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The production of xylanase without cellulase is required for prebleaching of pulp in pulp and paper 
industry. Aspergillus flavus produced high levels of xylanase on agricultural residues with wheat bran 
and sugarcane bagasse (4.17 U/mg), and wheat bran and corncob (2.97 U/mg). Xylanase was found to 
be stable at 45°C with 100% of its original activity remaining after 2 h incubation. At 50°C, xylanase was 
stable for the first twenty minutes, and had half-life of 50 min. The pH stability for the xylanase from A. 
flavus was most stable in the range of pH 3.0-8.0 retaining more that 100% activity after 1 h. The 
addition of 5% glycerol, mannitol or xylitol protected the xylanase from thermal inactivation at 50°C. The 
protective effect by glycerol, xylitol and mannitol resulted in increases of 162, 262.5 and 150% when 
compared with the control at 120 min, approximately. Increasing the polyols concentration up to 20% 
(w/v) further improved the thermostability of xylanase after 120 min at 50°C by 300% when compared 
with the control (no additive). The kappa number reduced 2.56 points, which corresponds to 18.34 
kappa efficiency. This xylanase is an attractive enzyme for potential future application in the pulp and 
paper industries, since industrial application requires a cellulase-free activity, maintenance of high 
temperature and enzyme stability are desirable. 
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INTRODUCTION  
 
After cellulose, hemicellulose is the second most 
abundant renewable biomaterial available in nature and, 
among the hemicelluloses constituents, xylans are the 
major portion of the hemicellulose. Xylan is a hetero-
polymer consisting principally of xylose and arabinose 
(Abdel-Sater and El-Said, 2001). A complex  of  enzymes 

are responsible for the hydrolysis of xylan, but the main 
enzymes involved are endo-1,4-β-xylanase and β-
xylosidase. These enzymes can be produced by bacteria, 
yeast or insect, but the principal commercial source is 
filamentous fungi (Biswas et al., 2010; Guimaraes et al., 
2013a). Among the microbial  sources,  filamentous  fungi 

 

 

 



 
 
 
 
are especially interesting as they secrete these enzymes 
into the medium and their xylanase levels are very much 
higher than those found in bacteria (Michelin et al., 2010; 
Guimaraes et al., 2013b). A large number of different 
Aspergillus species have been reported as good 
producers of xylanases (Abdel-Sater and El-Said, 2001; 
Sandrim et al., 2005; Betini et al., 2009; Guimarães et al., 
2013b). 

In recent years, there has been increasing interest in 
the use of xylanases, particularly in the bleaching 
process of pulp and paper industry (Comlekcloglu et al., 
2014; Guimaraes et al., 2013b; Michelin et al., 2010; 
Peixoto-Nogueira et al., 2009; Abdel-Sater and El-Said, 
2001). Xylanases are used in the pretreatment of pulp to 
increase the liberation of lignin through the hydrolysis of 
hemicellulose (Guimaraes et al., 2013b; Khonzue et al., 
2011). In fact, treating cellulosic pulps with xylanases 
selectively removes residual xylan and hence reduces 
the usage of chlorine during the bleaching process 
(Woolridge, 2014; Bankeeree et al., 2014; Nawel et al., 
2011; Abdel-Sater and El-Said, 2001). Chlorine is the 
base of bleaching process of pulp and paper industry and 
present serious environmental effects such as the 
production of toxic and mutagenic residues (Dedhia et al., 
2014; Goluguri et al., 2012; Yeasmin et al., 2011); 
therefore, environmental demands have necessitated that 
the pulp and paper industry find various alternatives to 
chlorine-based chemical bleaching processes for the 
production of bleached kraft pulp. A xylanase 
pretreatment, always used as a mixture, can deink pulp 
of waste paper, lower bleaching chemical use by 10-20% 
and usually results in greater final brightness (Goluguri et 
al., 2012). In paper manufacturing, xylanases are efficient 
in biobleaching and so are regularly used for process 
efficiency, improving enhancement of products quality 
(Paes et al., 2012; Kenealy and Jeffries, 2003). For such 
biotechnological applications, xylanases are required to 
be stable at elevated temperatures, to be active at 
alkaline pH, to be devoid of cellulose activity, to avoid 
deterioration of strength properties and to minimize yield 
loss. Accordingly, lignocellulosic extract has been 
employed for xylanase production in the present study. 
The purpose of this work was to characterize the 
production of xylanase, and application of the crude 
extract on cellulose pulp biobleaching.  
 
 
MATERIALS AND METHODS 
 
Microorganism 
 
Aspergillus flavus was isolated from soil samples in Campo Grande 
region, Mato Grosso of Sul, Brazil, and was deposited in the 
laboratory fungal herbarium. The  A.  flavus  was  grown  on  potato  
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dextrose agar (PDA) slants at 30°C for 5 days and subsequently 
stored at 4°C. 
 
 
Culture conditions and xylanase production  
 
Spores were inoculated in 25 ml of liquid medium SR (Rizzatti et al., 
2001) supplemented with 1.0% (v/w) carbon source (sugarcane 
bagasse or wheat bran or rice straw, etc.) contained in 125 ml 
Erlenmeyer flasks. The cultures were incubated at 30°C, subjected 
to 110 rpm agitation for 96 h. After this period, the medium was 
filtered using vacuum and the filtrate used as a source of crude 
extracellular enzymes. 
 
 

Enzymatic assay and protein determination 
 
The xylanolytic activity was assayed using 3´,5´-dinitrosalicylic acid 
(DNS) as described by Miller (1959), using 1% (v/w) Birchwood 
xylan as substrate, at 50°C. The reaction mixture consisted of 500 
µl of McIlvaine buffer (McIlvaine, 1921) pH 5.0 containing the 
substrate diluted and 100 µl of enzymatic extract appropriately 
diluted. One unit (U) was defined as the amount of enzyme that 
releases 1 µmol of xylose (Sigma) per minute under the assay 
conditions. Protein content was estimated by the Lowry et al. (1951) 
method, using bovine serum albumin as standard. Specific activity 
corresponded to U/mg protein. 
 
 

Effect of temperature and pH on enzyme stability 
 
To determine the thermostability of the enzyme, it was incubated 
from 45-60°C, in the absence of substrate, and residual activity was 
determined for different periods (10 to 120 min). The pH stability 
was analyzed using McIlvaine buffer in the pH range of 2.0-8.0 for 1 
h, and after that, assays were carried out at the optimal temperature 
and pH of enzyme. 
 
 

Effect of polyols on xylanase thermostability 
 
In order to improve the thermal stability of the xylanase, polyols 
including polyethylene glycol, mannitol, xylitol and glycerol were 
added to separate enzyme solutions at 5% (w/v) final concentration 
prior to incubation at 50°C. Aliquots were withdrawn and then the 
residual xylanase activity was assayed under the optimal 
conditions. The stability of the enzyme was expressed as a 
percentage of residual activity (%) compared with activity of the 
initial enzyme (before incubation and no polyols). The polyols that 
most improved the thermostability was selected for further study 
over a range of concentration on the optimal [2.5 – 20% (w/v)] at 
50°C. 
 
 

Biobleaching 
 
The amount of enzyme used from A. flavus for this biobleaching 
treatment was 10 units of enzyme per gram of dried cellulose pulp 
from Eucalyptus grandis. All calculations and procedures were 
determined according to the standard methods of Technical 
Association of the Pulp and Paper Industry (TAPPI test methods, 
1996). The consistency was determined on a percent dry weight 
basis. The  volume  of  enzyme  or  distilled water was added until it
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Table 1. Effect of different carbon sources on extracellular xylanase production. 
 

Carbon source 
Total xylanase activity 

(units) 
Total protein 

(mg) 
Specific xylanase activity 

(U/mg
a
) 

Wheat bran 0.5% + Sugarcane bagasse 0.5%  129.8 31.1 4.17 (±0.0141) 

Wheat bran 0.5% + Corncob 0.5%   94.0 31.7 2.97 (±0.0141) 

Corncob 0.5% + Sugarcane bagasse 
0.5%   

21.4 17.4 1.23 (±0.0141) 

Soybean 1% 4.4 47.2 0.09 (±0.7142) 

Triturated rice straw 1% 12.6 14.9 0.85 (±0.1768) 

Corncob 1% 36.1 15.8 2.28 (±0.0566) 

Rice bran 1% 4.1 44.9 0.09 (±0.8556) 

Wheat bran 1% 47.9 32.1 1.49 (±0.0212) 

Rice straw 1% 25.9 14.7 1.76 (±0.4313) 

Sugarcane bagasse 1% 49.8 19.5 2.55 (±0.8061) 

Avicel 1% 1.3 18.2 0.07 (±0.6576) 

Glucose 1% 1.3 5.4 0.24 (±0.0354) 

Carboxymethiyl-cellulose (CMC) 1% 4.1 9.3 0.44 (±0.3182) 
 
a
Values are means ±SD of three experiments. 

 
 
 
reached a 10% pulp consistency. Crude xylanase extract from A. 
flavus was added for the treated pulp and the control was prepared 
by adding distilled water instead of enzyme. The samples were 
incubated inside sealed polyethylene bags at 55°C for 2 h and pH 
6.5 and after that, the treated cellulose pulps were filtered on a 
Büchner funnel, rinsed with 200 ml of distilled water and used for 
determination of kappa number and viscosity. Xylan is degraded by 
the xylanase, in addition to xylose, it also results in the release of 
lignin and phenolic compounds from the pulp fibres, which 
ultimately causes an enhancement in the absorbance at 237 nm of 
pulp free samples. The correlation between the release of 
chromophores optical density (at 237nm) and hydrophobic 
compounds (at 465 nm) coupled to the release of reducing sugars 
suggested the dissociation of lignin-carbohydrate complex. So, the 
filtrate was used to analyze the liberation of aromatic and 
hydrophobic compounds monitored using the Genesys 10S UV-VIS 
spectrophotometer (Thermo Scientific, USA). 

 
 
Reproducibility of results  

 
All the results are the mean of at least three independent 
experiments [±standard deviation (SD)]. 
 
 
RESULTS AND DISCUSSION 
 
Effect of different carbon sources on xylanase 
production by A. flavus 
 
Xylanase production by A. flavus was investigated using 
several carbon sources including agroindustrial residues. 
These substrates with high hemicelluloses contents 
include wheat bran, corn cob and rice straw. Table 1 
shows the activity of xylanase produced by A. flavus 
when growing on different carbon sources, including 
agroindustrial residues. Maximum xylanase production 
was  observed  in  wheat  bran  and  sugarcane  bagasse 

(4.17 U/mg), followed by wheat bran and corncob (2.97 
U/mg), as carbon source. Other materials assayed, such 
as soybean, triturated rice straw, rice bran and avicel 
were poor substrates for xylanase production. 

In literature, the xylanase production using different 
combinations of agroindustrial residues as carbon 
sources, has been reported for Aspergillus species. A. 
niger had its highest xylanase production in media 
containing a mixture of wheat bran and corncob 
(Guimaraes et al., 2013b) or wheat bran and soybean as 
described by Pal and Khanum (2010), for Aspergillus 
japonicas, the combination of soybean and crushed 
corncob was described by Facchini et al. (2011). The 
possibility of using agricultural residues to produce 
enzymes may reduce the production costs resulting in a 
cheaper product. Wheat bran is the agricultural waste 
most often included in nutrient media for microbial 
xylanase production (Techapun et al., 2003), and 
furthermore the substrate content lower lignin content 
and increase protein concentration, as compared to other 
substrates which promotes a higher xylanase production.  

Studies on pH stability indicated that A. flavus xylanase 
was most stable in the range of pH 3.0-8.0 retaining more 
than 100% activity after 1 h (Figure 1). In literature, the 
xylanases of A. niveus and A. ochraceus, were stable 
between pH 3.5-7.0, retaining more than 75% activity, 
approximately (Betini et al., 2009). Aspergillus fumigatus 
(Peixoto-Nogueira et al., 2009), Aspergillus oryzae 
(Polizeli et al., 2005) and Aspergillus fischeri (Techapun 
et al., 2003) showed a considerable stability on ranges of 
pH from 5.0 to 8.0. Shah and Madamwar reported that 
Aspergillus foetidus xylanase activity has a favorable pH 
range of 4.6-.56. Studies on pH stability indicated that A. 
niger  xylanase  was  most  stable  in  the range of pH 2-7 
retaining more that 75% activity (Betini et al., 2009). 



 
 
 
 

 
 

Figure 1. The pH stability of xylanase by A. flavus. The influence 
of pH on xylanase was verified using McIlvaine buffer 2.0-8.0. 
Residual activity was assayed after 1 h. 

 
 
 

 
 

Figure 2. Thermostability of the xylanase of A. flavus. The 
thermostability was determined using McIlvaine buffer pH 5.0 at 
55°C after incubating the enzyme on temperatures of 45 (■), 50 
(○), 55 (▲) and 60°C (□).The residual xylanase activity was 
calculated as the percentage of initial enzyme (before 
incubation).  
 
 
 

The thermal stability of the xylanase from A. flavus was 
tested at 45-60°C at pH 5.0. Xylanase was found to be 
stable at 45°C with 100% of its original activity remaining 
after 2 h incubation (Figure 2). At 50°C, xylanase was 
stable for the first twenty minutes, and had half-life of 50 
min. At 55°C and above, the activity decreased with 
increasing temperature.  

In studies with A. terreus, the xylanase was 
thermotolerant at 45 and 50°C, but had half-life of only 25 
min at 50°C (Sorgatto et al., 2012). And the xylanase of 
A. phoenicis had a half-life of only 25 min at 50°C (Rizzatti 
et al., 2001). 
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Figure 3. The effect of polyols on thermostability of the xylanase 
from A. flavus. The enzyme solutions were preincubated at 50°C 
without the presence of substrate for various times (0 - 120 min) in 
the presence of glycerol (▲), mannitol (●), xylitol (□) and 
polyethyleneglycol (♦) at a concentration of 5% prior to enzyme 

assay at the optimal condition. Control (△) without the presence of 
polyols. The residual xylanase activity was calculated as the 
percentage of initial enzyme (before incubation).  

 
 
 
Effect of polyols on thermostability of xylanase from 
A. flavus 
 
The addition of 5% glycerol, mannitol or xylitol somehow 
protected the xylanase from thermal inactivation at 50°C 
(Figure 3). The protective effect by glycerol, xylitol and 
mannitol resulted in 162, 262.5 and 150% retention of the 
original enzyme activity after 120 min at 50°C, 
approximately.  

The polyethyleneglycol was not effective as protector for 
xylanase from A. flavus. The addition of polyols improves 
the thermostability of enzymes from fungi (Bourneow et 
al., 2012; Bankeeree et al., 2014), including xylanases 
from Trichoderma reesei (Cobos and Estrada, 2003), A. 
niger (Pal and Khanum, 2010) and Aureobasidium 
pullulan (Bankeeree et al., 2014).  
The effect of concentration of manitol, xylitol and glycerol 
on the thermostability of the xylanase was also evaluated 
(Figure 4). Increasing the polyols concentration up to 
20% (w/v) further improved the thermostability of 
xylanase after 120 min at 50°C by 300% as compared to 
the control (no additive). It has further been suggested 
that the protective role of polyols is due to their capability 
to form hydrogen bonds that support and stabilize the 
native conformation of the enzyme (Cobos and Estrada, 
2003).   

These compounds have been found to show similar 
effect on xylanases isolated from Thermomonospora sp. 
(George et al., 2001) and Arthrobacter sp. MTCC 5214 
(Khandeparkar and Bhosle, 2006). Polyols have the 
capability to  form  hydrogen  bonds  that  play key role in  
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Figure 4. Thermostability of the xylanase at 50°C, with manitol (▲), 

xylitol (●) and glycerol (△) in different concentrations [2.5 – 20% 
(w/v)]. Residual activity was assayed after 120 min at 50°C. 

 
 
 

Table 2. Properties of pulp treated with xylanase 
produced by A. flavus. 
 

Parameters
a
 Control A. flavus 

Kappa number 13.96 11.40 

Kappa efficiency (%) - 18.34 

CST (%) 21.70 22.10 

A237 nm - 0.100 

A465 nm - 0.043 
 
a
Biobleaching of bagasse pulp with 10 U xylanase g

-1 
of pulp 

in 0.5 M sodium citrate buffer (pH 6.5) at 55°C for 2 h. 

 
 
 
supporting and stabilizing the native conformation of 
protein.  

The stabilizing effect of additives is not an absolute 
effect valid for all enzymes, but it depends on the nature 
of the enzyme, on its hydrophilic and hydrophobic 
character and on the degree of interaction with the 
additive effect (George et al., 2001; Cobos and Estrada, 
2003). 
 
 

Assays of cellulose biobleaching using xylanase 
from A. flavus 
 

To analyze the xylanase efficiency for cellulose pulp 
biobleaching assay, the cellulose pulp was clarified by A. 
flavus crude extract. The kappa number reduced 2.56 
points, which corresponds to 18.34 kappa efficiency. 

Alkaline-extracted pulp typically has a high brightness 
and low viscosity relative to xylanase-treated pulp. In fact, 
alkaline extraction is an aggressive treatment reducing 
pulp  viscosity  by   effect   of   laccase-oxidized  cellulose  

 
 
 
 
being hydrolyzed in an alkaline medium and some 
glycosidic bonds between adjacent glucose molecules 
broken as a result. On the other hand, xylanase cleans 
microfibrils by hydrolyzing surface hemicellulose. 
Hemicellulose removal affects HexA and lignin, but does 
not degrade cellulose (Barneto et al., 2013). The 
xylanase from A. flavus was free of cellulase (data not 
shown), not changing significantly the viscosity of the 
pulp, meaning that the physical properties of cellulose 
were maintained (Table 2).   

Similar results have been reported by Cheng et al. 
(2013) that studied the xylanase action produced by 
Streptomyces griseorubens LH-3 on eucalyptus kraft 
pulp, where they observed that the kappa number 
reduced 18,4% using 10 IU g

-1 
of xylanase, similar to our 

A. flavus xylanase kappa efficiency. Later, Cheng and 
colleagues (2014) studied the same xylanase of 
Streptomyces griseorubens LH-3 action, on bagasse 
pulp, which resulted in only 0.94 point decrease in kappa 
number using 30 IU g

-1
, while A. flavus reduced 2.56 

using 10 IU g
-1

. But in studies of Dedhia et al. (2014) with 
wheat straw, a commercial xylanase reduced only 7.25% 
the kappa number using 6 IU g

-1
; and A. fumigatus ABK9 

reduced only 0.7, 1.2, 2.7, 3.3 and 4 points in kappa 
number, using 20, 40, 60, 80 and 100 U/g dry pulp/6 h, 
respectively (Das et al., 2013).  
 
 
Conclusions 
 
Xylanase has been successfully used for pre-treatment of 
pulp, and parameters have been optimized. The enzyme 
was relatively stable at 50°C, retaining more than half of 
its original activity after 50 min incubation. The pH 
stability for the xylanase was in the range of pH 3.0-8.0 
retaining more that 100% activity after 1 h. The enzyme 
was more stable in the presence of polyols when 
compared with the control (no additive). The kappa 
number reduced with 2.56 points, which corresponds to 
18.34 kappa efficiency. The results suggest the potential 
application of the xylanase before the pulp biobleaching 
process when the maintenance high temperatures, 
addition of polyols and enzyme stability are desirable. 
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