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The regulation of seed oleic acid synthesis in rapeseed is largely unknown. In this study, gene 
expression pattern during seed development between two Brassica napus mutants was compared. 
Using immature seeds 27 days after pollination, differentially expressed cDNA clones were identified by 
subtractive suppression hybridization (SSH). A total of 480 cDNA clones corresponding to 88 genes 
were found up-regulated and 18 genes down-regulated in seeds with high oleic acid content. Most of 
the differentially expressed genes are related to metabolism and regulation. The possible role of these 
genes in seeds was discussed. Further analysis of the function of these genes may provide novel 
targets for manipulation of fatty acid composition in rapeseed.  
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INTRODUCTION 
 
Oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid 
(C18:3) are major components of fatty acids in vegetable 
oils. The standard rapeseed oil in China contains about 
6% palmitic acid, 5% stearic acid, 61% oleic acid, 20% 
linoleic acid and 8% linolenic acid. Oils with higher 
content of oleic acid are of interest for nutritional and 
industrial purposes (McVetty et al., 2002). Therefore, high 
oleic acid and low linoleic acid content is one of major 
objectives for rapeseed breeders. 

The endoplasmic reticulum-bound oleate desaturase 
FAD2 is the key enzyme responsible for the conversion of 
oleic acid to linoleic acid in non-photosynthetic tissues in 
plants (Okuley et al., 1994) and fad2 is considered as a 
candidate gene controlling the oleic acid content in 
rapeseeds (Stoutjesdijk et al., 2002; Hu et al., 2006). 
Genes coding for FAD2s have been cloned and charac-
terized from plants such as Arabidopsis thaliana (Okuley 
et al., 1994),  soybean (Heppard  et  al.,  1996),  Brassica  
 
 
 
*Corresponding author: E-mail: sanjian123@yahoo.com. Tel: 
86-731-4618778. Fax: 86-731-4618778. 

napus (Scheffler et al., 1997), sunflower (Hongtrakul et 
al., 1998), peanut (López et al., 2000) and olive 
(Hernández et al., 2005).  

Schierholt et al., (2001) reported that two loci asso-
ciated with the oleic acid content in a high oleic acid 
mutant. It has been suggested that oleic acid content in 
B. napus is affected by one major gene and seveal minor 
genes (Guan, 2006).  

Our knowledge of fatty acid metabolism has benefited 
considerably from the investigations of several 
Arabidopsis T-DNA tagged mutants (Hugly et al., 1989; 
Kunst et al., 1989; Hugly and Somerville 1992). The com-
position of fatty acids synthesized in plants is primarily 
determined by thioesterases, condensing enzymes and 
desaturases. Manipulation of the thioesterases and 
desaturases for modifying unsaturation levels of fatty 
acids in transgenic rapeseed has made great success 
(Kinney, 1994; Ohlrogge, 1994; Topfer et al., 1995). 

The suppression subtractive hybridization (SSH) tech-
nique is a method based on a specific form of PCR that 
permits exponential amplification of cDNAs which differ in 
abundance, whereas amplification of sequences of 
identical abundance in  two  populations  are  suppressed  
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(Diatchenko et al., 1996). SSH has been widely used in 
the study of gene expression differentiation in animals 
and plants (Li et al., 2004; Bouton et al., 2005).  

In this study, we identified genes differentially expres-
sed in two B. napus mutant lines with different oleic acid 
content by SSH. The two mutant lines derived from the 
same parent, therefore, all different sequence data and 
information caused by different genetic background can 
be deduced directly. This study cataloged temporal 
changes in gene expression between two mutant lines. It 
provides insights into the regulation net works respon-
sible for seed fatty acid synthesis. 
 
 
MATERIALS AND METHODS 
 
Plant materials 
 
Two B. napus mutant lines that differ in seed oleic acid content 
(HO/LO) were used in this study. The two lines were derived from 
an EMS-mutagenized (1%, v/v) population of B. napus double low 
cv Xiangyou 15 with moderate oleic acid content (64%). Individuals 
in mutagenized population were selfed for four times. For each 
generation, selfed seeds of each individual were analysed by GC, 
individuals with higher and lower oleic acid content were selected 
for next selfed. Ultimately, two lines with oleic acid content 71.7 and 
55.3%, respectively, were selected. No significant difference 
between the pair of mutant lines in the investigated traits of agro-
nomic importance except seed fatty acids composition (see 
Results). To reduce possible environmental effects, both HO and 
LO mutant lines were grown in the same greenhouse. Siliques of 
HO and LO individual plant were harvested at 10, 15, 20, 25, 30, 
35, 40 and 45 days after pollination (DAP), and immature selfed 
seeds were separated from silique coats and subject for lipid 
analysis, mRNA extraction and subsequent SSH library con-
struction.  
 
 
Lipid analysis 
 
The total lipids were extracted using Soxhlet extraction. 5 g 
samples of the dry seed powder were weighed and added into 
Whatman Cellulose extraction thimbles for Soxhlet extraction and 
followed by gravimetric estimation of extractable lipid content 
(Coonrod et al., 2008). Thimbles were packed with glass wool and 
placed in a soxhlet extraction apparatus. Petroleum ether (b. p. 40 - 
60°C with 0.01% (w/v)) was added to each boiling flask containing 
teflon boiling chips. The samples were refluxed at 7 refluxes per 
hour for 48 h by adding petroleum ether as needed. Extracted lipids 
were rinsed with petroleum ether from the apparatus into pre-
weighed beakers. The petroleum ether was evaporated until no 
petroleum ether odor was detected. Residual petroleum ether was 
removed by vaccum pump and the oil content of the seed was 
determined by weight of lipid/dry seed (w/w). 

The contents of each fatty acid composition in leaves, roots, 
stems and seeds of the two mutants were measured by gas chro-
matography (GC). Fatty acid methyl esters (FAME) were prepared 
by transesterification with methanolic sodium methoxide. The tem-
perature was increased from 190 to 210°C at 2.75°C per min and 
held at the final temperature for 8 min. The temperatures of injector 
and flame ionization detector (FID) were held at 220 and 240°C, 
respectively. Samples of FAME (1.0 �l) were injected using an 
autosampler at a split ratio of 50:1. Peaks were identified by 
comparison of their retention times with those of the authentic 
standard (OMEGA). 

 
 
 
 
RNA isolation, RT-PCR, Northern blot analysis 
 
Total RNA was extracted from plant tissues using a Plant RNA Kit 
(OMEGA) according to the manufacturer’s protocol. For RT-PCR, 
first-stand cDNA synthesis was perfomed with 1 �g total RNA using 
ImProm-IITM Reverse Transcriptase (Promega). The quantity of 
products was normalized using B. napus �-actin as a control (Yan 
et al., 2008). The semi-quantitative RT-PCR was used to monitor 
the changes in mRNA transcript levels of these genes and the 
primers were listed in table 1. Northern blots were performed with 
Digoxin labeled probes prepared from the cDNA fragments isolated 
from the SSH library using a Digoxin Random Prime Labeling Kit 
(Innogent Bioscience Inc.).  
 
 
Subtractive suppression hybridization 
 
For subtractive suppression hybridization, polyA+ RNAs were iso-
lated from the total RNA of HO and LO mutant lines using the 
E.Z.N.A mRNA Enrichment Kit (OMEGA) and the PCR selectTM 
cDNA subtraction Kit (Clontech) according to the manufacturer’s 
protocols. To detect the gene expression in HO, both forward sub-
traction and reverse subtraction were carried out. In the forward 
subtraction, cDNA from HO was served as tester and the cDNA 
from LO was served as driver. In the reverse subtraction, the for-
ward tester cDNA from HO used as reverse driver and forward 
driver used as the reverse tester. Each tester or driver cDNA 
sample was generated from 2 �g polyA+ RNA.  
 
 
cDNA subtraction library construction 
 
The products of the second PCR containing enriched differentially 
expressed transcripts, were inserted into pMD18-T cloning vector 
(TAKARA) and transformed to the TOP10 Escherichia coli com-
petent cells. The TOP10 E. coli was plated onto LB medium plates 
containing ampicillin, X-gal and IPTG. White colonies were selected 
and used for amplification by inoculating them to 96-well microtitre 
plate containing ampicillin LB medium and cultured for 9 h with 
shaking. The library was replicated and added equal volume 30% 
(v/v) glycerol, then stored at -70°C.  
 
 
Reverse Northern hybridization screening 
 
Some researchers found that the subtracted library is likely to 
contain a significant number of false positives when compared by 
SSH between two materials with similar genetic background. So we 
did reverse Northern hybridization screening for the subtracted 
libraries to eliminate false positives. 1 �l of the growing culture of 
the library was used as template for PCR amplification as described 
by Diatchenko et al., (1996). After amplification, 5 �l PCR products 
were loaded onto 1.5% gels, positive clones were selected for 
further analysis. Another 5 �l PCR products were combined with 5 
�l 0.6 N NaOH and 1 �l of this alkali denatured PCR products was 
transferred to positively charged nylon membrane (OSMONICS) 
and immobilized via UV cross-linking. A set of two identical mem-
branes were prepared. Probes were synthesized and the second-
strand cDNA of was labeled using Digoxin Random Prime Labeling 
Kit (Innogent Bioscience Inc.). The forward- and reverse-subtracted 
probes were digested by Rsa I to remove the adaptor sequences, 
then, they were hybridized with nylon membrane respectively. 
hybridization was carried out at 68°C for 16 h. They were washed 
twice with 2 × SSC and 0.1% SDS solution at 68°C for 20 min and 
followed by washing three times with 0.1 × SSC and 0.1% SDS 
solution at 68°C for 20 min. The chemiluminescence signal was 
detected using Chemiluminescent Nucleic Acid Detection Kit (Inno-
gent Bioscience Inc.) company by exposing the membrane to X-ray 
film (BioMax light film, Kodak) for 20 min at room temperature. 
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Table 1. Oligonucleotide primer sequences designed for amplification of 30 RT-PCR products isolated 
from cDNA subtraction library. 
 

RT-PCR product Forward primer(5′′′′-3′′′′) Reverse primer(5′′′′-3′′′′) 
B4 ACAAAAGAAACCACCACC GAGTAAAACAATGCAGGAGA 
B5 TCACATACCGCAAAGATTTC GCGTCACTTTCCTGTAGCA 
B13 TCTGATTCTTTCGATACACG GCACAAGTTTTAAGGGACA 
B43 AAGAAGGGTAAAGCCAAATG CGAGAAGGTTAATCCAAGTT 
B50 CCTCTAAGAAAGAACCCAT TCGCTTGTAAACTCACTCA 
B58 ATACAAAACGAGACGACGAT TAGGGAGACAACAAGCACC 
B115 GTCTGAACAACAGCAAGGA GAAGAAGCGTATGAGGAGG 
B156 CTATCTTCCCTACATTAACAC CTTTGCATCTCAACAGTCC 
B157 TCATCCAGGACAAGCAACA GTACGCGGGGATTGATTTA 
B200 TTGACAGAAACGGAGCATC AGTACGCATTAGGCCACAG 
B201 ATACTCTAGCCACGGCACT GGTCAACTCAAAATTCGTTC 
B209 GCGGGGACTCAAACAATT ACAACGGCCAGAACTACA 
B256 TGGTGGTGATTGCTGTTG TGATGAGGGTTTGTCTCACCACATT 
B276 TGCGTTTTACTGCCTTACT AGGTTACACGGGGAGATTA 
B281 AACTTTGACAGAAACGGAG AGGCATCTTAAACCCACT 
B290 GGGATGCCTTATCAACTG CCAAATAGAAGACGCTGT 
B292 AAAAGCAGTAGGAACGAG GTACGCGGGGACGATGAA 
B295 CGGCGTAATAATGACAAC TCTACAATAAGATTAAGGGAGA 
B307 TACGCGGGGACAACAAAAT CCAACCCTTAAATCACCAG 
B311 CGAAAGTGAGCCAAGACA GCAGGTACTAGCCACAGA 
B312 GGGTTCATTCAAGTCTGC GTTTATGGTTTTGGTGGC 
B319 AGAAGGGTAAAGCCAAAT CGAGAAGGTTAATCCAAGT 
B332 GAGATGATCGGGATTTATT ATGGAGATTTGCGTATTT 
B345 GTTGGTTTGCGTATGACTG AGAAGCAGATTCGGAACA 
B361 ATCGTAATACTGGGCATAC CTTAGGGGTTTAGTGTTTG 
B370 TAATACAGTGCCAGGGAA TGAATAACAATATCGGAGC 
B398 GTGTCTGAACAACAGCAAG AGAAGCGTATGAGGAGGT 
B412 AAGCCAAGATTCTCCTCC' CACTCTGACAACCCACAAG 
B420 AAAGGGAGTGAGCAGAAC CCAAGTGGAAGAAGAAGC 
B478 TCTTCTCGTGCGTTCCAT CGATTGTTGCTTGTCCTG 

 
 
 
Sequence analysis 
 
Positive clones were selected and sent directly to Invitrogen Biolo-
gical Engineering Technology and Services CO., Ltd (Shanghai, 
China) for sequencing. The sequence data were analyzed by 
BLASTX and BLASTN for DNA and protein homologies (National 
Center for Biotechnology Information). 
 
 
RESULTS 
 
Accumulation of fatty acids in two rapeseed mutants 
 
The major objective of this study was to identify genes 
that are differentially expressed in developing seeds of 
rapeseed mutants with different oleic acid content. The 
fatty acid composition in leaves, roots and stems are 
similar between the two mutants (date not show). 
Whereas, in seeds, oleic acid content is 71.7% of total oil 
in HO, while 55.3% in the LO, in contrast, HO seeds have 

less linoleic acid and linolenic acid than LO seeds (Table 
2). Seed development from pollination to mature requires 
more than 40 days in rapeseed under normal conditions. 
We compared the time courses of fatty acids accumu-
lation at developing seeds between two lines and found 
that the significant change of oleic acid content begin at 
25 DAP (Figure 1), we therefore selected the 27 DAP 
seeds as the experimental materials for analysis.  
 
 
Library construction and screening  
 
A total of 518 individual recombinant clones were ob-
tained, 480 of them contain inserted fragment (Figure 2). 
In reverse Northern hybridization screening, all these 480 
clones were hybridized with the forward- and reverse-
subtracted probes. Among them, 106 clones showed 
obvious expression differentiation. 88 clones were found 
to  be  up-regulated  in  HO  line  and  18  clones  showed  
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Table 2. Fatty acid compositions in the two lines of B. napus 
seeds (%). 
 

% of total fatty acids Sample 
HO line LO line 

Palmitic acid 4.48 ± 0.2 6.58 ± 0.2 
Stearic acid 3.47 ± 0.3 4.45 ± 0.3 

Oleic acid 71.71 ± 0.5 55.26 ± 0.5 
Linoleic acid 14.71 ± 0.3 20.12 ± 0.3 

Linoleic acid 6.27 ± 0.2 12.35 ± 0.2 
Erucic acid 0.15 ± 0.3 0.13 ± 0.2 

oil (% of dry weight) 40.3 ± 0.5 40.5 ± 0.5 
 

Measurement of total triacylglycerols and each fatty acid contents 
was carried out by methods as described in Materials and 
Methods. Date were presented as the mean±SD (n � 3). 

 
 
 
down-regulation (indicated by the arrows in Figure 3). 
There are a significant number of false positives in our 
library that are compatible with other similar researches 
(Li et al., 2006), it may be due to the two mutant lines 
derived from the same parent and are in the same 
genetic background. 
 
 
Single-Pass sequencing and identification of 
differentially expressed genes 
 
All 106 clones were sequenced and 88 uniESTs were 
obtained. The average length was about 350 bases (after 
removal of vector, poor quality and polyA sequences). 
Sequence analysis showed that 73 uniESTs have been 
submitted at GenBank, 19 of the 73 uniESTs matched 
previously described genes in Arabidopsis or Brassica 
(Table 3), which mainly shared significant similarity to 
metabolic enzymes and regulatory protein. 15 uniESTs 
have no match with entries in GenBank, they may be 
novel genes or derived from the variable 3�-terminal of 
full-length cDNA.  
 
 
RT-PCR pattern analysis of the differential 
expression mRNAs 
 
To evaluate the result of the subtractions, 30 up-regu-
lated genes in HO line were selected for further semi-
quantitative RT-PCR confirmation, including 15 genes 
with known function and 15 genes with unknown function. 
Based on their sequence, we designed specific primers 
for each gene and amplified by RT-PCR. As shown in 
Figure 4, all genes showed differential expression in 27 
DAP seeds of the two lines. Overall, the results of RT-
PCR are consistent with the data from reverse Northern 
hybridization screening analysis, indicating that the 
application of SSH in this study was successful. 

 
 
 
 
DISCUSSION  
 
Differentially expressed gene related to fatty acid 
synthesis  
 
Stearoyl-acyl-carrier-protein-desaturase (S-ACP-DES) 
gene (X63364) is the only differentially expressed gene 
related to fatty acid synthesis in our SSH library. In plants, 
C18:1 formation is catalyzed by the soluble S-ACP-DES. 
The members of S-ACP-DES are specific for particular 
substrate chain length and introduce double bond bet-
ween specific carbon atoms. The SACP-DES has been 
purified from several plants and the genes characterized 
from several different species (Shanklin and Somerville, 
1991; Thompson et al., 1991; Cahoon et al., 1996, 1998; 
Whittle et al., 2005). Since S-ACP-DES is the only plant 
enzymes which introduces the first double bond at carbon 
9 and forms oleoyl-ACP, their activity primarily determines 
the ratios of unsaturated FAs (including oleic acid, linoleic 
acid, linolenic acid and erucic acid) to the total FAs. 
Difference in the activity of S-ACP-DES resulted in 
different unsaturated FAs content in seeds (Knutzon et 
al., 1992; Schnurbusch et al., 2000). Figure 5 showed the 
ratios of unsaturated to the total FAs in HO and LO lines 
at different stages. The date showed that there is more 
unsaturated FAs content in HO than in LO lines. This 
suggests different activity of S-ACP-DES in the two lines 
at the different stages. This result was confirmed by both 
SSH and RT-PCR analyses.  
 
 
Regulatory factors 
 
In addition to thioesterases, condensing enzymes and 
desaturases, the regulation of fatty acids metabolism is 
shared by other factors. Studies on promoters of fatty 
acid metabolism genes identified some transcription 
factors that may play a regulatory role (Ohlrogge, 1997). 
By analogy to the study of other organisms, the control of 
expression of plant fatty acid synthetase genes is likely to 
involve a complex set of cis and trans acting factors. For 
example, promoters of animal fatty acid biosynthetic 
genes are regulated by hormones such as insulin 
(Moustaid et al., 1994), by dietary fatty acids (Roder et 
al., 1994), by glucose levels (Pripbuus et al., 1995). 

There are many regulatory protein in our SSH list, such 
as TCP family transcription factor (B4), transcription 
factor (B16), auxin-induced protein (B156), zinc finger 
(C2H2 type) family protein (B201), calmodulin binding 
protein (B420), glucose regulated repressor protein 
(B49), defender against apoptotic death protein (B305) 
and signal peptidase (B319). TCP transcription factor 
works as Transcriptional activator and play a role in cell 
differentiation and cell growth in plants (Riechmann et al., 
2000; Kosugi and Ohashi, 2002). Auxin is essential to the 
control of plant growth and development, profoundly 
affects turgor, elongation, division and cell differentiation.  
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Figure 1. Comparison of accumulation oleic acids between HO and LO mutant lines. 

 
 
 

 
 
Figure 2. Primary screen of the subtracted cDNA library by colony PCR (partly). Colony PCR was performed as described and 
the products were resolved on 1.5% agarose gels.  

 
 
 
These are major driving and shaping forces in morpho-
genesis and oncogenesis (Steffen and Athanasios, 
1996). Several reports suggested that auxin can change 
membrane lipid composition, especially the amounts of 
the various unsaturated fatty acids (Moore et al., 1983; 
Goldberg et al., 1983; Liu et al., 1995). Auxin may 
change fatty acid composition of storage lipid in similar 
way. Polyunsaturated fatty acid, such as linolenic acid, 
arachidonic acid, eicosapentaenoic acid and decosa-
hexaenoic acid are suggested to induce apoptotic death 
of tumour cells (Sessler and Ntambi, 1998). Therefore 
defender protein against apoptotic death may be related 
to fatty acid metabolism. Zinc finger (C2H2 type) family 
protein, calmodulin binding protein, glucose regulated 
repressor protein are common regulatory genes and 
involve in various regulatory pathways in plant (Whittle et 
al., 2005). 

Genes of unknown-function 
 
Beside genes of known function, our library contains a 
high proportion of uniESTs of unknown function (78.4%). 
A number of these uniESTs may be novel genes. Since 
lipid synthesis and regulation of fatty acid metabolism 
involve different pathways in plant, it is not surprising that 
novel genes have been identified in our experiment. Our 
next objective is to analyze the function of these diffe-
rential expression genes by knocking out their function in 
B. napus using RNAi method.  
 
 
Conclusion 
 
In conclusion, we had identified a number of differentially 
expressed genes between two mutant B. napus lines with  
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Figure 3. Reverse northern hybridization screening of cDNA subtracted libraries. The PCR products of cDNA 
clones from the subtracted libraries were blotted on two nylon membranes at same locations and two 
membranes were, respectively, hybridized with forward-(left) and reverse-(right) subtracted cDNA probes. 
Arrows indicate the representatives of the differentially expressed clones. 

 
 
 

Table 3. Selected differential expressed genes in subtracted library. 
 

Clone Blast homology Source GenBank match E-value 
B4 TCP family transcription factor A. thaliana NP_197719 1e-31 

B16 transcription factor A. thaliana NP_181834 3e-155 
B49 glucose regulated repressor protein A. thaliana BAF01819 7e-74 

B156 IAA 12(auxin-induced protein 12), transcription factor A. thaliana NP_171949 1e-146 
B200 membrane protein B. juncea AAT38818 1e-126 
B201 zinc finger (C2H2 type) family protein A. thaliana NP_565684 4e-115 
B276 invertase/pectin methylesterase inhibitor family protein A. thaliana NP_199730 8e-45 
B281 defensin-like protein B. napus EF182821 3e-79 
B292 senescence-associated protein  sen1-like protein A. thaliana BAD95161 4e-119 
B305 defender against apoptotic death protein B. rapa NP_174500 2e-56 
B307 ribosomal protein B. rapa CAA80864 1e-55 
B319 eukaryotic translation initiation factor -5A B. napus AAR91929 3e-63 
B326 heterogeneous nuclear ribonucleoprotein A.  thaliana NM_180208 1e-42 
B339 aspartic protease B. oleracea X77260 8e-44 
B361 inorganic pyrophosphatase family protein A. thaliana NM_121002 4e-98 
B412 ATP-dependent Clp protease proteolytic subunit A. thaliana NP_563836 3e-59 
B420 calmodulin binding prorein/ translation elongation factor A. thaliana NP_001030993 1e-33 
B461 stearoyl –ACP desaturase B. napus CAA44964 1e-149 
B478 signal peptidase A. thaliana NP_175669 4e-104 

 
 
 
different oleic acid content by using the SSH method. Our 
data show an additional level of complexity in the 

regulation of fatty acids metabolism, which may be 
spread out and coordinated  among  the  many  enzymes  
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Figure 4. Semi-quantitative RT-PCR analysis of differential expression of genes in 
seeds and leaves of two mutants. The clone ID is listed on the left side. The names of 
corresponding homologue genes are listed in Tables 2. Lane 1, seeds of HO; Lane 2, 
seeds of LO; Lane 3, leaves of HO; Lane 4, leaves of LO. 
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Figure 5. Comparison of total polyunsaturated fatty acids between HO and LO. 

 
 
 
and regulatory factors involved in the pathway. Experi-
ments are underway at present to determine whether 
knockout of these genes or regulatory factors in 
transgenic plants can yield instructive or useful changes 
in seed fatty acids metabolism. Anyway, the information 
generated by this study will facilitate the manipulation of 
the quality of oils produced in seeds of oil crops. 
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