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EFY-21 (Ozonium sp.) is a newly isolated taxol-producing endophytic fungus from Taxus chinensis var. 
mairei. In this study, an efficient PEG-mediated transformation of EFY-21 was established and 
conditions for transformation were evaluated. By the optimized enzyme system, mycelium age, 
digesting temperature and time, over 7 × 107 ml protoplasts were obtained and protoplast regeneration 
frequency was more than 6%. Plasmid pV2 containing the hygromycin-B phosphotransferase gene 
driven by a fungal promoter (trpC) was used to transform EFY-21 and 50% PEG with 20 mM Ca2+ was 
found to be suitable for the transformation. Southern blot analysis revealed that the transforming DNA 
was successfully integrated into the EFY-21 genome. By the optimized procedure, over two 
transformants per �g DNA could be obtained. The establishment of efficient transformation system of 
taxol-producing endophytic fungus enables us to improve taxol production of the fungus by 
engineering the taxol biosynthetic pathway genes in the future. 
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INTRODUCTION 
 
Taxol is one of the most potent natural anti-tumor drugs 
originally extracted from the bark of a treasured tree yew 
(Wani et al., 1971; Goldspiel, 1997; Michaud et al., 2000). 
Despite of its excellent cytotoxic activity to tumor cells, 
the commercial taxol production has been always limited 
by its perceived supply problem. As the first taxol-
producing endophytic fungus was isolated from Taxus 
brevifolia in 1993 (Stierle et al., 1993), it provided us a 
prospect to obtain taxol from fungi. Since then, many 
other endophytic fungi from various yews and other plant 
species have been subsequently reported to produce 
taxol (Li et al., 1996; Strobel et al., 1996; Metz et al., 
2000; Wang et al., 2000; Shrestha et al., 2001; Strobel, 
2002; Guo et al., 2006). EFY-21 (Ozonium sp.) was one 
of the taxol-producing endophytic  fungi  recently  isolated  
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from Taxus chinensis var. mairei in our laboratory (Zhou 
et al., 2007). However, limited taxol production in these 
fungi has been a main obstacle precluding the use of 
microbial taxol for a commercial reality. Along with the 
discovery of so many taxol-producing fungi, how to 
meliorate and utilize them for improved taxol production 
became an important issue and hot research field. 

The use of molecular approaches for genetic improve-
ment of taxol-producing fungi is a potential way to im-
prove taxol yield. Protoplast production and PEG-
mediated transformation are traditional, convenient and 
relatively inexpensive methods for genetic manipulation 
of fungi. Many species of fungi have been successfully 
transformed based on this method (Ballance et al., 1983; 
Crowhurst et al., 1992; Lorito et al., 1993; Valadares-
Inglis and Inglis, 1997; Kim et al., 2000; Fitzgerald et al., 
2003). However, since the first successful PEG-mediated 
transformation of taxol-producing endophytic fungus 
Pestalotiopsis microspora had been reported (Long et al., 
1998), the practical gene transformation system for  other  
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Figure 1. The schematic map of transforming vector pV2. 

 
 
 
species of taxol-producing fungi is still yet to be 
established. This might be hampered by the relatively low 
efficiency of PEG-mediated transformation. 

Successful protoplast production is a prerequisite for 
transformation with protoplasts. However, almost every 
fungus requires its own specific enzyme system and 
digestion condition for the isolation of protoplasts (Peng 
et al., 1993; Rohe et al., 1996; Chitnis and Deshpande, 
2002; Li et al., 2003; Zhou et al., 2008). In the present 
study, the key factors for production and transformation 
of EFY-21 protoplasts were evaluated and a feasible way 
to obtain protoplasts and transformants of the taxol-
producing fungus EFY-21 was established, paving the 
way to engineer this taxol-producing fungus for improving 
taxol production by transforming genes encoding rate-
limiting enzymes in the taxol biosynthetic pathway in the 
future.  
 
 
MATERIALS AND METHODS 
 
Chemicals and enzymes 
 
Snailase, cellulose R-10 and lysozyme used for protoplast isolation 
were purchased from Beijing Dingguo biotechnology Co. Ltd 
(China) and lywallzyme was obtained from Institute of Microbiology, 
Guangdong Province, China. The solution of lytic enzyme used in 
the study was dissolved in 0.7 M NaCl and filtrated with 0.45 µm 
microporous filtering film. Other chemicals used were reagent 
grade.  
 
 
Transformation vector 
 
Vector pV2 was used in fungus transformation. The pV2 (Figure 1) 
is a transformation vector for filamentous fungi containing the 
Escherichia coli hygromycin B phosphotransferase gene as a 

dominant selectable marker, under transcriptional control of 
Aspergillus nidulans trpC promoter and trpC terminator signals, 
which was a gift of Prof Youliang Peng from Agricultural Ministry 
Key laboratory of Molecular Plant Pathology, China agricultural 
university. 
 
 
Fungal strain and growth condition 
 
The microorganism EFY-21 used in the study was endophytic 
fungus (Ozonium sp.) from T. chinensis var. mairei previously 
isolated and stored in our laboratory (Zhou et al., 2007). The wild-
type EFY-21 was grown in liquid YPS medium (2% sucrose, 1% 
peptone, 0.5% yeast extract, 0.1% MgSO4, 0.1% K2HPO4 and pH 
6.8) on a rotary shaker (150 rpm) at 28°C in the dark. 
 
 
Protoplast preparation 
 
A modification of the procedure of Churchill et al. (1990) was used. 
The mycelia were harvested by centrifuged at 5000 g for 5 min and 
washed with sterilized distilled water. After centrifugation, the 
mycelia were washed with 0.1 M Tris-EDTA, and subsequently 
washed with 0.7 M NaCl. An aliquot of 250 mg mycelia (wet weight) 
was transferred to a 15 ml Falcon tube and 1 ml lytic enzyme 
solution was added. The mixture was incubated at 30°C with 
shaking for 4 h. Mycelial debris was then separated from 
protoplasts by filtering the suspension through 4 layers of sterilized 
abrasive mirror paper and the protoplasts were counted by a 
hemacytometer. Subsequently, the protoplasts were collected by 
centrifugation at 2000 g for 5 min, and the pelleted protoplasts were 
washed twice with STC buffer (1.2 M Sorbitol, 25 mM CaCl2 , 0.01 
M Tris-HCl, pH 7.5), and suspended at the titer of 5 × 107 ml in STC 
buffer. 
 
 
Protoplast regeneration 
 
Czapek medium was used as the regeneration medium, which 
composed   of  0.2%  NaNO3,  0.1%  K2HPO4, 0.05% MgSO4·7H2O,  
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0.001% FeSO4, 3% sucrose, and 2% agar. The additional supple-
ment, 0.001% sodium deoxycholate as colony restrictor, was also 
added in the medium. The essential requirement for obtaining 
growing colonies from protoplasts is the maintenance of the 
osmotic stabilizer in the growth medium until the cell wall has been 
regenerated (Valadares-Inglis and Inglis, 1997). NaCl at the 
concentration of 0.7 M was chosen as the osmotic stabilizer and 
added in the medium. The prepared protoplasts were diluted 
serially to 103, 104 and 105 ml by STC, and 50 �l protoplast suspen-
sions with different concentrations were plated into the regeneration 
medium in Petriplates. As control, protoplasts were also suspended 
in sterilized distilled water for 10 min, and then plated on the growth 
medium without osmotic stabilizer. The cultures were incubated at 
28°C for 3 - 5 d before colonies became visible. 
 
 
PEG-mediated transformation with pV2 
 
Transformations were carried out according to a modification of the 
method described by Rohe et al. (1996). Fresh protoplasts were 
suspended at the density of 5 × 107 ml in STC. An aliquot of 200 �l 
suspension was transferred to a 15 ml falcon tube containing 10 �g 
plasmid DNA (pV2), gently mixed and incubated at room 
temperature for 30 min. Subsequently, aliquots of 100, 250 and 900 
�l of PEG buffer (50% PEG-4000, 20 mM Ca2+, 10 mM Tris-HCl,  
pH7.5) were added stepwise and gently mixed with the protoplast 
suspension before the next aliquot was added. The mixture was 
again incubated at room temperature for 10 to 20 min. Then, an 
aliquot of 6 ml STC was added to facilitate sedimentation of 
protoplasts by centrifugation (5 min, 2800 g). The deposition of 
protoplasts was re-suspended in 3 ml liquid growth medium (YPS 
with 1.2 M sorbitol) and was grown on a rotary shaker (150 rpm) at 
28°C for 3 h. The protoplasts were then plated on the Czapek 
medium containing 150 �g/ml of hygromycin B. After 4 - 5 d culture, 
the hygromycin-resistant colonies became visible, and they were 
transferred to YPS solid medium containing 150 �g/ml of 
hygromycin B and sub-cultured for at least 3 generations to obtain 
stable transformants.  
 
 
Molecular analysis of fungal transformants 
 
Genomic DNA was isolated from wild-type EFY-21 and randomly 
selected transformants with CTAB method (Yang et al., 2006) and 
used for PCR analysis for the presence of the hph gene. Primers 
(fhph: 5'-GTCGAGAAGTTTCTGATCG-3'; rhph: 5'-
GTTTCCACTATCGGCGAGTACT-3') were synthesized according 
to the published hph gene sequence (Gritz and Davies, 1983) and 
PCR was carried out under following condition 94°C for 3 min 
followed by 30 cycles of amplification (45 s denaturation at 94°C, 45 
s annealing at 58°C, and 1 min of extension at 72°C). DNA from 
untransformed EFY-21 (wild-type) served as negative control and 
pV2 served as positive control was also used in PCR analysis.  

Southern blot hybridization was carried on for further analysis. 60 
�g DNA per sample was digested overnight at 37°C with BamH I, 
which does not cut within the probe region. 5 �g plasmid pV2 as a 
control was digested with BamH I for 3 h, which cut twice in it. The 
samples of digested DNA were electrophoresed on 1% agarose gel 
in 1 × TAE buffer. The gel was transferred by the method of alkaline 
transfer (Sambrook et al., 1989) to a positively charged nylon 
membrane (Amersham biosciences hybond-N+, UK). 623 bp probe 
including part of hph and promoter trpC gene was generated by 
PCR using plasmid pV2 as template with primers (HygF: 5'-
GTTTAGTCGTCCAGGCGGTGAGC-3'; HygR: 5'-
AACAGCGGGCAGTTCGGTTTCAG-3'). DNA probe was labeled 
with alkaline phosphatase for use in conjunction with chemilumine-
scent detection with CDP-star chemifluorescent detection with ECF 
(Amersham  gene  images  AlkPhos  direct  labelling  and  detection  

 
 
 
 
system). After hybridization and post hybridization stringency wash, 
signal was generated and detected on X-ray film (Kodak). 
 
 
RESULTS AND DISCUSSION 
 
Optimization of the conditions for protoplast 
formation 
 
Stable and viable protoplast formation system is the basis 
for protoplast-based studies such as transformation, 
fusion and mutation. To prepare transformable proto-
plasts, several key factors as enzyme system, mycelium 
age, digesting temperature and time were evaluated. 
Enzyme used to digest the cell walls is the most 
important factor for protoplast formation; for that almost 
each fungus needs its own specialized enzyme system 
because there is a great variation in structure of cell wall 
between one fungus and another (Hamlyn et al., 1981). 
Here we chose 4 lytic enzymes: Lywallzyme (A), snailase 
(B), cellulose (C), and lysozyme (D), which are commonly 
used in protoplast isolation of fungi to test Ozonium sp. 
EFY-21, and we applied conventional analytic methods of 
orthogonal trial (Table 1) to evaluate weight of each fac-
tor and get the most efficient combination of enzymes for 
protoplast yield. The result showed that RA>RB>RD>RC, 
meaning that factor A (Lywallzyme) had the most effect 
on protoplast yield while factor C (cellulose) was the least 
influential (Table 1). Under 3 levels of each factor, the 
data suggested that A3B1C3D3 was the best combination 
of lytic enzymes for enhancing protoplast production, 
which composed of 1.5% lywallzyme, 0.5% snailase, 
1.5% cellulase and 1.5% lysozyme. This result of enzyme 
system was similar to that of taxol-producing fungus BT2 
which was also Ozonium sp. ,but the protoplast yield was 
over 20 times higher than BT2 (Zhou et al., 2008). 

According to the principles of enzymatic reaction 
kinetics, the speed of enzymatic reaction is directly 
influenced by temperature and the suitable temperature 
of digestion for most fungi is between 24 and 35°C (Sun 
et al., 2001). We compared the digestion efficacies under 
different temperature (27, 30 and 33°C) and the result 
was shown in Figure 2. Although protoplasts could be 
yielded under all the temperatures tested, 30°C was the 
most suitable temperature for the enzyme system. 

The effect of digesting time on protoplast yield was also 
evaluated. Samples were observed under the discre-
pancy microscope and protoplasts were counted by a 
hemacytometer every 1.5 h during digestion. Along with 
the increased digestion time, protoplast production was 
gradually increased. The curve of time (Figure 3) 
illustrated that the maximum protoplast yield (7.05 ± 0.60 
× 107 ml) was obtained after 4.5 h incubation.  

Mycelium age is another influential factor for protoplast 
isolation. Acceleration phase cultures were the best for 
protoplast isolation, and the protoplast yield dropped as 
exponential growth proceeded (Harling et al., 1988). With 
the same digestion condition, the mycelia of different ages 
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Table 1. Design of L9 (34) and trial resultsa. 
 

Item 
Factor (%) Protoplasts 

production 
(×107 ml) 

Lywallzyme 
(A) 

Snailase 
(B) 

Cellulase 
(C) 

Lysozyme 
(D) 

1 0.5 0.5 0.5 0.5 2.07b± 0.31c 
2 0.5 1.0 1.0 1.0 2.20 ± 0.50 
3 0.5 1.5 1.5 1.5 1.87 ± 0.50 
4 1.0 0.5 1.0 1.5 3.70 ± 0.20 
5 1.0 1.0 1.5 0.5 2.67 ± 0.42 
6 1.0 1.5 0.5 1.0 2.13 ± 0.15 
7 1.5 0.5 1.5 1.0 5.48 ± 0.45 
8 1.5 1.0 0.5 1.5 4.39 ± 0.18 
9 1.5 1.5 1.0 0.5 1.97 ± 0.25 

K 1 2.04 3.75 2.86 2.23  

K 2 2.83 3.09 2.62 3.27  

K 3 3.95 1.99 3.34 3.32  
R 1.91 1.74 0.72 1.09  

 

a All values are adjusted to represent the number of protoplasts from 1 ml enzyme 
solution and 250 mg mycelia (wet weight). 
b Each value represents the means based on three experiments. 
c Standard deviation of the means. 
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Figure 2. Effect of temperature on enzymatic digestion. All 
values are adjusted to represent the number of protoplasts 
from 1 ml enzyme solution and 250 mg mycelia (wet weight). 
Bars are standard deviations of means based on three 
replications for each determination. 

 
 
 
ages were used for isolation and regeneration of proto-
plasts. It was found that the optimal protoplast yield (7.17 
± 0.40 × 107 ml) and protoplast regeneration frequency 
(6.52 ± 0.25%)  were  obtained  using  48  h  old  cultured  
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Figure 3. Effect of digestion time on the production of 
protoplasts. All values are adjusted to represent the number 
of protoplasts from 1 ml enzyme solution and 250 mg mycelia 
(wet weight). Bars are standard deviations of means based on 
three replications for each determination. 

 
 
 
mycelium (Figure 4) which was also at acceleration 
phase of its growth curve (data not shown). Though the 
older mycelium showed appreciable protoplast formation, 
they  were  more  resistant  to  enzymatic  hydrolysis and  
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Figure 4. Effect of mycelium age on protoplast formation and regeneration. All 
values are adjusted to represent the number of protoplasts from 1 ml enzyme 
solution and 250 mg mycelia (wet weight). Bars are standard deviations of 
means based on three replications for each determination. 

 
 
 
more difficult to regenerate. 

The stable and optimized protoplast formation system 
provided solid basis for further research of protoplast 
transformation, mutagenesis and fusion. 
 
 
Optimization of the conditions of PEG- mediated 
transformation 
 
The effect of PEG is to cause the treated cells to clump, 
and this may facilitate the trapping of DNA (Fincham, 
1989). PEG-4000 was usually used for the PEG-
mediated transformation of fungus and PEG-6000 was 
used for plant transformation. However, some fungi could 
also be effectively transformed by PEG-6000 (Rohe et 
al., 1996). In our experiments both PEG-4000 and PEG-
6000 were tested and PEG-4000 was found to be more 
effective than PEG-6000 in the transformation of fungi 
(data not shown).  

PEG concentration is a pivotal factor for PEG-mediated 
transformation and so is Ca2+ which can promote the 
effect of PEG. In the present study, 30, 40, 50, 60% PEG 
and 5, 20, 50,100 mM Ca2+ were tested, and the result 
showed that 50% PEG was the most suitable concen-
tration to transform EFY-21 (Figure 5). When the PEG 
concentration went up to 60%, transformants could be 
hardly obtained. And for the best Ca2+ concentration, our 
study demonstrated that the transformation frequency 
was limited in the presence of low or high concentrations 
of Ca2+ (Figure 6). Ca2+ at the concentration of 20 to 50 
mM induced the best transformation frequency of EFY-
21. 

Given that long time PEG treatment could make the 
protoplast lose the ability of regeneration, optimized  time 
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Figure 5. Effect of PEG concentration (%) on the transfor-
mation efficiency of EFY-21. Bars are standard deviations of 
means based on three replications for each determination. 

 
 
 

of PEG treatment was also needed (Li et al., 2003). 
According to our pilot experiments, we tried the different 
duration of PEG treatment including 10 and 20 min, and 
the result showed that 10 min of PEG treatment (2.16 ± 
0.27 transformants per �g DNA) had a dominant supe-
riority to 20 min (1.28 ± 0.13 transformants per �g DNA) 
for transformation. 

To investigate if the hph gene can be used as a 
dominant selectable marker for  fungi  transformants,  the
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Figure 6. Effect of Ca2+ concentration (%) on the transformation efficiency 
of EFY-21. Bars are standard deviations of means based on three 
replications for each determination. 

 
 
 

 
 
Figure 7. A. Protoplasts without PEG treatment on Czapek medium containing 150 
�g/ml of hygromycin after 4 d of transformation (negative control). B. Hygromycin-
resistant colonies appeared on Czapek medium containing 150 �g/ml of hygromycin 
after 4 d of transformation. 

 
 
 
inhibitory effect of hygromycin B on the growth of wild-
type EFY-21 was tested. The growth of wild-type of EFY-
21 was totally inhibited on YPS medium at the concen-
tration of 150 �g/ml hygromycin B (data not shown). On 
the contrary, stable transformants could grow on such 
medium (Figure 7).  
 
 
PCR and Southern blot analyses of transformants 
 
PCR was used to demonstrate the transgenic status of 
the hygromycin-resistant fungus colonies genomic DNA 

was isolated from 6 randomly selected hygromycin-
resistant colonies as well as from wild-type EFY-21. As 
expected, 960 bp DNA fragment was amplified from all 
the 6 colonies and it was confirm to be the expected 
partial hph sequence by sequencing, while no band was 
amplified from the wild type EFY-21 DNA (Figure 8). 

To determine the plasmid, DNA was integrated in the 
genome of EFY-21, Southern blot analysis was carried 
on. The result showed that all the six randomly selected 
transformants were independent transformants (Figure 
9), and the integrated copies were not more than three. 
The   band   at  1.4 kb  in  all  transformants  and  plasmid
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Figure 8. PCR analysis of the randomly selected hygromycin-resistant 
colonies for the presence of the hph gene. M: DL2000 (DNA molecular 
Marker). W: Wild-type of EFY-21 (negative control). C: pV2 (positive 
control). 1-6: Independent hygromycin-resistant colonies. 

 
 
 

 
 
Figure 9. Southern blot analysis of 6 randomly selected transformants of EFY-
21. Lanes: 1-6 Transformants, WT: wild-type strain EFY-21, C: pV2. The 
position of DNA molecular size markers (kb) are indicated on the left. 

 
 
 

control corresponded to the internal BamH I fragment of 
the plasmid pV2. There was no hybridization signal of 
wild-type EFY-21, which demonstrated that the transgene 
(hph) has been integrated into the fungus genome. 
 
 
Conclusion 
 
In conclusion, an efficient and practical procedure for 
transformation of taxol-producing endophytic fungus 
Ozonium sp. EFY-21 has been firstly established, and 
many key factors had been evaluated and optimized. 
This success provides a basis for further genetic 
manipulation of this taxol-producing fungus for improved 
taxol production by transforming genes encoding rate-
limiting enzymes in the taxol biosynthetic pathway. 
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