) are updated as 
follows: 
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i=1,2,... 
jL  (length of sequence j), j=1,…22, klA  is the expected 

number of occurrences of k-to-l transition. And using point 

estimation, ,   are updated according to: 
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Where, {1,2,3,4}k , st(i)’s are the new scaling parameters.  
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Table 1. Comparison statistics regarding HEP. 
 

Percentage Global correlation Overscored Underscored 

Batman 46.5 1.87 4.28 

This study 40.5 1.41 14.72 
 
 
 

Underflow problem caused by ultra-high read counts are dealt with, 
replacing original read count with a jittered number around the 
mean of state MN or MC. State path for each chromosome is the 
summary of repeated Viterbi (Durbin et al., 1998) inferences 
starting from different initials. 
 
 

Algorithm 
 

Initialization 
 

Pick initial model parameters according to criterion described 
above. 
 
 

Recurrence 
 

For each sequence (chromosome) j = 1…22, Calculate ( )j

kf i  i = 

1…
jL   and is  using Equation 3, where,  

 

1 1( ) ( )i l i k kll k
s e x f i a    

 

Calculate ( )j

kb i , i =
jL …1  and it  (similar to si).  Re-scale 

( )j

kf i  and ( )j

kb i  using i i ist s t  calculate 

0( ) ( )j

j k kk
p X f L a

;
 where, 

jX  stands for the jth 

sequence (chromosome). Add contribution to klA  in (4a) and to 

the denominator and numerator in (5) and (6). Calculate new 
parameters using Equations 4b, 5 and 6. 
 
 

Termination 
 

Stop when iteration times exceed a predefined threshold. 
 
 

Decoding 
 

Use Viterbi algorithm to infer state at each site for each sequence 
(chromosome). Methylation states are summarized according to 
state votes. All actual calculations are log-scaled. It has been 
previously shown that MeDIP-derived data need to be corrected for 
local CpG densities in order to compute unbiased methylation 
levels (Down et al., 2008; Pelizzola et al., 2008), so global 
methylation score is up-adjusted according to whether or not the 
CpG site is predicted to be in a CGI. 
 
 

RESULTS 
 

Compatibility with the gold standard  
 

After counting reads for each CG site and adding sites of 

zero counts, there are on average around 71.2% CpG 
sites with positive read counts for normal sample. The 
methylation call confirmed the reported bimodality: 79.9% 
CpG sites displayed hypomethylation (methylation score 
<0.3), 18.5% were hypermethylated (methylation score 
≥0.7) and 1.58% heterogeneously methylated. Of all sites 
68% are within CGIs, consistent with previous estimation 
of around 80% (Eckhardt et al., 2006). Correlation of 
methylation calls (averaged over 100-bp window to 
enable comparability) with Batman’s m scores are 32.4, 
28.4 and 36.6% for normal, NF and MPNST samples. 

Our inferred single-CpG methylation score has a 46.5% 
correlation with Human Epigenome Project (HEP) 
(Eckhardt et al., 2006) for all tissues pooled (Batman with 
HEP, 40.5% on 100bp-window base). Table 1 displays 
the performance of two methods, where ”overscore” is 
defined as a site whose HEP methylation score minus 
predicted score exceeds 0.4, and vice versa for 
”underscore”. The tendency to underscore in our method 
suggests its being overly prudent and the possible 
inadequacy of CpG density adjustment. Since 
considerable between-tissue variation was recognized 
(Rakyan et al., 2004), tissue-wise comparison was 
performed and demonstrated in Figure 1. All comparison 
is based/ converted to hg18 reference sequences (Zhang 
et al., 2000). Our methylation correlation distinguished 
tissues better with a much larger between-tissue 
variation; predictably low correlation between HEP and 
sperm sample is evident to be seen. 

Careful inspection of the primer sequences reveal that 
the bisulfate primers used in HEP studies did not 
consider the CpG sites of the reverse strand, that is, the 
design of alleged no-CpG-containing, BS-treated-DNA-
specific primers assumed non-methylation status of the 
minus strand. Of all 31704 CpG sites implicated only 65 
were located on the reverse strand and 290 unmapped in 
both strands according to reference genome hg18. As a 
result we sought other ways to further validate our 
method which was derived from strand-insensitive 
MeDIP-seq data. 
 
 

Comparison with independent gene expression data  
 
Promoter methylation is suspected as playing an 
important role in the pathogenesis of MPNST (Kawaguchi 
et al., 2005). We analyzed the promoter regions of 55 
genes previously reported to be associated with 
neurofibromatosis tumors (Miller et al., 2009) (Tables 2 
and 3). Putative promoter positions are extracted 
according to Ensembl annotation. 
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Figure 1. The radar chart for tissue-wise correlation with HEP data. Batman scores 
(represented by black line) has a 6% lower overall correlation with HEP, though both are 
less than 50%. Our methylation correlation (red) distinguished tissues better with a much 
larger between-tissue variation (25.0) than Batman (16.0). 

 
 
 

From Table 2, our methods distinguishes differentially 
methylated region (DMR) with significantly lower false 
positive/negative rates. However, for up-regulated genes 
(benign to malignant), our method has a slightly higher 
false positive rate, partly due to the fact that the 
predominant role for DNA methylation is down-regulation 
and the resemblance of normal to benign tissues 
overrides that of benign to malignant. Figure 2 gives a 
summary for DMR recognition. Our method outperforms 
Batman except that in “benign to malignant” case, more 
up-regulated genes are called to have an increment in 
methylation score in our method than in Batman. 
 
 
DISCUSSION 
 
In this paper we presented a methylation calling model 
which has the intuition of our current knowledge of the 
phenomenon. The efficiency of immunoprecipitation in 
MeDIP depends on the density of methylated CpG sites, 
which vary greatly within any given mammalian genome 
(Weber et al., 2007). Regions with dense cytosine 

methylation are least affected and yield a relatively strong 
signal (Reinders et al., 2008). This makes it difficult to 
distinguish variations in enrichment from confounding 
CpG density effects, calling for a thorough model that 
deals with inherent sequence bias and allows for local 
fitting of hypothetical distributions. Given the relatively 
low resolution of MeDIP-seq data, we are able to 
generate whole-genome, single-resolution estimation of 
the methylation status of each CpG site. High-resolution 
methylation profiles for both DNA strands, which require 
much higher computational power, have yet to come, and 
MeDIP-seq strategy will continue to make desirable tool 
since current BS-seq technology could not afford 
simultaneous detection of myriad versions regarding a 
certain DNA fragment containing CpG sites at both 
strands. Our method, being a naive methylation caller, 
ignores chimeric reads that indicate potential SNP effects 
obscured by altered methylation level. Very recent 
studies (He et al., 2011; Ito et al., 2011) urges 
researchers to come out with more elaborate methods to 
distinguish not only methylation in multiple sequence 
contexts including CHG and  CHH  but  also  subtypes  or  
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Table 2. Methylation of suspected promoter regions of genes associated with NF/MPNST: normal to benign.  
 

Name  Expres. Met This study Batman  Name Expres. Met This study Batman 

EMP2 ↓ ↑ NA ↑0.015  EN2 ↑ ↓ ↑0 ↓0.016 

EPB41L3 ↓ ↑ ↑0.001 ↑0.01   ↑ ↓ ↓0.001 ↓0.025 

 ↓ ↑ NA ↑0.01   ↑ ↓ ↓0.011 ↓0.006 

 ↓ ↑ NA ↓0.042  HGF ↑ ↓ ↓0.017 ↑0.158 

GFAP ↓ ↑ NA ↑0.038  MDK ↑ ↓ ↓0.007 ↓0.008 

 ↓ ↑ NA ↑0.063   ↑ ↓ NA ↑0.038 

HLA-DQB1 ↓ ↑ ↑0.122 ↑0.029  PAX6 ↑ ↓ ↓0.004 ↑0.013 

KLK6 ↓ ↑ ↑0.215 ↑0.065   ↑ ↓ NA ↓0.013 

LGI1 ↓ ↑ ↑0.215 ↑0.132   ↑ ↓ ↓0.005 ↓0.018 

MBP ↓ ↑ NA ↑0.006   ↑ ↓ ↑0.028 ↑0.088 

 ↓ ↑ ↑0.231 ↑0.285  SMAD3 ↑ ↓ NA ↑0.029 

 ↓ ↑ ↑0.096 ↑0.088  WT1 ↑ ↓ NA ↑0.048 

 ↓ ↑ ↑0.023 ↑0.088   ↑ ↓ ↓0.359 ↓0.029 

NGFR ↓ ↑ ↑0.023 ↓0.013   ↑ ↓ ↓0.016 ↑0.001 

 ↓ ↑ ↑0.021 ↑0.023   ↑ ↓ ↑0.257 ↑0.069 

CDKN2A ↓ ↑ NA ↑0.002   ↑ ↓ NA ↑0.107 

 ↓ ↑ NA ↑0.008  APOD ↑ ↓ ↑0.039 ↑0.036 

 ↓ ↑ NA ↑0.017   ↑ ↓ ↓0.094 ↓0.003 

 ↓ ↑ NA ↓0.007  CASP1 ↑ ↓ NA ↓0.04 

CTSD ↓ ↑ ↑0.008 ↑0.051  CD36 ↑ ↓ ↑0.052 ↑0.14 

 ↓ ↑ ↑0.008 ↓0.167  EGFR ↑ ↓ NA ↑0.013 

 ↓ ↑ NA ↑0.003   ↑ ↓ NA ↑0.004 

GNAI2 ↓ ↑ NA ↓0.005   ↑ ↓ ↓0.004 ↓0.021 

 ↓ ↑ NA ↑0.026  KIT ↑ ↓ ↓0.018 ↑0.012 

HPCAL1 ↓ ↑ NA ↑0.026  LEPR ↑ ↓ NA ↑0.015 

 ↓ ↑ NA ↑0.015   ↑ ↓ NA ↑0.016 

MFI2 ↓ ↑ ↑0.003 ↑0.015  MME ↑ ↓ NA ↓0.004 

NES ↓ ↑ NA ↓0.023  SOCS3 ↑ ↓ NA ↑0.013 

NFKB1 ↓ ↑ NA ↓0.011   ↑ ↓ ↓0.016 ↓0.011 

BCL2 ↓ ↑ ↑0.002 ↓0.026  ADM ↑ ↓ NA ↑0.026 

BCL2L2 ↓ ↑ NA ↓0.026   ↑ ↓ ↓0.002 ↑0.007 

EDNRB ↓ ↑ ↑0.034 ↑0.105  CAPN1 ↑ ↓ NA ↓0.008 

ERBB3 ↓ ↑ NA ↓0.002  FBN2 ↑ ↓ ↓0.016 ↓0 

 ↓ ↑ NA ↑0.016  IGFBP3 ↑ ↓ NA ↓0.025 

 ↓ ↑ NA ↓0.029  PDGFRA ↑ ↓ ↑0.008 ↑0.003 

MPZ ↓ ↑ NA ↑0.159  PIAS3 ↑ ↓ NA ↓0 

PDGFA ↓ ↑ ↑0.093 ↓0.109   ↑ ↓ NA ↑0.022 

 ↓ ↑ ↑0.093 ↓0.109  PLAU ↑ ↓ NA ↑0.03 

S100B ↓ ↑ ↑0.073 ↓0.109  PTGES ↑ ↓ ↓0.075 ↑0.035 

SOX5 ↓ ↑ NA ↑0.13  PTGS2 ↑ ↓ ↓0.096 ↓0.02 

SOX2 ↓ ↑ ↑0.142 ↑0.047  TFPI ↑ ↓ ↑0.086 ↓0.013 

SOX2-OT ↓ ↑ NA ↑0.047  TWIST1 ↑ ↓ NA ↑0.004 

 ↓ ↑ ↑0.142 ↑0.047  SOX9 ↑ ↓ ↑0.196 ↑0.119 

 ↓ ↑ NA ↑0.032   ↑ ↓ ↑0.134 ↑0.041 

SOX8 ↓ ↑ ↑0.074 ↑0.089  SOX11 ↑ ↓ ↑0.017 ↑0.006 

 ↓ ↑ ↑0.251 ↑0.123   ↑ ↓ NA ↑0.016 

SOX10 ↓ ↑ ↑0.442 ↑0.354   ↑ ↓ ↑0.061 ↓0 

SOX13 ↓ ↑ NA ↑0.354       
 

The left half are down-regulated genes and the right, up-regulated. Columns from left to right are: name of the gene, expected 
expression, expected methylation pattern in its promoter, our estimated difference in methylation score, difference in Batman ’s score. 
False negative means for down-regulated genes (i.e. expected up-rise in methylation score), methylation callers predicts a decrease; and 
vice versa for false positive. 
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Figure 2. Statistics for the differentially methylated region (DMR) classification. Colored bars on 
the vertical axis denotes number of mispredicted DMRs (in “normal to benign” case, we 
predicted with zero false negative rate). Our method outperforms Batman except that in “benign 
to malignant” case, more up-regulated genes are called to have an increment in methylation 
score in our method than in Batman. 

 
 
 

Table 3. Methylation of suspected promoter regions of genes associated with NF/MPNST: benign to malignant. 
 

Name Expres. Met This study Batman  Name Expres. Met This study Batman 

EMP2 ↓ ↑ NA ↓0.044  EN2 ↑ ↓ ↑0.344 ↑0.091 

EPB41L3 ↓ ↑ ↓0.013 ↓0.026   ↑ ↓ ↑0.223 ↑0.107 

 ↓ ↑ NA ↓0.039   ↑ ↓ ↑0.418 ↑0.127 

 ↓ ↑ ↑0.047 ↓0  HGF ↑ ↓ ↓0 ↓0.046 

GFAP ↓ ↑ NA ↓0.077  MDK ↑ ↓ NA ↓0.035 

 ↓ ↑ ↑1 ↑0.299   ↑ ↓ ↑0.015 ↓0.034 

HLA-DQB1 ↓ ↑ ↓0.085 ↓0.034  PAX6 ↑ ↓ ↑0.27 ↑0.095 

KLK6 ↓ ↑ ↓0.063 ↑0.186   ↑ ↓ ↑0.866 ↑0.522 

LGI1 ↓ ↑ ↑0.054 ↓0.043   ↑ ↓ ↑0.092 ↑0.048 

MBP ↓ ↑ NA ↑0.005   ↑ ↓ ↑0.971 ↑0.357 

 ↓ ↑ ↑0.129 ↓0.037  SMAD3 ↑ ↓ ↑0.002 ↓0.026 

 ↓ ↑ ↑0.033 ↓0.02  WT1 ↑ ↓ ↑1 ↑0.365 

 ↓ ↑ ↑0.031 ↑0.004   ↑ ↓ ↑0.928 ↑0.527 

NGFR ↓ ↑ NA ↓0.017   ↑ ↓ ↑0.319 ↑0.224 

 ↓ ↑ NA ↓0.2   ↑ ↓ ↑0.431 ↑0.509 
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Table 3. Continued. 
 

CDKN2A ↓ ↑ NA ↓0.015   ↑ ↓ NA ↓0.058 

 ↓ ↑ NA ↓0.044  APOD ↑ ↓ ↑0.193 ↑0.032 

 ↓ ↑ NA ↓0.051   ↑ ↓ ↑0.244 ↑0.057 

 ↓ ↑ NA ↓0.036  CASP1 ↑ ↓ NA ↑0.024 

CTSD ↓ ↑ ↑0.23 ↑0.143  CD36 ↑ ↓ ↑0.591 ↓0.033 

 ↓ ↑ ↑0.182 ↓0.105  EGFR ↑ ↓ NA ↓0.04 

 ↓ ↑ NA ↑0.001   ↑ ↓ NA ↓0.016 

GNAI2 ↓ ↑ NA ↓0.014   ↑ ↓ ↑0.042 ↓0.051 

 ↓ ↑ NA ↓0.023  KIT ↑ ↓ ↑0.008 ↓0.042 

HPCAL1 ↓ ↑ ↑0.069 ↑0.006  LEPR ↑ ↓ NA ↓0.036 

 ↓ ↑ ↑0.069 ↓0.027   ↑ ↓ NA ↓0.026 

MFI2 ↓ ↑ ↑0.006 ↑0.027  MME ↑ ↓ NA ↓0.003 

NES ↓ ↑ NA ↓0.012  SOCS3 ↑ ↓ NA ↓0.015 

NFKB1 ↓ ↑ NA ↓0.016   ↑ ↓ ↑0.002 ↓0.021 

BCL2 ↓ ↑ ↑0.05 ↓0.034  ADM ↑ ↓ NA ↓0.046 

BCL2L2 ↓ ↑ ↑0.002 ↑0.021   ↑ ↓ NA ↓0.064 

EDNRB ↓ ↑ ↑0.154 ↓0.075  CAPN1 ↑ ↓ NA ↓0.007 

ERBB3 ↓ ↑ ↑0.065 ↓0.014  FBN2 ↑ ↓ ↓0.028 ↓0.038 

 ↓ ↑ ↑0.004 ↓0.023  IGFBP3 ↑ ↓ NA ↓0.021 

 ↓ ↑ NA ↓0.017  PDGFRA ↑ ↓ ↓0.002 ↓0.017 

MPZ ↓ ↑ ↑0.25 ↑0.214  PIAS3 ↑ ↓ NA ↓0.024 

PDGFA ↓ ↑ ↑0.109 ↓0.347   ↑ ↓ NA ↓0.019 

 ↓ ↑ ↑0.075 ↑0.009  PLAU ↑ ↓ NA ↓0.055 

S100B ↓ ↑ ↑0.804 ↑0.336  PTGES ↑ ↓ ↑0.016 ↓0.029 

SOX5 ↓ ↑ ↑0.29 ↑0.278  PTGS2 ↑ ↓ NA ↓0.058 

SOX2 ↓ ↑ ↓0.019 ↓0.045  TFPI ↑ ↓ ↓0.017 ↓0.017 

SOX2-OT ↓ ↑ ↑0.475 ↑0.085  TWIST1 ↑ ↓ ↑0.037 ↓0.041 

 ↓ ↑ ↓0.019 ↓0.045  SOX9 ↑ ↓ ↑0.738 ↑0.168 

 ↓ ↑ NA ↓0.057   ↑ ↓ ↑0.163 ↑0.039 

SOX8 ↓ ↑ ↑0.154 ↑0.021  SOX11 ↑ ↓ ↓0.017 ↓0.006 

 ↓ ↑ ↑0.729 ↑0.275   ↑ ↓ NA ↓0.02 

SOX10 ↓ ↑ ↑0.456 ↑0.158   ↑ ↓ NA ↓0.075 

SOX13 ↓ ↑ ↑0.059 ↑0.008       

 
 
 
variations of “methylation” such as 5CaC, 5fC converted 
from 5meC. Although, this model is copy number 
indifferent, we expect more conserved treatment of ultra-
high read counts. We believe that as sequencing 
technology continuously lowers the threshold for 
obtaining higher-quality, longer reads, future-generation 
methylation analysis tools will demand more informed 
models intertwined with complex bioinformatics 
techniques. 
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