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This study was designed to evaluate the antibiotic susceptibilities, genotypic characteristics and 
biofilm formation abilities of antibiotic-sensitive Staphylococcus aureus KACC 13236 (SA

S
), multiple 

antibiotic-resistant S. aureus CCARM 3080 (SA
R
), antibiotic-sensitive Salmonella Typhimurium KCCM 

40253 (ST
S
) and multiple antibiotic-resistant Salmonella Typhimurium CCARM 8009 (ST

R
) cultured in 

various levels of pHs (4.0, 5.5 and 7.3) and temperatures (4, 20 and 37°C). The SA
S
 biofilm cells were 

highly resistant to ampicillin, cephalothin, oxacillin and piperacillin (MIC90 >256 µg/ml) compared with 
the SA

S
 planktonic cells. The ST

R
 strain was less susceptible to cephalothin, oxacillin and piperacillin 

than the ST
S
. The SA

R
 strain was positive for the staphylococcal enterotoxin genes (sec, seg, sei, sel, 

sem, sen and seo). The highest biofilm formation index (BFI) was 2.07 for the SA
R
 biofilm cells cultured 

at 37°C and pH 5.5. The antibiotic-resistant pathogens showed multiple antibiotic resistance, genotypic 
heterogeneity and cross-protective responses to low pH in the form of biofilms. This study provides 
useful information for the comparison of antibiotic resistance patterns and biofilm formation abilities 
between antibiotic-sensitive and resistant pathogens in planktonic and biofilm cells. 
 
Key words: Antibiotic resistance, Staphylococcus aureus, Salmonella Typhimurium, biofilm formation, cross-
protection. 

 
 
INTRODUCTION 
 
Since 1929 when the first antibiotic, penicillin, was dis-
covered, new classes of antibiotics have been developed 
and increasingly used to treat infectious diseases in 
human and promote growth in food-producing animals 
(Chander et al., 2007). The overuse and misuse of 
antibiotics, however, has  led to a  significant  increase  in  
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Abbreviations: SA

S
, Staphylococcus aureus KACC 13236; 

SA
R
, multiple antibiotic-resistant S. aureus CCARM 3080; ST

S
, 

antibiotic-sensitive Salmonella typhimurium KCCM 40253; ST
R
, 

multiple antibiotic-resistant Salmonella typhimurium CCARM 
8009. 

the antibiotic-resistant bacteria such as methicillin- 
resistant Staphylococcus aureus (MRSA), vancomycin- 
resistant      S.      aureus     (VRSA),     penicillin-resistant 
Streptococcus pneumoniae (PRSP), vancomycin-
resistant Enterococcus spp. (VRE) and multidrug-
resistant Salmonella Typhimurium (MRST) (Mason et al., 
1992; Harwood et al., 2001; Kondoh et al., 2002; 
McLaughlin et al., 2006; Holmes and Jorgensen, 2008; 
Dahshan et al., 2010). Therefore, the emergence of 
antibiotic-resistant pathogens has become a serious 
worldwide concern because their infections reported as 
nosocomial outbreaks and sporadic infections are not 
limited to particular countries (Kotilainen et al., 2003). 
Moreover, the antibiotic-resistant pathogens can exist in 
the form of biofilms, leading to cross-resistances to other 
environmental stresses  (Gilbert et al., 2002;  Burmolle  et  
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al., 2006; McMahon et al., 2007; Telang et al., 2010).  

In natural habitats, biofilm formation is an important 
survival strategy for bacteria that can be embedded 
within a self-produced extracellular polymeric matrix of 
polysaccharides, proteins, lipids and nucleic acids 
(Donlan and Costerton, 2002; Flemming and  Wingender, 
2010). Bacterial biofilms have received continued 
attention in the food-processing industry due to their 
increased resistance towards desiccation, heat, acid, 
preservatives and antibiotics (Chmielewski and Frank, 
2003; Trachoo, 2007; Shi and Zhu, 2009; Van Houdt and 
Michiels, 2010). Over the last two decades, there have 
been many studies showing the ability of bacteria to form 
biofilms on biotic and abiotic surfaces (Hood and Zottola, 
1997; Reid, 1999; Rode et al., 2007; Dongari-Bagtzoglou, 
2008). However, relatively few studies have been focused 
on the biofilm-forming abilities of multiple antibiotic-
resistant pathogens. Therefore, the objectives of this 
study were to evaluate the antibiotic susceptibilities and 
genotypic characteristics of planktonic and biofilm-
associated pathogens and also to assess the biofilm-
forming abilities of multiple antibiotic-resistant S. aureus 
and S. Typhimurium exposed to different pH and 
temperature conditions. 
 
 
MATERIALS AND METHODS 
 
Bacterial strains and culture conditions 
 
Strains of S. aureus KACC 13236 and Salmonella enterica serovar 
Typhimurium KCCM 40253 were provided by the Korean 
Agricultural Culture Collection (KACC, Suwon, Korea) and the 
Korean Culture Center of Microorganism (KCCM, Seoul, Korea), 
respectively. Strains of S. aureus CCARM 3080 and S. enterica 
serovar Typhimurium CCARM 8009 were purchased from the 
Culture Collection of Antibiotic Resistant Microbes (CCARM, Seoul, 
Korea). All strains were cultivated in trypticase soy broth (TSB, BD, 
Becton, Dickinson and Co., Sparks, MD, USA) at 37°C for 20 h. 
After cultivation, cultures were centrifuged at 3,000 × g for 20 min at 
4°C. The harvested cells were washed twice with 0.1% sterile 
buffered peptone water (BPW). 
 
 
Preparation of antibiotic stock solutions 
 
Eight antibiotics, ampicillin, aztreonam, cefotaxime, cefoxitin, 
ceftazidime, cephalothin, oxacillin and piperacillin, were purchased 
from the Sigma Chemical Co. (St Louis, MO, USA). All antibiotic 
stock solutions were prepared at the concentrations of 256

 
and 51.2 

µg/ml (aztreonam) in sterile distilled water and stored at -20°C prior 
to use.  
 
 
Preparation of biofilm cells 
 
The diluted S. aureus KACC13236, S. Typhimurium KCCM 40253, 
S. aureus CCARM 3080 and S. Typhimurium CCARM 8009 cells 
(0.1 ml each) were transferred into 96-well flat-bottomed poly-
styrene microtiter plates (BD Falcon, SanJose, CA, USA) at 
approximately 10

4
 CFU/ml in TSB and incubated at 37°C for 48 h 

under static conditions. Each well was rinsed three times with 0.1% 
sterile BPW to remove loosely attached cells. The biofilm cells were  

 
 
 
 
used for antibiotic susceptibility test.  
 
 
Antibiotic susceptibility assay 
 
A broth microdilution method was used to determine the antibiotic 
susceptibility of planktonic and biofilm cells according to the Clinical 
and Laboratory Standards Institute (CLSI) procedure (CLSI, 2009). 

The antibiotic stock solutions were serially diluted (1:2) from 51.2 
to 0.05 µg/ml for aztreonam and 256 to 0.25 µg/ml for other 
antibiotics with TSB in 96-well plates. The inoculums of planktonic 
and biofilm indicator strains were approximately 10

6
 CFU/ml in each 

well. All inoculated plates were incubated for 20 h at 37°C. The total 
viable counts of planktonic and biofilm cells were determined using 
the pour plate method. The planktonic cell suspensions in each well 
of the 96-well plates were collected and serially (1:10) diluted with 
0.1% BPW. For biofilm enumeration, the cotton swabs were cut into 
2 pieces, moistened with 0.1% BPW and sterilized. The biofilm 
layers were collected by scraping the biofilm area with sterile cotton 
swabs. The swabs were immersed in 1 ml of 0.1% BPW and 
vigorously mixed to release the biofilm cells. The dilutions (0.1 ml 
each) of planktonic and biofilm cells were plated in duplicate on 
TSA. The agar plates were incubated at 37°C for 48 h. MICs 
(minimum inhibitory concentrations) were determined at the 
concentrations at which the initial cell numbers were reduced by 
90%. The antibiotic dose-response curves based on the growth of 
planktonic and biofilm cells were analyzed to estimate the MICs 
using Nonlinear curve fitting function of Microcal Origin

®
 7.5 

(Microcal Software Inc., Northampton, MA). The strains tested were 
defined as sensitive (S), intermediate (I) and resistant (R) bacteria 
based on the MIC values. The sensitive and resistant MIC 
breakpoints were less than 8 µg/ml and more than 32 µg/ml, 
respectively, for ampicillin, aztreonam, cefotaxime, cefoxitin, 
ceftazidime, cephalothin and oxacillin. The MIC breakpoints of 
piperacillin were less than 16 µg/ml (S) and more than 32 µg/ml (R) 
(Ayyagari and Gupta, 2009). 
 
 
RNA extraction 
 
Each culture (0.5 ml) was mixed with 1 ml of RNAprotect Bacteria 
Reagent (Qiagen, Hilden, Germany) to stabilize RNA. The mixture 
was centrifuged at 5,000 × g for 10 min and used for RNA 
extraction according to the RNeasy mini protocol (Qiagen). The 
collected cells were homogenized with a buffer containing 
guanidine isothiocyanate (GITC) to disrupt the cells and incubated 
in a buffer containing lysozyme to lyse the cell wall. The lysates 
were mixed with ethanol to adjust binding conditions and loaded to 
an RNeasy mini column to isolate total RNA. 
 
 
Genotyping by reverse transcription-PCR 
 

The synthesis of cDNA was performed according to the QuantiTect 
reverse transcription procedure (Qiagen). The RNA sample was 
mixed with a master mixture containing Quantiscript Reverse 
Transcriptase, Quantiscript RT buffer and RT primer mix. The 
reaction mixture was incubated at 42°C for 15 min and then 
subsequently, incubated at 95°C for 3 min to inactivate the 
quantiscript reverse transcriptase. The oligonucleotide primers 
(Tables 1 and 2) were synthesized by IDT (Integrated DNA 
Technologies Inc., coralville, IA, USA). The PCR mixture (20 µl) 
containing 10 µl of 2X QuantiTect SYBR Green PCR Master, each 
primer (60 pmol), cDNA sample (2 ng and water (6.8 µl) was 
amplified using an iCycler iQ™ system (Bio-Rad Laboratories, 
Hemel Hempstead, UK). The PCR mixture was denatured initially 
for 15 min at 95°C, followed by 45 cycles of 94°C for 15 s, 59°C for 
20 s and  72°C for  15 s. The  melt-curve  analysis  was  carried  out  
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Table 1. Primer sequences used in RT- PCR analysis for S. aureus. 
 

Gene Molecular function Primer sequence* Size (bp) Tm
† 
(S/R

‡
, °C) 

sea Enterotoxin A 
F: CCTTTGGAAACGGTTAAAAC 

R: CTCTGMACCTTYCCATCAAA 
128 

ND 

ND 

seb Enterotoxin B 
F: GGGTATTTGAAGATGGTAAAAATT 

R: AGGCGAGTTGTTAAATTCATAGAGTT 
140 

ND 

ND 

sec Enterotoxin C 
F: TGTACTTRTAAGAGTTTATGAAAATA 

R: TCCTAGCTTTTATGTCTAGTTCTTGAG 
104 

ND 

72.43 

sed Enterotoxin D 
F: TCAATTTGTGGATAAATGGTGTAC 

R: TTTCCTCCGAGAGTATCATTAT 
154 

ND 

ND 

see Enterotoxin E 
F: CCTATAGATAAAGTTAAAACAAGC 

R: ACCGCCAAAGCTGTCTGAG 
116 

ND 

ND 

seg Enterotoxin G 
F: TTACAAAGCAAGACACTGGCTCA 

R: TCCAGATTCAAAYGCAGAACMAT 
73 

ND 

74.31 

seh Enterotoxin H 
F: TGAATGTCTATATGGAGGTACAAC 

R: CTACCCAAACATTAGCACCAA 
80 

ND 

ND 

sei Enterotoxin I 
F: GGTAYCAATGATTTGATCTCAGAAT 

R: GTATTGTCCTGATAAAGTGGCC 
147 

ND 

73.68 

sej Enterotoxin J 
F: CTGCATGAAAACAATCAACTTTATG 

R: GAACAACAGTTCTGATGCTATC 
79 

ND 

ND 

sek Enterotoxin K 
F: GTCACAGCTACTAACGAATATC 

R: TAGTGCCGTTATGTCCATAAATG 
193 

ND 

ND 

sel Enterotoxin L 
F: TAGATTCGCCAAGAATAATACC 

R: CTTTACCAGTATCATTGTGTCC 
176 

ND 

73.68 

sem Enterotoxin M 
F: TCATATCGCAACCGCTGATGATG 

R: TCAGCWGTTACTGTCGAATTAT 
150 

ND 

75.08 

sen Enterotoxin N 
F: GATGAAGAGARAGTTATAGGCGT 

R: ATGTTACCGGTATCTTTATTGTAT 
167 

ND 

72.93 

seo Enterotoxin O 
F: GTGTAAGAAGTCAAGTGTAGAC 

R: CAGCAGATWTTCCATCTAACC 
163 

ND 

71.05 

sep Enterotoxin P 
F: GGAGCTAGACCTTCAGTCAAGA 

R: ACCAGAAGAAGGGTGAAACTCA 
115 

ND 

ND 

seq Enterotoxin Q 
F: GGAATTACGTTGGCGAATCAA 

R: TGATATCCATATTCCTGACC 
221 

ND 

ND 

ser Enterotoxin R 
F: TCCTATTCCTTATTCAGAATACA 

R: GGGTATTCCAAACACATCTAAC 
102 

ND 

ND 
 
 

 
immediately after amplification protocol with 0.4°C increments per 
10 s for 85 cycles from 65 to 97°C. The PCR products were 
visualized and analyzed using the iQ5 PCR detection system (Bio-
Rad Laboratories).  
 
 

Estimation of biofilm formation ability 
 

Antibiotic-sensitive  and  resistant  S.  aureus  and  S.  Typhimurium 

cells were cultured in TSB containing one-half MICs of antibiotics at 
different temperatures (4, 20 and 37°C) and pH 4.0, 5.5 and 7.3 
adjusted by lactic acid. After 48 h incubation, the absorbance of 
planktonic cells was measured at 600 nm (ODPlanktonic). The total 
amount of biofilm cells was quantitatively measured by the crystal 
violet (CV) method. After removing the planktonic cells, the washed 
wells were air dried at 55°C for 1 h. The dried biofilm cells were 

stained with 1% CV solution at 37°C for 30 min, washed twice with 
sterile distilled water and then air-dried at 55°C for 1 h. The stained 
biofilm cells were destained with 95% ethanol and measured at 570 
nm (CVBiofilm). The negative control (CVControl) was used to reduce 
the background staining from the CV-stained biofilm cells. The 
biofilm formation ability was expressed by biofilm formation index 
(BFI=[ CVBiofilm – CVControl]/ ODPlanktonic) (Niu and Gilbert, 2004). 

 
 
Statistical analysis 
 
Data were analyzed using the  statistical  analysis  system  software 
(SAS). The general linear model (GLM) and least significant 
difference (LSD) procedures were used to determine significant 
mean differences among strains and culture conditions at p < 0.05. 
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Table 2. Primer sequences used in RT-PCR analysis for S. Typhimurium. 
 

Gene Molecular function Primer name and sequence* Size (bp) Tm
† 
(S/R

‡
, °C) 

acrA Multidrug efflux system 
F: AAAACGGCAAAGCGAAGGT 

R: GTACCGGACTGCGGGAATT 
64 

80.02 

80.02 

acrB Multidrug efflux system 
F: TGAAAAAAATGGAACCGTTCTTC 

R: CGAACGGCGTGGTGTCA 
69 

77.91 

78.16 

tolC Multidrug efflux system 
F: GCCCGTGCGCAATATGAT 

R: CCGCGTTATCCAGGTTGTTG 
67 

80.14 

80.22 

tem-1 β-lactamase 
F: ATGAGTATTCAACATTTCCGTG 

R: TTACCAATGCTTAATCAGTGAG 
861 

ND 

ND 

ctx-m β-lactamase 
F: TTTGCGATGTGCAGTACCAGTAA 

R: CGATATCGTTGGTGGTGCCATA 
543 

ND 

ND 

shv-1 β-lactamase 
F: ATGCGTTATATTCGCCTGTG 

R: GTTAGCGTTGCCAGTGCTCG 
865 

ND 

ND 

ompC Outer membrane protein C 
F: TCGCAGCCTGCTGAACCAGAAC 

R: ACGGGTTGCGTTATAGGTCTGAG 244 
ND 

ND 

ompD Outer membrane protein D 
F: GCAACCGTACTGAAAGCCAGGG 

R: GCCAAAGAAGTCAGTGTTACGGT 239 
83.94 

83.95 

ompF Outer membrane protein F 
F: CGGAATTTATTGACGGCAGT 

R: GAGATAAAAAAACAGGACCG 1212 
ND 

ND 

hilA Invasion gene activator 
F: TATCGCAGTATGCGCCCTT 

R: TCGTAATGGTCACCGGCAG 
50 

80.17 

80.68 

fimA Major fimbrial subunit 
F: TTGCGAGTCTGATGTTTGTCG 

R: CACGCTCACCGGAGTAGGAT 
62 

81.81 

81.92 

lpfE Fimbrial protein 
F: GGTCAGTCGGGTCCGGA 

R: GATTGCGCGTATGCCACA 
61 

80.62 

80.56 

invA Invasion protein 
F: ACAGTGCTCGTTTACGACCTGAAT 

R: AGACGACTGGTACTGATCGATAAT 454 
79.40 

79.41 

stn Salmonella enterotoxin 
F: GCCATGCTGTTCGATGAT 

R: GTTACCGATAGCGGGAAAGG 467 
82.52 

82.52 
 

*F, forward; R, reverse; 
†
ND, not detected; 

‡
S, antibiotic-sensitive strain; R, antibiotic-resistant strain. 

 
 
 

Table 3. Minimum inhibitory concentrations (MIC90, µg/ml)* of selected antibiotics against antibiotic-sensitive S. aureus 
(SA

S
) and antibiotic-resistant S. aureus (SA

R
). 

 

Antibiotic 
SA

S
  SA

R
 

Planktonic Biofilm  Planktonic Biofilm 

Ampicillin 0.05 (S) >256 (R)  14.56 (I) >256 (R) 

Aztreonam 35.92 (R) >51.2 (R)  >51.2 (R) >51.2 (R) 

Cefotaxime 0.14 (S) 0.57 (S)  >256 (R) >256 (R) 

Cefoxitin 0.46 (S) 141.95 (R)  >256 (R) >256 (R) 

Ceftazidime 3.51 (S) 82.46 (R)  >256 (R) >256 (R) 

Cephalothin 0.05 (S) >256 (R)  75.80 (R) 69.57 (R) 

Oxacillin 0.05 (S) >256 (R)  >256 (R) >256 (R) 

Piperacillin 0.11 (S) >256 (R)  88.77 (R) 150.95 (R) 
 

* S, Sensitive; I, intermediate; R, resistant.  
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Table 4. Minimum inhibitory concentrations (MIC90, µg/ml)* of selected antibiotics against antibiotic-sensitive S. 
Typhimurium (ST

S
) and antibiotic-resistant S. Typhimurium (ST

R
). 

 

Antibiotic 
ST

S
  ST

R
 

Planktonic Biofilm  Planktonic Biofilm 

Ampicillin 0.91 (S) >256 (R)  1.85 (S) >256 (R) 

Aztreonam 0.04 (S) 0.39 (S)  0.04 (S) 0.53 (S) 

Cefotaxime 0.05 (S) 0.06 (S)  0.25 (S) 0.61 (S) 

Cefoxitin 3.58 (S) 2.03 (S)  3.09 (S) 1.94 (S) 

Ceftazidime 0.44 (S) 0.19 (S)  0.54 (S) 35.44 (R) 

Cephalothin 4.73 (S) 9.33 (I)  23.38 (I) 152.38 (R) 

Oxacillin >256 (R) >256 (R)  >256 (R) >256 (R) 

Piperacillin 2.39 (S) 1.98 (S)  >256 (R) >256 (R) 
 

*S, Sensitive; I, intermediate; R, resistant.  
 
 
 

RESULTS  
 
Antibiotic susceptibilities of S. aureus planktonic and 
biofilm cells 
 
The antibiotic susceptibility of biofilm-associated S. 
aureus cells were compared with the susceptibility of 
planktonic cell as shown in Table 3. For S. aureus KACC 
13236, the biofilm cells were highly resistant to most 
antibiotics, except for cefotaxime, when compared with 
the planktonic cells. The most significant increases in 
resistance were  observed  in  biofilm  cells  to  ampicillin,  
cephalothin, oxacillin and piperacillin, showing the MIC90  
values of more than 256 µg/ml (Table 3). The resistance 
patterns of S. aureus CCARM 3080 strain were not signi-
ficantly different between planktonic and biofilm 
cells,showing highly resistant towards all antibiotics used. 
The S. aureus CCARM 3080 was highly resistant to 
antibiotics in both planktonic and biofilm cells when 
compared  with the S. aureus KACC 13236. 

 
 
Antibiotic susceptibilities of S. Typhimurium 
planktonic and biofilm cells 

 
The antibiotic susceptibility profiles of planktonic and 
biofilm-associated S. Typhimurium cells are shown in 
Table 4. No significant susceptibility patterns between S. 
Typhimurium KCCM 40253 planktonic and biofilm cells 
were observed for all antibiotics with the exception of 
ampicillin. The MIC90 values of ampicillin against the S. 
Typhimurium KCCM 40253 planktonic and biofilm cells 
were 0.91 and >256 µg/ml, respectively. The S. 
Typhimurium KCCM 40253 and CCARM 8009 in both 
planktonic and biofilm cultures showed the highest level 
of resistance to oxacillin, showing the MIC90 values of 
more than 256 µg/ml. The MIC90 value of ampicillin 
against the S. Typhimurium KCCM 40253 biofilm cells 

significantly increased from 0.91 (S. Typhimurium KCCM 
40253 planktonic cells) to >256 µg/ml, indicating a 
decrease in susceptibility after biofilm formation. The 
MIC90 values of ampicillin, ceftazidime and cephalothin 
against the S. Typhimurium CCARM 8009 biofilm cells 
significantly increased up to >256, 35.44 and152.38 
µg/ml, respectively, when compared with those (1.85, 
0.54 and 23.38 µg/ml) of S. Typhimurium KCCM 40253 
planktonic cells. 

 
 
Genotypic characteristics of antibiotic-sensitive and 
resistant pathogens in planktonic and biofilm 
cultures 

 
According to the antibiotic susceptibilities, S. aureus 
KACC13236, S. aureus CCARM 3080, S. Typhimurium 
KCCM 40253 and S. Typhimurium CCARM 8009 were 
assigned to relatively antibiotic-sensitive S. aureus (SA

S
), 

multiple antibiotic-resistant S. aureus (SA
R
), antibiotic-

sensitive S. Typhimurium (ST
S
) and multiple antibiotic-

resistant S. Typhimurium (ST
R
), respectively. The 

genotypic characteristics of SA
S
, SA

R
, ST

S
 and ST

R
 

strains were evaluated by RT-PCR assay as shown in 
Table 5. The PCR results of SA

S
 and SA

R
 strains were 

positive for most reference genes (ftsZ, gap, gyrB, hu, 
mdeA, norB, norC, pta, recA, rplD, rpoB and sodA), with 
the exception of tpi gene. The staphylococcal enterotoxin 
(SE) genes (sec, seg, sei, sel, sem, sen and seo) were 
not detected in the SA

S
, while the positive results for 

these SE genes were observed in the SA
R
. In both SA

S
 

and SA
R
 strains, sea, seb, sed, see, seh, sej, sek, sep, 

seq, ser, seu, norA, mepA and blaZ were not detected. 
There were no significant differences in genotype 
distribution between ST

S
 and ST

R
. The PCR products 

were positive for acrA, acrB, fimA, hilA, invA, lpfE, ompD, 
stn and tolC genes (Table 5), while tem-1, ctx-m, shv-1, 
ompC and ompF genes were  not  detected  in  both  ST

S
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Table 5. Distribution of reference and virulence genes among antibiotic-sensitive S. aureus (SA
S
), 

antibiotic-resistant S. aureus (SA
R
), antibiotic-sensitive S. Typhimurium (ST

S
) and antibiotic-resistant S. 

Typhimurium (ST
R
). 

 

Gene 
PCR result

*
  Gene PCR result

*
 

SA
S
 SA

R
   ST

S
 ST

R
 

ftsZ + +  acrA + + 

gap + +  acrB + + 

gyrB + +  fimA + + 

hu + +  hilA + + 

mdeA + +  invA + + 

norB + +  lpfE + + 

norC + +  ompD + + 

pta + +  stn + + 

recA + +  tolC + + 

rplD + +     

rpoB + +     

sec – +     

seg – +     

sei – +     

sel – +     

sem – +     

sen – +     

seo – +     

sodA + +     

tpi – +     
 

*+, Positive in specific PCR; –, negative in specific PCR. 

 
 
 
and ST

R
 strains. 

 
 
Biofilm-forming abilities of antibiotic-sensitive and 
resistant pathogens under different pH and 
temperature conditions 
 
The abilities of SA

S
, SA

R
, ST

S
 and ST

R
 strains to form 

biofilms were evaluated in one-half MICs of antibiotics at 
different levels of pH (4.0, 5.5 or 7.3) and temperature (4, 
20 or 37°C) (Figure 1). For all strains tested in this study, 
the biofilm cells were not detected under culture 
conditions (4°C +pH 7.3 and 37°C+pH 4.0). The highest 
biofilm formation indices (BFIs) of SA

S
 and SA

R
 were 

1.59 and 2.07, respectively, at the culture condition of 
37°C and pH 5.5, followed by 0.55 and 0.47 at the culture 
condition of 20°C and pH 7.3 (Figure 1a). At the culture 
condition of 37°C and pH 5.5 condition, the SA

R
 showed 

significantly higher biofilm formation ability than the SA
S
 

(p < 0.05). Similar to the SA
S
 and SA

R
, the highest BFIs 

of ST
S
 and ST

R
 were 0.87 and 1.38, respectively, at the 

culture condition at 37°C C and pH 5.5 (Figure 1b). The 
ST

R
 had the highest BFI at the culture condition at 37°C 

and pH 5.5 (p < 0.05). No significant differences in biofilm 
formation abilities were observed at other culture 
conditions (p > 0.05). 

DISCUSSION 
 
This study demonstrates (1) the phenotypic and geno-
typic traits of antibiotic-resistant pathogens in planktonic 
and biofilm cultures and (2) the biofilm-forming abilities of 
multiple antibiotic-resistant pathogens grown at different 
pH and temperature conditions when compared with anti-
biotic-sensitive pathogens. Since the antibiotic resistance 
has emerged as a serious public health problem, unders-
tanding the physiogenetic characteristics of antibiotic-
resistant pathogens is essential for preventing the 
development of multi-drug resistant pathogens under 
different environmental conditions and for developing a 
new type of antibiotic agents.  

The SA
S
 planktonic cells were more susceptible to 

ampicillin, cefotaxime, cefoxitin, ceftazidime, cephalothin, 
oxacillin and piperacillin than the SA

S
 biofilm cells (Table 

3). This observation is in good agreement with previous 
reports that the increased antibiotic resistance was 
observed in biofilm cells, which may be attributed to 
biofilm properties such as slow metabolic activity, low 
membrane permeability, high frequency of persisters and 
adaptive responses (Amorena et al., 1999; Costerton et 
al., 1999; Stewart, 2002). The SA

R
 was more resistant 

towards all antibiotics than the SA
S
. This result suggests 

that antibiotic-resistant strains are likely to acquire an 
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Figure 1. Specific biofilm formation indices of (A) antibiotic-sensitive S. aureus 
(SA

S
, ■) and antibiotic-resistant S. aureus (SA

R
, ■) and (B) antibiotic-sensitive S. 

Typhimurium (ST
S
, ■) and antibiotic-resistant S. Typhimurium (ST

R
, ■) cultured at 

different pH and temperature conditions for 48 h. ND and * indicate no detection of 
biofilm cells and significant difference at p < 0.05. Different letters (A-C and a-c) 
are significantly different within antibiotic-sensitive and antibiotic-resistant strains 
at p < 0.05. (n = 8). 

 
 
 

increased resistant to antibiotics, leading to multidrug-
resistant strains (Kwon et al., 2008; Petrelli et al., 2008). 
The antibiotic susceptibility patterns of S. Typhimurium 
were different from those observed in S. aureus (Table 4). 
The multidrug-resistance patterns were observed at low 
frequency in both ST

S
 and ST

R
.   

Both SA
S
 and SA

R
 strains were positive for the genes, 

ftsZ, pta, hu, gyrB, recA and rpoB, which are well know 
reference genes in S. aures grown at various pHs and 
temperatures (Duquenne et al., 2010). The SA

R
 was 

confirmed positive for the staphylococcal enterotoxin 
genes encoding SEC, SEG, SEI, SEL, SEM, SEN and 
SEO (Table 5). These extracellular staphylococcal 
enterotoxins (SEs)  are   the  major  causative  agents   of  
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staphylococcal food poisoning (SFP), bacteremias and 
endocarditis (Lowry, 1998; Derzelle et al., 2009). 
Theserotypes SEA to SEE are the most common entero-
toxins responsible for SFP outbreaks. The expression of 
sec is regulated by SarA in S. aureus independent of agr 
operon. The gene seg coexists with sei within staphylo-
coccal pathogenicity island (SaPI) (Becker et al., 2003). 
The production of SEs is mainly influenced by 
environmental factors such as temperature, water activity, 
pH, salt and oxygen. S. aureus exposed to different 
environmental stress conditions can induce cross-
protection phenomenon (McMahon et al., 2007). No 
significant genotypic patterns were observed between 
ST

S
 and ST

R
 strains (Table 5). The ST

S
 and ST

R
 strains 

were positive for the genes encoding multidrug efflux 
proteins (acrA, acrB and tolC), outer membrane 
transportprotein (ompD), regulators of Salmonella 
pathogenicity island (SPI; hilA), invasion protein (invA), 
enterotoxin (stn) and fimbrial protein (fimA and lpfE) 
(Webber et al., 2009). Foodborne salmonellosis is caused 
by S. Typhimurium cells which invade the small intestine, 
colonize and then produce enterotoxins (Pfeifer et al., 
1999). The genes stn and invA are mostly responsible for 
the production of enterotoxin and the penetration of the 
intestinal epithelium by S. Typhimurium (Chopra et al., 
1994; Chopra et al., 1999; D'Souza et al., 2009).  

No growth was observed when SA
S
, SA

R
, ST

S
 and ST

R
 

strains   were   incubated   at   the   culture  conditions  of 
4°C+pH 7.3 (low temperature) and 37°C+pH 4.0 (lethal 
pH) (Figure 1). However, the highest BFIs were observed 
for SA

R
 and ST

R
 strains cultured at 37°C and pH 5.5. This 

observation suggests that antibiotic resistance induced 
cross-protection against low pH and antibiotics (one-half 
MICs) during biofilm formation. At pH 5.5 and 37°C, the 
antibiotic-resistant strains (SA

R
 and ST

R
) formed stronger 

biofilms than the antibiotic-sensitive strains (SA
S
 and 

ST
S
). This result confirms previous reports that the biofilm 

formation ability was likely to be dependent on the 
antibiotic resistance profiles of bacterial strains (Kim and 
Wei, 2007; Kwon et al., 2008). In this study, the SA

S
, SA

R
, 

ST
S
 and ST

R
 planktonic cells were resistant to 0, 8 

(ampicillin, aztreonam, cefotaxime, cefoxitin, ceftazidime, 
cephalothin, oxacillin and piperacillin), 1 (oxacillin) and 5 
(ampicillin, ceftazidime, cephalothin, oxacillin and 
piperacillin) antibiotics, respectively. The biofilm formation 
ability of SA

S
 strain was decreased at the culture 

condition of 37°C and pH 7.3 compared with that at 20°C 
and pH 7.3. This implies that the increased temperature 
could enhance the antibiotic activity, which might 
eventually contribute to the increased susceptibility of 
SA

S
 to antibiotics (Russell, 2003).  

In conclusion, the antibiotic-sensitive and resistant 
pathogens in planktonic and biofilm cultures exhibited 
significant differences in phenotypic and genotypic 
properties. The biofilms formed by antibiotic-resistant 
strains were more resistant to antibiotics than the 
planktonic cells, known as multidrug resistance. Different  

  
 

 
 
genotypic patterns were observed between antibiotic-
sensitive and resistant strains. The antibiotic-resistant 
pathogens showed the highest biofilm-forming ability in 
low pH, known as cross-resistance. The biofilm formation 
by multidrug-resistant pathogens may increase the risk of 
severe infections related to food processing facilities and 
medical devices. This study would provide useful 
information on the epidemiologic study of antibiotic-
resistant pathogen infections. Further study is needed to 
understand the virulence potential of antibiotic-resistant 
foodborne pathogenic biofilms under various environ-
mental stress conditions. 
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