Review

Rhizobium as a crop enhancer and biofertilizer for increased cereal production

M. A. Baset Mia¹² and Z. H. Shamsuddin¹*

¹Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400 UPM, Serdang, Selangor DE, Malaysia.
²Department of Crop Botany, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh.

Accepted 10 March, 2010

Greater production of cereals brings forth higher production cost and pollutes the soil environment due to excessive use of chemical fertilizers. Therefore, crop scientists are exploring an alternative source namely biofertilizers which are cost effective and environment friendly. In the biofertilizer technology, Rhizobium-legume is most common and widely used in different countries. Recently, it is also found that rhizobia can make an association with graminaceous plants such as rice, wheat, maize, barley millets and other cereals some time as endophytic without forming any nodule-like structure or causing any disease symptoms. Increasing the ability of rhizobia in biofertilizer, crop enhancing activity in non-legumes especially cereal grains would be a useful technology for increased crop yields among resource-poor farmers. Recent findings showed both more crop enhancing and biofertilizer attributes in cereal crops due to rhizobial inoculation. In addition, plant nutrients like P, K, Ca, Mg and even Fe accumulation were also observed. Therefore, further research in this area will be able to develop a sustainable biofertilizer technology for greater and environment friendly cereal production system.

Key words: Biofertilizer, cereal, crop enhancer, Rhizobium, yield.

INTRODUCTION

The United Nations Food and Agriculture Organization (FAO) estimates that the total demands for agricultural products will be 60 percent higher in 2030 than present time. And more than 85% of this additional demand will come from developing countries. For over half a century, the world has relied on increasing crop yields to supply an ever increasing demand for food. World grain production increased significantly during last two decades. This dramatic increase in world grain production was the result of a 122 percent increase in crop yields. However, this trend of grain production cannot be maintained due to decreasing cultivable land for rapid urbanization. Therefore, vertical expansion for food production is necessary. In order to increase world food production in a sustainable manner, farmers have to use balanced fertilizer timely. And it is exciting that much of cereals especially rice is produced in countries where rapidly growing population, coupled to limited amounts of land and scares resources. One of the most important factors in the generation of high yields from modern rice cultivars is nitrogen fertilizer. That is why farmers are applying high amounts of the fertilizers which is very costly and make the environment hazardous especially when use discriminately. In addition, more than 50% of the applied N-fertilizers are some how lost through different processes which not only represent a cash loss to the farmers and consequently polluted the environmental (Ladha et al., 1998). Crop scientists all over the world are facing this alarming situation and they are trying to overcome this condition by exploring alternative sources which is cost effective and save the environment. Biofertilizer, an alternative source of N-fertilizer, especially rhizobia in legume symbiosis is an established technology. Use of the biofertilizers can also prevent the depletion of the soil organic matter (Jeyabal and Kuppuswamy, 2001). Inoculation with bacterial biofertilizer may reduce the applica-
tion of fertilizer-N by increasing N uptake by plants (Choudhury and Kennedy, 2004; Kennedy et al., 2004; Mia et al., 2005 and 2007). But most of this technique mainly limited between legume and *Rhizobium* in symbiotic process, which can fix atmospheric N\(_2\). However, biological N\(_2\) fixation (BNF) technology can play a vital role in substituting for commercially available N-fertilizer in cereal production thereby reducing the environmental problem to some extent. BNF and its transfer of NH\(_4\) activate the growth promotion of associated plants. Nitrogen fixation and plant growth enhancement by rhizosphere bacteria might be important factors for achieving a sustainable agriculture in the future. This is associated with roots and grasses have been recognized as an important component of the nitrogen cycle in a range of ecosystems (Chalk, 1991). In this review, attempt has been made to summarize the current knowledge and information about rhizobial inoculation on cereal production. Information gathered through this review may yield new insights into recent development of rhizobia-cereal interaction.

NITROGEN IN CEREAL NUTRITION

Supply of nitrogen to crop plants especially cereals is critical for attaining yield potential, which is a highly demanding key element for poaceaeous plants as N cannot be stored in the roots. Nitrogen is a mobile element in the plant system, when the supply is suboptimal, plant growth is retarded, N mobilized from mature leaves and translocated to the new leaves and deficiency symptoms quickly develop in older leaves (Marschner, 1995). Cereal plants require large amounts of mineral nutrients including N for their growth, development and grain production. Rice crops remove around 16 - 17 kg N for the production of each ton of rough rice including straw (De Datta, 1981; Ponnamperuma and Detruck, 1993; Sahrawat, 2000). Nitrogen should be applied at short intervals during growth whereas other elements may be applied at planting. The relationship between total dry matter production and total N uptake is a close one, even taking into account the different varieties and varying environmental and soil conditions (Lahav, 1995). Cereals suffer from a mismatch of its N demand and it’s supplied through chemical fertilizer, resulting in substantial loss of the fertilizer applied. Two approaches might be used in solving this problem namely regulating the timing of N application based on the plant needs while the other is to increase the efficiency of the use of available soil N and meet the additional N-demand by making cereal plants capable of “fixing its own nitrogen” through close association with diazotrophic bacteria. Achieval of the latter goal is a long-term strategy, but its potential has a considerable payoff in terms of increasing cereal production, and helping resource-poor farmers as well as saving the environment (Cassman et al., 1997; Ladha et al., 1997).

Application of higher N may results in NO\(_3^-\) pollution of groundwater (Shrestha and Ladha, 1998), acidification of soil (Kennedy and Tchan, 1992) and increased denitrification resulting in higher emission of N\(_2\)O to the atmosphere, which may impact global warming (Bronson et al., 1997). In addition, the burning of fossil fuel for manufacturing N-fertilizers is a source of hazardous byproducts that pose a threat to human health and the environment (Vitousek et al., 1997). These problems have made wariness-replenished public interest in exploring alternate or supplementary nonpolluting sources of N for sustainable agriculture (Ladha et al., 1997).

Biofertilizers, microbial inoculants that can promote plant growth and productivity, are internationally accepted as an alternative source of N-fertilizer. They are environmentally friendly and can be used to ensure a sustainable cereal production. In the biofertilizer technology, new systems are being developed to increase the biological N\(_2\) fixation (BNF) with cereals and other non-legumes by establishing N\(_2\)-fixing bacteria within the roots (Cocking, 2000). Nitrogen fixation and plant growth promotion by rhizobacteria are important criteria for an effective biofertilizer.

RHIZOBIUM

Rhizobia are soil bacteria that fix N\(_2\) (diazotroph) after becoming established inside root nodules of legumes (Fabaceae). There are several different genera of rhizobia, all of them belong to the Rhizobiales, a probably-monophyletic group of proteobacteria and they are soil bacteria characterized by their unique ability to infect root hairs of legumes and induce effective N\(_2\)-fixing nodules to form on the roots. They are rod shaped living plants which exist only in the vegetative stage. Unlike many other soil microorganisms, rhizobia produce no spores and they are aerobic and motile. Rhizobia (species of *Rhizobium*, *Mesorhizobium*, *Bradyrhizobium*, *Azorhizobium*, *Allorhizobium* and *Sinorhizobium*) form intimate symbiotic relationships with legumes by responding chemotactically to flavonoid molecules released as signals by the legume host. These plant compounds induce the expression of nodulation (nod) genes in rhizobia, which in turn produce lipo-chito-oligosaccharide (LCO) signals that trigger mitotic cell division in roots, leading to nodule formation (Matiru and Dakora, 2004; Dakora, 1995; Lhuissier et al., 2001).

The legume-**Rhizobium** symbiosis is a typical example of mutualism, but its evolutionary persistence is actually somewhat surprising. Because several unrelated strains infect each individual plant, any one strain could redirect resources from N\(_2\) fixation to its own reproduction without killing the host plant upon which they all depend. It turns out that legume plants guide the evolution of rhizobia towards greater mutualism by reducing the oxygen supply to nodules that fix less N\(_2\) thereby reducing the
AGROBACTERIUM: A RHIZOBIA RELATED BACTERIA

Agrobacterium, genera of Rhizobiaceae family, is an artificial genus comprising plant-pathogenic species, and based on the DNA analysis, Young et al. (2001) proposed to rename Agrobacterium rhizogens and Agrobacterium radiobacter as Rhizobium rhizogens and Rhizobium radiobacter. Although Agrobacterium spp. have been isolated from the nodules of several tropical legumes but none of these have been shown to be capable of nodulating the host plant (de Lajudie et al., 1999; Mhamdi et al., 2005). Conversely, Kanvinde and Sastry (1990) suggested that A. tumefaciens strains B6, C58 and NT1 can fix atmospheric N2. Nevertheless, recently, the coexistence of symbiosis and pathogenicity-determining genes has been shown to occur in Rhizobium rhizogens a strain which enables them to induce nodules or tumors depending on plant species (Vela’quez et al., 2005). A. rhizogens, free living N2 fixing bacteria, are capable of inducing a hairy-root (rhizogenic) reaction in host plants (Conn, 1942). A. radiobacter described as non-pathogenic Agrobacterium strains, which are capable of N2 fixation and IAA production. Inoculation of wheat and barley with a bacterial strain isolated from the rhizosphere of a rice crop growing in the USSR and initially identified as A. radiobacter, resulted in crop yield increases equivalent to that obtained by the application of 30 kg N ha⁻¹ (Bairamov et al., 2001; Zavalin et al., 2001).

COLONIZATION OF RHIZOBIUM IN THE ROOTS OF CEREAL CROPS

These beneficial effects require a successful colonization of rhizobia on the roots of the host plant to create a conducive environment for increased interaction between bacteria and the roots. The attachment of rhizobia to the root is essential for the establishment of an efficient association with the plants. Rhizobium is a root colonizer, plant specific, thus cannot colonize a wide range of plant species. Although rhizobia naturally infect legumes as host plants, some Rhizobium strains can form symbiotic relationships with non-legumes species such as Parasponia (Trinick, 1979). Infection and colonization of a non-legume by the N2 fixing bacteria differ significantly from Rhizobium-legume symbiosis. But rhizobial colonization in non-legumes extends from rhizosphere into the epidermis, endodermis and cortex, but the main site of colonization is intercellular space of rice roots (Reddy et al., 1997). Using various techniques like fluorescent-tagged endophytes, antibodies, fluorescent microscopy, scanning and transmission electron microscopy, the bacterial root of entry into the host plant has been traced and scored in many cases (Prayitno et al., 1999; Chaintreuil et al., 2000; Verma et al., 2004; Perrine-Walker et al., 2007). Sometimes endophytes are a more aggressive colonizer and are capable of out-competing others in surroundings (Verma et al., 2004). Some kind of quorum-sensing mechanism as in Rhizobium-legume symbiosis might also exist in this case which helps in the establishment of successful relationship. Rhizobial inoculation to cereal plants especially rice is associated with an increased accumulation of phenolic substances such as gallic, tannic, ferulic and cinnamic acids in plants leaves (Mirza et al., 2001). Such increases in phenolic acids are a pathogenic stress related phenomenon in plants (Pieterse et al., 2002). Defense reactions triggered in response to rhizobial invasions is termed as rhizobacteria mediated induced systemic resistance. After a successful infiltration, Rhizobium is disseminated throughout the host plant interior without evoking an observable defense reaction in the plant. Similarly, Azorhizobium cauliodans were able to enter the roots of rice at emerging lateral roots (lateral root cracks) by crack entry and bacteria moved into intercellular space within the cortical cell layer of roots. Lateral root crack colonization of rice was also observed with similar frequency following inoculation with Azospirillum brasilense and the colonization by A. brasilense was stimulated by naringenin and other flavonoid molecules (Jain and Gupta, 2003). Some strains may have the ability to infect rice root tissue via root hairs located at the emerging lateral roots and to spread extensively throughout the rice root (Francine et al., 2007; Gough et al., 1996; Ladha et al., 1996). Some naturally occurring rhizobia can invade the emerging lateral roots of rice, wheat, maize and oilseed rapes (Cocking et al., 1990, 1992, 1994). Bacteria also invade the host plant root system by crack entry infection that is intercellularly between adjacent plant cells and not by the formation of infection threads and the tip of root hairs (Sprent and Raven, 1992).

FORMATION OF NODULE IN DIFFERENT NON-LEGUMES

An important requirement for efficient biological BNF is to have diazotrophic bacteria growing endophytically within plants, as in legume-rhizobia (van Rhijn and Vanderlyden, 1995), Parasponia-Bradyrhizobium (Webster et al., 1995) and Actinorhiza-Frankia (Benson and Silvester, 1993) symbiosis. In these associations,
specialized organs called nodules are formed in which bacteria reduce N\textsubscript{2} into NH\textsubscript{4} and this fixed-N\textsubscript{2} is transformed to plants (Jain and Gupta, 2003). During the last few years, there has been an increased interest in exploring the possibilities of extending the beneficial interactions between cereals with plant growth promoting bacteria on the potential for nodulation and N\textsubscript{2} fixation in cereal with symbiotic process (Khush and Bennett, 1992). Rhizobia are able to induce, at low frequency, nodule-like structures on the roots of rice, wheat and oilseeds rape seedlings. Nodular structures have been induced on rice roots by treating the roots of 2-day-old seedlings with a cell wall degrading enzyme mixture consisting of 1.0% cellulase YC, 0.1% pectolyase Y23 and 8% mannitol, followed by inoculation with rhizobia in the presence of polyethylene glycol. Rhizobia were located both within the degenerating cytoplasm of cells and between the cells of spherical and elongated nodular structures. Although nitrogenase activity in such structures was at the limit of sensitivity of the assay procedure, this first report of the induction of nodular structures on rice by rhizobia opens up the possibility of extending effective nodulation to non-legumes, including cereals by facilitating the entry of rhizobia through cell wall degradation (Al-Mallah et al., 1989, 1990).

The effect of flavonoids on bacterial colonization of wheat and rice roots was also investigated and demonstrated that flavonoid and naringenin is able to stimulate Azorhizobium colonization of non- legume root systems (Gough et al., 1996). Effective nodulation has also been observed in Parasponia andersonii following Bradyrhizobium inoculation of plantlets regenerated from chilli (Davey et al., 1993).

CROP ENHANCING ACTIVITY

Root stimulation for water and nutrient uptake

It is well-known that inoculation of cereals with plant growth promoting bacteria (PGPB) resulted in increased plant/crop growth and yield and acts as biofertilizer and bioenhancer for different non-legumes (Andrews et al., 2003; Mia et al., 2009; Shamsuddin et al., 1998). However, there is general agreement that these growth responses were not due to N\textsubscript{2} fixation by the bacterium, but were primarily related to the bacterial production of phytohormone, which caused changes in root morphology and physiology that resulted in increased nutrient and water uptake from the soil (Andrews et al. 2003; James, 2000; Mantelin and Touraine, 2004; Mia et al., 2009). Similar crop enhancing activity in different non-legumes has been observed due to rhizobial inoculation. These growth enhancing phenomena are more pronounced in roots rather than shoot. Roots in terrestrial plants serve various functions: conduction or supply of both nutrients and water to the plants from the soil, a location for the synthesis and exchange of various plant hormones, storage organs of plant resources and the anchorage of the plant (Fitter, 1991; Schiefelbein and Benfey, 1991). Root development is clearly influenced by the phytohormone auxins, which are known to influence a number of plant functions such as promotion of cell elongation and cell division, apical dominance, root initiation, differentiation of vascular tissue, ethylene biosynthesis mediation of tropic responses, and alteration of the expression of specific gene (Chasan, 1993; Key, 1989; Sachs, 1993; Warren-Wilson and Warren-Wilson, 1993). There are evidences that certain strains of Rhizobium can enhance rice growth and yield through the accompanying changes in growth physiology or root morphology rather than biological N\textsubscript{2} fixation (Biswas et al., 2000). Rhizobium spp. are capable of synthesizing IAA in absence of tryptophan, but the exogenous application of tryptophan increases IAA production several fold (Kittell et al., 1989). Increased rice root systems with a significantly greater absorptive surface area and extra cellular bioactive metabolites that can promote rice root development resulting in expansive root architecture were also observed by the application of Rhizobium.

Recently, Yanni et al. (1997) and Biswas (1998) showed increased N uptake by rice plants inoculated with rhizobia, which raises questions of whether this benefit of rhizobia to rice may be due to their associative N\textsubscript{2} fixing activity and/or their ability to change the phytohormone balance, thereby influencing growth physiology in ways that affect major nutrient uptake in rice.

Promotion of shoot growth

Rhizobium spp. are plant growth promoting rhizobacteria and some are endophytes which can produce phytohormones, siderophores, HCN, solubilize sparingly soluble organic and inorganic phosphates and can colonize in the roots of many non-legumes (Antoun et al., 1998; Sessitsch et al., 2002). With the use of high-performance liquid chromatography or GC-MS, auxin synthesis by Rhizobium spp. has now been unequivocally demonstrated by researchers (Sekine et al., 1988). Growth promotion of rice cultivars Giza-177, Sakha-102, L204 (Indica) and M202 (Japonica) were observed by the inoculation of Rhizobium. The association increased plant growth at different growth stages such as enhanced seed germination, increased shoot length, leaf chlorophyll content, total dry matter, grain yield, N content and yield attributes (Biswas et al., 2000a; Prayitno et al., 1999; Yanni et al., 1997). Biswas et al. (2000b) reported that enhanced vigor at seedling stage resulted in a carryover effect of significantly increased straw and grain yields at maturity stage when the cultivable population of the inoculants lessen below detectable levels.

BIOFERTILIZER ACTIVITY AND YIELD INCREMENT

It has been found from various experimental results that inoculation of Rhizobium in different cereal grains...
increased yield to some extent. Table 1 summarized some of the findings showing increments of different yield attributes. Yanni et al. (1997) and Biswas (1998) reported increased N uptake by rice plants inoculated with rhizobia. This plant response is significant because of its potential importance to sustainable agriculture, especially in cropping systems involving rotations of rice and legumes. It raises questions of whether this benefit of rhizobia to rice may be due to their associative N\textsubscript{2} fixing activity and/or their ability to change the phytohormone balance, thereby influencing growth physiology in ways that affect major nutrient uptake in rice (Biswas et al., 2000). It was observed that rhizobial inoculation enhanced stomatal conductance, thereby increasing the photosynthesis rates by 12% in rice varieties where 16% grain yield was recorded. A positive correlation between increased grain yield and photosynthetic rate at zero N-level was also found (Peng et al., 2002). Similarly, Mia et al. (2000) found increased photosynthetic rate and yield in Bananas inoculated with PGPR. They also found high and quality banana produced by inoculation (Mia et al., 2005). A general decrease in performance was observed when the pot grown inoculated plants are shifted to the field (Riggs et al., 2001; Gyaneshwar et al., 2002). Some of the factors that may affect the performance of inoculums are soil type, organic matter and other soil physical factors. High concentration of N-fertilizers especially NH\textsubscript{4}NO\textsubscript{3} change the morphology and activity of N\textsubscript{2} fixing bacteria consequently causing harmful effects (Muthukumarasamy et al., 2002). Yield and nodulation were found to have significant positive correlation for both crop reasons. For the bean-sorghum intercropped conditions, the use of mixed granular rhizobial inoculant and starter nitrogen fertilizer is indispensable to realize the benefits of BNF. Sorghum in the kharif season (July – October) followed by chickpea in rabi season (November – February) is an important crop rotation under semi-arid regions. Integrated nutrient management including the use of a combination of inorganic, organic and biofertilizers for enhancing crop growth and sustaining yields holds great promise for farmers. Biswas et al. (2000) reported that inoculation with *Rhizobium leguminosarum* bv. trifolii E11, *Rhizobium* sp. IRBG74 and *Bradyrhizobium* sp. IRBG271 increased rice grain and straw yields by

<table>
<thead>
<tr>
<th>Host plants</th>
<th>Rhizobia</th>
<th>Colonization</th>
<th>Growing condition</th>
<th>Percent increase</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>Bradyrhizobium</td>
<td>Rhizosphere</td>
<td>Gnotobiotic</td>
<td>20 (total biomass)</td>
<td>Chaintruel et al. (2000); Bhattacharjee et al. (2008).</td>
</tr>
<tr>
<td>Rice</td>
<td>R. leguminosarum</td>
<td>Rhizosphere</td>
<td>Pot culture Glasshouse</td>
<td>43 (yield) 18 (biomass) 25 (grain size)</td>
<td>Hussain et al. (2009).</td>
</tr>
</tbody>
</table>
8 to 22 and 4 to 19%, respectively, at different N rates. Nitrogen, P and K uptake were increased by 10 to 28% due to rhizobial inoculation which also increased Fe uptake in rice by 15 to 64%. It is suggested that promoting effects of Rhizobium and Bradyrhizobium inoculation should be considered not only as symbiotic N fixers for legumes but also as PGPR producers for legume and non-legume to increase shoots and yield under drought stress. This increase might be attributed to changes in many metabolic and physiological processes. Finally, cell viability and electrolyte leakage tests as well as chemical constituents can be used to select drought tolerant cultivars (Rashad et al., 2001). In the field experiment in rice, R. leguminosarum inoculation increased in biomass at vegetative stage in Vietnam condition (Kennedy et al., 2004).

BIOCONTROL ACTIVITY

Certain mechanisms are postulated towards Rhizobium which may be involved in growth promoting activities, that is, mobilization and efficient uptake of nutrient, enhancement of stress tolerance, solubilization of insoluble phosphate, induction of systemic disease resistance, production of phytohormones, vitamins and sider-phores (Biswas et al., 2000; Mayak et al., 2004; Alikhani et al., 2006; Tuzun and Kloepper, 1994; Dakora, 2003; Dobbelara et al., 2003; Neil and Leong, 1986). Rhizobium has potential use as biocontrol agents and Ehteshamul-Haque and Ghaffer (1993) found that S. meliloti, R. leguminosarum bv. viciae and B. japonicum reduced infection of Macrophomina phaseolina, Rhizoctonia solani and Fusarium spp. in both leguminous and non-leguminous plants. Bacterial biological control agents have been successfully developed for other Rhizobium spp. (Burr and Reid, 1994). In replicated field trials, Rhizobium radiobacter strain K84 has provided effective field control against tumorigenic forms of R. radiobacter that affect stone fruits and many other tree crops (Schroth and Moller, 1976). One of the factors contributing to the success of this biocontrol agent is its persistence in the rhizosphere where control is required. The persistence of potential biological control bacteria in the xylem is crucial for activity against the bacteria that cause crown gall disease.

FUTURE PROJECTION AND CHALLENGES

Recent advances in knowledge of symbiotic Rhizobium-legume association at the molecular level and the ability of incorporating new genes into cereals through transformation have created excellent prospect to investigate the possibilities for integrating N2 fixing capability in non-legumes especially in rice (Ladh et al., 1997). Now the challenge is to establish stable Rhizobium-cereal associations and major emphasis should be given for efficient and stable associations including endophytic association. Conditions which give reproducible invasion of lateral root cracks and subsequent intercellular colonization of the roots of rice and wheat by rhizobia at high frequency, provides important information to researchers attempting to extend rhizobial colonization and endophytic N2 fixation to non-legume crops (Webster et al., 1997). Liquid inocula of Rhizobium should be developed for easy handling and foliar spray. Consistency in achieving yield and grain quality will be a big challenge in this technology.

CONCLUSIONS

Information from the various literatures available presently depicts that association either rhizospheric or endophytic between Rhizobium and cereal is a natural phenomenon. Progressive knowledge of this area may bring benefits for using this technology. For commercialization, extensive optimization and comparative study of the after effects of the application is required. Hence, more research is needed on the interaction between cereal grains and rhizobia or rhizobia-like bacteria. There is also need to fully assess whether the rhizobia fix N2 in association with cereals under conditions in which this bacteria promote plant growth and if so what portion of the plant-N can be derived from BNF process. Our understanding of the natural ability of rhizobia to inhibit cereals and enhance their growth is only beginning to be explored. Nevertheless, the novel findings described here represent major steps forward in achieving the technically challenging goal of increasing cereal productivity by reducing its dependence on the chemical fertilizer-N through enhancement of its natural association with rhizobia.

REFERENCES

Young JM, Kuyendall LD, Martinez-Romero E, Kerr A, Sawada H (2004). A revision of Rhizobium Frankia 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium conn (1942) and Allorhizobium undicola de Lajudie et al., 1998 a s new combinations: Rhizobium radiobacter, R.