Full Length Research Paper

HPLC analysis of water-soluble vitamins (B1, B2, B3, B5, B6) in in vitro and ex vitro germinated chickpea (Cicer arietinum L.)

Junaid Aslam², Mohammed S. Mohajir¹,², Saeed A. Khan¹,²* and Abdul Q. Khan²

¹Department of Pharmaceutical and Medicinal Chemistry, Al Muhasinah P.O. Box 19099 United Arab Emirates.
²Plant Tissue Culture Research, Dubai Pharmacy College, Al Muhasinah P.O. Box 19099 United Arab Emirates.

Accepted 10 June, 2008

In the present communication, a comparative HPLC analysis of water-soluble vitamins (B-group) was carried out in in vitro and ex vitro germinated chickpea (Cicer arietinum L.) seeds. Quantitative analysis of ex vitro and in vitro germinated seedlings showed significant differences in vitamin contents. Maximum amount with a linear increase in B1 (thiamine HCl), B2 (riboflavin), and B3 (nicotinamide) contents was noticed up to 9 days old ex vitro grown seedlings. However, B5 (pantothenic acid) and B6 (pyridoxine HCl) were higher in in vitro germinated seedlings. Thus, vitamin production was age and culture conditions dependent, which is discussed in detail. The study revealed that the germinated chickpea grains can be used for human consumption with value addition of vitamin B-group in the diet of vegetarians.

Key words: Cicer arietinum L., water-soluble vitamins, in vitro and in vitro culture.

INTRODUCTION

Chickpea (Cicer arietinum L) is grown in different countries of Asia, Africa, Europe, North and South America. It is mostly produced and consumed in South East Asia, Middle East and some Mediterranean countries. India accounts for 65 and 70 percent total area and production in the world, respectively. The productivity of chickpea in India is 8.55 q/ha which is higher than the mean global productivity. It is one of the most important pulse crop of India and shares 31 and 42 percent area and production of pulses in the country (Asthana et al., 1996). Chickpea is known by various names as gram, Bengal gram, chana, chole, harbara, sanagalu in Indian vernacular languages. Chickpea is consumed in all the countries of Indian subcontinent and the Middle East in various forms and dishes. It is a rich source of protein (19-20%) and a good supplement in cereal-pulse diet of vegetarians.

Pulses generally lack in vitamin A and C like cereals. However, they may contain vitamins in germinating grains (ICRISAT, 2002; Gopalan et al., 2007). The digestibility of the protein in pulses is low but can be enhanced by boiling, cooking or sprouting of seed. The vitamin content in pulses may increase in germinating grains or sprouts and may lead to value addition in food before or after cooking.

Vitamins are reported to reduce the damage by free radicals and check degenerative disease (Jacab and Sotoudeh, 2002). Vitamin supplements have ergogenic and performance enhancing effect (Clarkson, 1993; Zhao et al., 2004). Therefore, the present investigation was undertaken to determine the presence of water-soluble vitamins (B-group) in germinating chickpea grains in in vitro and ex vitro conditions for possible value addition in the diet for human consumption.

MATERIALS AND METHODS

Plant material

Chickpea seeds were purchased from a public supermarket at Qu-
sais in Dubai and sown in in vitro and ex vitro conditions. In in vitro conditions, the seeds were placed for germination in Petri plates on cotton wet with 50 ml basal nutrient medium and incubated at 25 ± 2°C under 16-h photoperiods with cool white fluorescent illumination (100 µmol m⁻² s⁻¹ PFD). In ex vitro conditions, the seeds were sown in the well-prepared seed bed with appropriate moisture. The data for water-soluble vitamin contents were recorded after two days of sowing in both the conditions and continued up to 11 days.

Reagents and solvents

All the chemicals and reagents used were of analytical grade viz., HPLC methanol (Merck), acetonitrile HPLC (Merck), glacial acetic acid (BDH), triethylamine (RDH), orthophosphoric acid (BDH), pic₆ (hexane sulphonic acid sodium salt (Merck). Water was distilled and deionized by using Millipore direct q system.
Table 1. The important parameters for the calibration curves.

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>y = ax + b</th>
<th>r</th>
<th>Concentration range (g/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Thiamine HCl</td>
<td>0.9964</td>
<td>1 - 5.86</td>
</tr>
<tr>
<td>B2</td>
<td>Riboflavin</td>
<td>0.9977</td>
<td>5 - 25</td>
</tr>
<tr>
<td>B3</td>
<td>Nicotinamide</td>
<td>0.9932</td>
<td>1 - 5.01</td>
</tr>
<tr>
<td>B5</td>
<td>Pantothenic Acid</td>
<td>0.9953</td>
<td>5 - 10</td>
</tr>
<tr>
<td>B6</td>
<td>Pyridoxine HCl</td>
<td>0.9996</td>
<td>1 - 6.05</td>
</tr>
</tbody>
</table>

a = Slope; b = intercept; r = correlation coefficient.

Standard preparation

Standard stock solution for vitamin B1 (thiamine HCl) was prepared by dissolving 26.7 mg of thiamine hydrochloride in 25 ml of double distilled water. Standard stock solution for vitamin B2 (riboflavin) was prepared by dissolving 6.9 mg of riboflavin in 100 ml of extraction solution because the extraction solution has limit to dissolve 7 mg of riboflavin. Standard stock solution for vitamin B3 (nicotinamide) was prepared by dissolving 41.5 mg of nicotinamide in 25 ml of double distilled water. Standard stock solution for vitamin B5 (calcium salt of pantothenic acid) was prepared by dissolving 21.4 mg of calcium d-pantothenate in 25 ml of double distilled water. Standard stock solution for vitamin B6 (pyridoxine HCl) was prepared by dissolving 20.8 mg of pyridoxine hydrochloride in 25 ml of double distilled water.

Preparation of buffer, solutions and samples

For buffer preparation, 1.08 g of hexane sulphonic acid sodium salt and 1.36 g of potassium dihydrogen phosphate were dissolved in 940 ml of HPLC water and 5 ml of triethylamine was added to it and the pH was adjusted to 3.0 with orthophosphoric acid.

To prepare the mobile phase, buffer and methanol were mixed with a ratio of 96:4 and filtered through 0.45 μ membrane filter and degassed by using helium gas.

Extraction solution was made by mixing 50 ml of acetonitrile with 10 ml of glacial acetic acid and the volume was finally made up to 1000 ml with double distilled water.

10 g of each sample was homogenized, weighed and transferred into conical flasks and 25 ml of extraction solution was added, kept on shaking water bath at 70°C for 40 min. Thereafter, the sample was cooled down, filtered and finally the volume was made up to 50 ml with extraction solution.

High performance liquid chromatography (HPLC)

Calibration curve was made by using mix standards in mobile phase with five point calibrations, analyzed independently by HPLC and a standard curve was plotted between concentration and peak area. The injected quantities showed good linearity. The data of peak area vs. used standard vitamin concentration were treated by linear least-square regression and the regression equation thus obtained from standard curve, was used to estimate water-soluble vitamins in different samples.

For HPLC analysis, a waters symmetry C18 column (4.6 x 250 mm 5μm) was used with a linear gradient of Buffer: methanol (96:4) at a constant flow rate of 1 ml/min with 2300 pressure by using water pump (1515 isocratic) and a UV (2487) detector was employed for the detection of peaks, using two channels simultaneously at a wavelength of 210 nm, a bandwidth of 5 nm and another wavelength of 280 nm. All the analyses were performed with 3 replicates.

The precision of the used method was checked in the sample by recovery study. Pre-analyzed samples were spiked with extra 50, 100 and 150% of the standard vitamins; the mixtures were reanalyzed by adapting the proposed method. The experiment was repeated 3 times, average recovered vitamin content was quantified using regression equation, and the % recovery was calculated accordingly.

The precision of the used method was obtained by determining inter and intra-day variation in the three replicates of B-group vitamins at two concentration levels (200-400 ng per spot) and the Percent Standard Relative Deviation (RSD) were calculated.

Samples of in vitro and field sown (ex-vitro) seedlings, 60 μl each were used in triplicates. The vitamin yield was quantified using regression equation of calibration curve of each standard.

RESULTS AND DISCUSSION

The solvent system developed produced a sharp and compact peak of the B-group vitamins. Densitometric analysis of water-soluble vitamins were carried out at 210 and 280 nm absorbance mode. The regression analysis data showed a good linear relationship (Table 1). The method used for vitamin extraction and subsequent estimation afforded recovery of 99.18 - 100.88%. The inter- and intra-variation of vitamins at two different concentration levels showed a low relative standard deviation (0.95-1.57%). The content of B-group vitamins in different samples was analyzed from the regression equation using value of area obtained from win-cat software.

In the present study, the quantitative HPLC analysis of water soluble vitamins were carried out in in vitro and ex vitro germinated seedlings. The mean values of the various B-group vitamins analyzed from ex vitro and in vitro germinated chickpea seedlings are presented in Table 2. The vitamins production was age and culture conditions (ex vitro and in vitro) dependent. The vitamin B1 (thymine-HCL) and B2 (riboflavin) contents were
soluble vitamins yield. A linear increase in yield was found in the entire vitamin B group. B1, B2 and B3 were high in ex vitro-germinated seedlings; however, B5 and B6 were maximum in ex vitro conditions. The present study determined the suitable age and the conditions for the production of water-soluble vitamins in chickpea. Based on these results, it could be concluded that germinated chickpea could be used for human consumption in order to supply vitamin B group in the diet of vegetarians.

ACKNOWLEDGEMENT

We are very thankful to the Chairman, Board of Trustees of Dubai Pharmacy College for providing all facilities to carry out the present research work.

REFERENCES


Table 2. Water soluble vitamins contents in *ex vitro* and *in vitro* germinated chickpea seedlings.

<table>
<thead>
<tr>
<th>Water soluble vitamins</th>
<th>3 Days</th>
<th>5 Days</th>
<th>7 Days</th>
<th>9 Days</th>
<th>11 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.05b</td>
<td>0.07b</td>
<td>0.08b</td>
<td>0.11b</td>
<td>0.11c</td>
</tr>
<tr>
<td>B2</td>
<td>0.02b</td>
<td>0.05b</td>
<td>0.04c</td>
<td>0.15b</td>
<td>0.15c</td>
</tr>
<tr>
<td>B3</td>
<td>0.00c</td>
<td>0.00d</td>
<td>0.00d</td>
<td>0.02d</td>
<td>0.12d</td>
</tr>
<tr>
<td>B5</td>
<td>0.80a</td>
<td>0.62a</td>
<td>0.67a</td>
<td>0.48a</td>
<td>0.48b</td>
</tr>
<tr>
<td>B6</td>
<td>0.00c</td>
<td>0.0c</td>
<td>0.22b</td>
<td>0.08c</td>
<td>0.75a</td>
</tr>
</tbody>
</table>

Values are mean of three replicates. Means with common letters within a column are not significantly different (p ≥ 0.05) according to Duncan’s Multiple Range Test (DMRT).