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Although human undifferentiated keratinocytes (HUKs) can be reprogrammed to become induced 
pluripotent stem cells (iPSCs) with high efficiency and rapid kinetics by transducing reprogramming 
factors (RFs), the endogenous expression of reprogramming factors in cultured HUKs is not clear at 
different stages. In this study, keratinocytes were isolated from foreskin of adult subject (18 years old) 
and cultured on collagen type IV-coated culture dishes in a low-calcium, serum-free medium (Epilife, 
Invitrogen). In order to clarify the expression patterns of RFs and other stem cell markers in cultured 
human keratinocytes, total RNA was extracted using Trizol reagent, and polymerase chain reaction 
(PCR) was performed using established GenBank sequences to design primers. The subsequent PCR 
analysis was carried out by agarose gel electrophoresis. The expression levels of RFs and other stem 
cell markers in human HUKs clearly fluctuated during culturing, which supports the hypothesis that 
HUKs might be reprogrammed into a pluripotent state when the maximum levels of RFs expression are 
maintained by appropriate culture conditions. 
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INTRODUCTION 
 
Human somatic cells can be directly reprogrammed to 
become induced pluripotent stem cells (iPSCs) by ectopic 
expression of reprogramming factors (RFs). Results from 
many independent groups have suggested that human 
iPSCs, once established, generally exhibit a normal 
karyotype, are transcriptionally and epigenetically similar 

to embryonic stem cells (ESCs) and maintain the poten-
tial to differentiate into derivatives of all germ layers 
(Takahashi and Yamanaka, 2006; Takahashi et al., 2007; 
Yu et al., 2007). This strategy, therefore, represents a 
significant breakthrough toward the practical use of 
iPSCs in regenerative medicine. For instance, iPSCs 
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could serve as disease models and aid in the discovery 
of drugs and genes; furthermore, this approach to gene-
rating patient-specific iPSCs would undoubtedly trans-
form regenerative medicine in numerous ways. Current 
reprogramming protocols, however, predominantly involve 
the expression of exogenous RFs using virus-mediated 
transduction. The potentially harmful genomic insertion of 
these viruses has been the major barrier to the clinical 
use of iPSCs generated using this approach. Therefore, 
recruiting endogenous Oct4 (octamer-binding transcrip-
tion factor 4), Sox2 (SRY <sex determining region Y>-box 
2), Klf4 (Krüeppel-like factor 4) and c-Myc (v-myc 
myelocytomatosis viral oncogene homolog) genes for 
reprogramming, eliminating the need for transgenes and 
other factors, would be a more practical approach with 
regard to the therapeutic use of iPSCs. Such an 
approach would make it possible for safe, viral-free 
human iPSCs to be derived routinely in the near future. 
The high efficiency and rapid kinetics of the generation of 
iPSCs from human undifferentiated keratinocytes (HUKs) 
involve retrovirus-mediated expression of three (Oct4, 
Sox2 and Klf4) or four (Oct4, Sox2, Klf4 and c-Myc) RFs 
(Aasen et al., 2008), suggesting that an accessible 
source of more easily reprogrammable cells from epider-
mal biopsies should facilitate progress toward the goal of 
safe, efficient iPSCs generation using non-transgenic 
approaches. Until recently, it was shown that mouse 
somatic cells-derived iPSCs can be generated using a 
combination of small-molecule compounds(Hou, Li et al. 
2013). 

In addition, the endogenous expression of RFs in HUKs 
should be characterized before non-transgenic repro-
gramming approaches are developed. In this study, 
therefore, we clarified the expression patterns of RFs and 
other stem cell markers in cultured human keratinocytes. 

 
 
MATERIALS AND METHODS 

 
Cell resources and culture medium 

 
Foreskin removed from adult subject (18 years old) who underwent 
a routine circumcision was provided by the Chinese People’s 
Liberation Army General Hospital. The patient and his family 
members signed an informed consent form. The fresh foreskin was 
collected, and the subcutaneous tissue was removed. Keratino-
cytes were separated from the foreskin using dispase and trypsin 
and cultured on collagen type IV-coated culture dishes in low-
calcium, serum-free defined medium (Epilife, Invitrogen) as 
described below. 

 
 
Isolation and culture of keratinocytes 

 
Human adult foreskin from routine circumcisions was processed 
within 2 h of collection. Epithelial sheets were obtained after over-
night incubation with 3 mg/ml dispase at 4°C, and the separated 
epidermal sheet was placed in 0.25% trypsin for 30 min at 37°C. 
Medium was then added to inactivate the trypsin, and the tubes 
were shaken violently to dissociate individual basal keratinocytes. 

 
 
 
 
The keratinocytes were plated on collagen type IV-coated culture 
dishes in low-calcium, serum-free defined medium (Epilife, Invitro-
gen). 
 
 
RNA preparation and RT-PCR 
 
The expression of selected genes (seven stem cell markers: Oct4, 
Sox2, c-Myc, Klf4, Nanog, teratocarcinoma-derived growth factor 1 
(CRIPTO) and RNA exonuclease 1 (REX1), and six keratinocyte-
specific markers: keratin (KRT) 1, KRT 5, KRT 10, KRT 14, KRT 15, 
and KRT 19) was analyzed by reverse transcription polymerase 
chain reaction (RT-PCR). Three wells of human keratinocytes (in 6-
well plates) were collected on days 0, 1, 5, 18 and 33 of culture. 
Total cellular RNA was isolated and reversely transcribed using 
conventional protocols. PCR amplification was performed using the 
primer sets shown in Table 1. All primer sequences were deter-
mined using established GenBank sequences. Duplicate PCR 
reactions were amplified using primers designed against β-actin as 
a control to assess PCR efficiency and for subsequent analysis by 
agarose gel electrophoresis.  

 
 

RESULTS 
 
Morphological inspection of human keratinocytes 
during differentiation 
 
Figure 1 shows the morphological changes observed in 
human keratinocytes after cultivation in low-calcium, 
serum-free defined medium for 33 days. The undifferen-
tiated monolayer cultures showed small, uniform, poly-
gonal cells attached to the bottom of collagen type IV-
coated plastic dishes soon after plating. From about the 
fourth or fifth day in culture, the keratinocytes grew and 
formed colonies at random over the small, uniform, poly-
gonal cells (Figure 1A and B). In a few days, some kerati-
nocytes developed into a stratified epithelium, and intact 
contaminating fibroblasts were seen among disaggre-
gated keratinocytes via cell proliferation and differen-
tiation (Figure 1C, D, and E). 
 
 

Expression patterns of genes involved in stem cell 
defferentiation in human keratinocytes 
 
In order to examine the expression patterns of stem cell 
markers, human keratinocytes were cultured in low-cal-
cium, serum-free defined medium. The results of the RT-
PCR analysis are summarized in Figure 2. The expres-
sion profiles of selected genes (seven stem cell markers: 
Oct4, Sox2, c-Myc, Klf4, Nanog, CRIPTO and REX1, and 
six keratinocyte-specific markers: KRT 1, KRT 5, KRT 10, 
KRT 14, KRT 15, and KRT 19) involved in the stem cell 
development pathway of keratinocytes were analyzed. 
The expression of each gene was analyzed during the 
development of keratinocyte stem cells from day 0 to day 
33 in order to show the stability and reproducibility of the 
selected genes in culture. 

The stem cell markers for undifferentiated cells, inclu-
ding Oct4, Sox2 and Nanog, and the keratinocyte- 
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Table 1.  PCR primers used in this study. 
 

Gene Primer sequence Annealing temperature (°C) PCR product size (bp) 

Oct4 
FP:CGTGAAGCTGGAGAAGGAGAAGCTG 

RP:GAACATGTGTAAGCTGCGGCCCTTG 
62 247 

    

Sox2 
FP:GCTGCACATGAAGGAGCACCC 

RP: CGGACTTGACCACCGAACCCA 
62 443 

    

c-Myc 
FP:ACTCTGAGGAGGAACAAGAA 

RP:TGGAGACGTGGCACCTCTT 
58 159 

    

Klf4 
FP:CCAGAGGAGCCCAAGCCAAAG 

RP:CGAGGTGGTCCGACCTGGAAA 
58 289 

    

Nanog 
FP:CCCAAAGGCAAACAACCCACT 

RP:ATTGCTATTCTTCGGCCAGTT 
58 276 

    

CRIPTO 
FP:TGCCCAAGAAGTGTTCCCTGT 

RP: GCAGCAGCCTTTACTGGTCAT 
60 269 

    

REX1 
FP: CGCTGACACCATCCTCATCGG 

RP: GGCGTCATCGCTTGGTCTTGG 
62 269 

    

KRT1 
FP: AGGATGTGGATGGTGCTTAT 

RP: GCTTTGCTCTTCTGGGCTAT 
58 235 

    

KRT5 
FP: CTGGACACCAAGTGGACCCT 

RP: GCTCCGCATCAAAGAACATC 
60 346 

    

KRT10 
FP: TGATAATGCCAACATCCTGC 

RP: CCTCCTCGTGGTTCTTCTTC 
60 224 

    

KRT14 
FP: GGAGATGATTGGCAGCGTGGA 

RP: GGACCTGCTCGTGGGTGGACA 
68 281 

    

KRT15 
FP: AGCCTACCTGAAGAAGAACCACG 

RP: TGGCATAGCGGCACTCTGTCT 
62 365 

    

KRT19 
FP: GCGACTACAGCCACTACTACACGAC 

RP: CGACCTCCCGGTTCAATTCTT 
58 474 

    

β-actin 
FP: AAAGACCTGTACGCCAACAC 

RP: GTCATACTCCTGCTTGCTGAT 
62 219 

 
 
 

specific marker KRT 19 were first detectable in vivo (day 
0) and were expressed at maximum levels on day 5 of 
cultivation before becoming undetectable. Klf4 and the 
keratinocyte-specific marker KRT 1 were undetectable in 
vivo (day 0), and their maximum expression levels were 
observed on day 5 before becoming undetectable at day 
10. The stem cell markers for undifferentiated cells, 
including c-Myc and CRIPTO, and keratinocyte-specific 

markers, including KRT 5, KRT 14 and KRT 15, were 
detectable in vivo (day 0) and were expressed at 
maximum levels on day 5 before showing reduced gene 
expression after day 10. In addition, the stem cell marker 
REX1 and keratinocyte-specific marker KRT 10 were 
undetectable in vivo (day 0) and were expressed at 
maximum levels on day 5 before showing reduced gene 
expression after day 10.  
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Figure 1. Morphological changes observed in human keratinocytes during cultivation in low-
calcium, serum-free defined medium. (A) Morphology of human keratinocytes on day 1 in culture. 
(B) From the fifth day, the keratinocytes grew and formed colonies at random over the small, 
uniform, polygonal cells. (C-E) In a few days, some keratinocytes developed into a stratified 
epithelium (C: day 10), and intact contaminating fibroblasts were seen among disaggregated 
keratinocytes via cell proliferation and differentiation (D: day 18; E: day 33). Scale bar 100 μm. 

 
 
 

 
 
Figure 2. RT-PCR analysis of the expression of selected genes (seven stem cell markers: Oct4, 
Sox2, c-Myc, Klf4, Nanog, CRIPTO and REX1, and six keratinocyte-specific markers: KRT 1, KRT 
5, KRT 10, KRT 14, KRT 15 and KRT 19) in human keratinocytes during cultivation in vitro. We 
used the pMIG-hOCT4, pMIG-hSOX2, pMIG-hKLF4 and pBABE-c-myc-zeo vectors as PCR 
templates for positive controls. 



 
 
 
 
DISCUSSION 
 
In this study, we evaluated the expression patterns of 
RFs and other stem cell markers in cultured human kera-
tinocytes and found that the expression levels of almost 
all of the selected genes, including Oct4, Sox2, c-Myc 
and Klf4, were significantly increased in the early phase 
of culturing and decreased upon cellular differentiation. 
Our results strongly suggest that the fluctuation of stem 
cell marker expression is ubiquitous in cultured human 
keratinocytes. The culture characteristics of human kera-
tinocytes support the hypothesis that the reprogramming 
process could be more easily achieved when pluripotent 
markers are expressed at maximum levels during culti-
vation in vitro. Oct4 expression is essential for the deve-
lopment of the inner cell mass (ICM) in vivo, the deri-
vation of ESCs and the maintenance of a pluripotent 
state (Nichols et al., 1998), and the precise levels of Oct4 
govern three distinct fates of ESCs (Niwa et al., 2000). A 
less than twofold increase in expression causes differen-
tiation into primitive endoderm and mesoderm, whereas 
inhibition of Oct4 expression induces a loss of pluripo-
tency and differentiation into trophectoderm (Niwa et al., 
2000). 

Sox2 is a transcription factor involved in the self-
renewal of ESCs. It plays an important role in maintaining 
ES-cell pluripotency and heterodimerizes in a complex 
with Oct4 (Yuan et al., 1995). Sox2 expression is 
restricted to cells with stem cell characteristics, suppor-
ting their self-renewal capability, and is no longer expres-
sed in cells with more restricted developmental potential 
(Avilion et al., 2003). In addition, forced expression of 
Oct4 can compensate for the loss of Sox2 in ESCs 
(Masui et al., 2007). 

c-Myc is a pleiotropic transcription factor and has been 
linked to several cellular functions, including cell-cycle 
regulation, proliferation, growth, differentiation and meta-
bolism (Schmidt, 1999). It tends to be highly expressed in 
the majority of rapidly proliferating cells and is generally 
expressed at low levels or absent during quiescence 
(Murphy et al., 2005). The role of c-Myc in reprogram-
ming is not yet clear. It is dispensable for the generation 
of iPSCs in mice and humans (Eminli et al., 2008; 
Huangfu et al., 2008; Kim et al., 2008; Nakagawa et al., 
2008; Wernig et al., 2008), but the efficiency of repro-
gramming decreases dramatically without c-Myc. 

Klf4 is a transcription factor expressed in a variety of 
tissues, including the epithelium of the intestine, kidney 
and skin (Segre et al., 1999). Depending on its interaction 
partner and the target gene, Klf4 can both activate and 
repress transcription (Rowland and Peeper, 2006), and a 
growing body of evidence suggests that Klf4 can function 
as both an oncoprotein and a tumor suppressor (Zhao et 
al., 2004). Constitutive expression of Klf4 suppresses cell 
proliferation by blocking G1–S progression through the 
cell cycle (Zhao et al., 2004). Recently, it has been 
demonstrated that forced over expression of Klf4 in ESCs  
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inhibits differentiation in erythroid progenitors, suggesting 
a role for this factor in ES cell function (Li et al., 2005). Its  
exact role in the reprogramming process is still not fully 
understood. 

Transcripts of human keratinocyte stem cell markers 
have been detected in vitro (Aasen et al., 2008), and 
keratinocytes treated with ESC-conditioned medium (CM) 
change their morphology and express the pluripotency 
regulator Oct4 and its target transcripts Sox2, Nanog and 
REX1 (Grinnell and Bickenbach, 2007). In our gene 
expression profile, no transcripts of Klf4 or REX1 were 
detected in vivo (day 0). The different expression levels 
observed for Klf4 and REX1, however, suggest that these 
two markers may be involved in the differentiation of 
epithelial cells.  

It has been speculated that the expression of Oct4 
fluctuates during the development of keratinocytes from 
cultured human ESCs (Green et al., 2003) as it is expres-
sed at high levels in ESCs and shows reduced expres-
sion at day 6 of cellular differentiation (Pellizzer et al., 
2004). Furthermore, key genes that control pluripotency, 
including Oct4, Sox2 and Nanog, undergo dynamic 
changes in transcript abundance during porcine embryo 
cleavage development (Magnani and Cabot 2008). In the 
course of keratinocyte differentiation, the expression 
levels of KRT 5 and KRT 14 decline, whereas the expres-
sion levels of KRT 1 and KRT 10 are augmented (Kartasova 
et al., 1992). It has also been reported that CaCl2 
induces the differentiation of epidermal keratinocytes in 
culture (Hennings et al., 1980), with decreased expres-
sion of KRT 5 and 14, markers of the basal cell layers, 
and increased expression of KRT 1 and 10, markers of 
the prickle cell layers (Vellucci et al., 1995; Tennenbaum 
et al., 1996; Amoh et al., 2005; Yano et al., 2005). The 
expression of KRT 15, which has been reported to be a 
bulge stem cell marker, is significantly induced in both 
NHEKs and BDKs after CaCl2 treatment (Sasahara et al., 
2009). Previous studies have evaluated the expression 
pattern of KRT 19 in the phase following the degenera-
ion of the lowest part of the follicle. When epithelial cell 
populations were cultured, the percentage of KRT 19-
positive keratinocytes significantly increased in primary 
culture, remained high for the first subcultures and then 
decreased prior to senescence (Michel et al., 1996). A 
similar expression pattern was observed in our study, 
except for the fact that no transcripts of KRT 1 or KRT 19 
were detected after day 10. 

Fluctuation in the expression levels of stem cell mar-
kers occurs during increased proliferation, rather than 
terminal differentiation, in their initial developmental stage, 
while the converse situation is observed in later stages. 
Our results show that the fluctuation in the expression 
levels of stem cell markers could provide an opportunity 
for reprogramming using non integrating viruses or 
transient episomal gene expression or, more favourably, 
for the generation of iPSCs by biochemical means alone. 

In  conclusion,  this study highlights the expression pat- 
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patterns of stem cell markers that are present during 
early cellular development in cultured human keratino-
cytes, guiding future induction protocols for pluripotent 
stem cells and bioengineering research in this field. 
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