Short Communication

Antibacterial activity of whole plant extract of Marrubium vulgare

Mubashir H. Masoodi1*, Bahar Ahmed2, Iqbal M. Zargar1, Saroor A. Khan2, Shamshir Khan2 and Singh P.1

1Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J and K, India – 190006.
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi, India - 110062.

Accepted 26 November, 2007

The antibacterial activity of the methanolic extract of Marrubium vulgare whole plant was tested by disc diffusion method. Zones of Inhibition produced by methanolic extract in a dose of 50, 100, 200, 400 and 600 mg/ml against selected strains was measured and compared with those of standard discs of antibiotic ciprofloxacin (10 µg/ml).

Key words: Disc diffusion, antibacterial activity, Marrubium vulgare.

INTRODUCTION

Marrubium vulgare L. (Lamiaceae) commonly known as “Horehound” is naturalized in North and South America, the Mediterranean district and Western Asia. In India it is found in Kashmir at an altitude of 5,000 - 8,000 ft. It is a tall robust herbaceous perennial herb, 40 - 120 cm high, densely covered, especially when young, with a thick white cottony flower (Robert and Henry, 1880). It possesses tonic, aromatic, stimulant, expectorant, diaphoretic and diuretic properties. It is helpful for bronchial asthma and non-productive cough. It was formerly much esteemed in various uterine, visceral and hepatic affections and in phthisis (Chopra et al., 1956). The plant is reported to possess hypoglycemic (Roman et al., 1992), vasorelaxant (El-Bardai et al., 2003b), antihypertensive (El-Bardai et al., 2004), analgesic (DeSouza et al., 1998), anti-inflammatory (Sahpaz et al., 2002a), antioxidant activity (Weel et al., 1999), antioedematogenic activity (Stulzer et al., 2006) and many other reported biological activities. Phytochemicals present in the plant include caryophyllene oxide, trans-caryophyllene (Asadipour et al., 2005), caffeoyl-l-malic acid, acteoside (Sahpaz et al., 2002a), phenylethanoid glycoside, marruboside (Sahpaz et al., 2002b), vulgarol, β-sitosterol, lupeol and marrubiin (Amer, 1993), respectively. The present study was undertaken to demonstrate the antibacterial activity of Marrubium vulgare whole plant against some Gram-positive and Gram-negative bacteria.

MATERIALS AND METHOD

The whole plant of M. vulgare was collected from Jammu and Kashmir in August. It was identified and authenticated by taxonomist Prof. A. R. Naqshi (Dept. of Botany, University of Kashmir, Srinagar, India). The voucher specimen (MV-FP-18) of the plant has been kept in the herbarium of Jamia Hamdard for future reference.

Whole plant of M. vulgare was dried in shade and crushed to fine powder. The dried powder of the plant (200 g) was extracted in Soxhlet apparatus with methanol. The extract was evaporated to dryness by evaporation on a water bath. A semisolid brown crude extract of whole plant so obtained was tested for the anti-microbial activity against various bacterial strains. These bacterial strains were obtained from Institute of Microbial Technology (IMTECH), MTCC and Gene Bank, Chandigarh, India.

Sterile nutrient agar plates were prepared and incubated at 37°C for 24 h to check for any contamination. Sterile filter paper discs (Whatman No.1) of 6 mm diameter were soaked in five different dilutions of the methanolic extract and placed in appropriate position on the surface of the plate with quadrants marked at the back of the petri dishes. The in vitro antibacterial activity of different extracts of M. vulgare at 50, 100, 200, 400 and 600 mg/ml was studied by disc diffusion method (Pelzlar et al., 1993) against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, S. epide-
Table 1. Antibacterial activity of methanolic extract of whole plant of *M. vulgare*.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Zones of Inhibition (mm) (mg/ml)</th>
<th>MIC (mg/ml)</th>
<th>Ciprofloxacin (10 µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 100 200 400 600 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. subtilis MTCC 619</td>
<td>0 10 13 17 24</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>S. epidermidis MTCC 435</td>
<td>0 0 11 15 21</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>S. aureus MTCC 740</td>
<td>0 09 11 15 20</td>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td>E. coli MTCC 443</td>
<td>0 0 0 10 15</td>
<td>400</td>
<td>25</td>
</tr>
<tr>
<td>P. vulgaris MTCC 426</td>
<td>0 0 0 11 16</td>
<td>400</td>
<td>22</td>
</tr>
<tr>
<td>P. aeruginosa MTCC 424</td>
<td>0 0 0 0 0</td>
<td>0</td>
<td>23</td>
</tr>
</tbody>
</table>

Zones of inhibition (mm) are average of triplicate experiments. Disc diameter = 6 mm

RESULTS AND DISCUSSION

The methanolic extract of the whole plant of *M. vulgare* exhibited moderate to significant antibacterial activity against five out of six tested bacterial organisms as compared to the standard ciprofloxacin (10 µg/ml). The study revealed that methanolic extract of the crude drug was very much effective against *B. subtilis*, *S. epidermidis* and *S. aureus* (Gram positive bacteria) and moderately effective against *P. vulgaris* and *E. coli* while ineffective in case of *P. aeruginosa* (Gram negative bacteria).

Thus on the basis of the results it is inferred that the methanolic extract of *M. vulgare* whole plant had *in-vitro* antibacterial. Further phytochemical studies are needed to identify active constituents responsible for the observed activity.

REFERENCES

