African Journal of Biomedical Research, Vol. 7 (2004); 139 - 143 ISSN 1119 – 5096 © Ibadan Biomedical Communications Group Available online at http://www.bioline.org.br/md

Full Length Research Article

BACTERIA ASSOCIATED WITH CULTURES OF *PSATHYRELLA ATROUMBONATA* (Pegler) AND *SCHIZOPHYLLUM COMMUNE* (Fr. Ex. Fr.)

GBOLAGADE, JONATHAN S^{*}

Department of Botany and Microbiology University of Ibadan. Ibadan. Nigeria.

Studies were carried out on bacteria, which usually infect spawns and culture plates of Psathyrella atroumbonata (Pegler) and Schizophyllum commune (Fr. Ex. Fr.), two Nigerian edible mushrooms. During the vegetative propagation of these higher fungi, six different bacteria species were isolated and characterized from 14 day old spawns and mycelial ramified PDA culture plates. These bacteria include Bacillus licheniformis, Bacillus subtilis, Leuconostoc mesenteroides, Pseudomonas aeruginosa, Bacillus cereus and Staphylococcus aureus. The average bacteria count was 1.0×10^6 cfu/ml and these bacteria grew within pH range of 5.0 and 9.0. the optimum temperature range of growth lied between 30^9 C and 37^9 C. The significance of these findings to the cultivation of P. atroumbonata and S. commune in Nigeria were discussed.

Key words: Physiological studies, bacteria, cultures, mushrooms, spawn

INTRODUCTION

In many countries of the world including Nigeria, edible mushrooms have been priced as delicacies for several years. Apart from their medicinal values, they constitute an important food source in a world that is threatened energy food by crisis. Mushrooms have been reported to be rich in protein, glycogen, vitamins, crude fibres and essential mineral compounds (Ogundana and Fagade, 1982; Fasidi, 1996; Jonathan, 2002; Stamets, 1993). Infact, Bano (1976) reported that nutrient contents of mushrooms lied between meat and vegetables.

Mushrooms such as Flammulina velutipes, Lentinus edodes, Agaricus bisporus, Pleurotus oestratus, Volvariella volvacea and Agaricus campestris among others, have been cultivated for food in several countries of the world especially in America, Europe and few Asian countries. Artificial cultivation of mushrooms is new to many developing countries and there is a death of information on fundamental processes governing their growth. Because of this reason, people in Nigeria depends mainly mushrooms that are obtained from the wild.

Spawns and composts used for mushroom growing are nutritionally and biologically active to support the growth of mushrooms and other unwanted microorganisms. Therefore, preparing mushroom composts, spawns and plates require skills and experience. This is because mushroom growing processes are always been intruded and spoilt by bacteria, fungi and nematodes leading to low yield and thereby causing economic loss for mushroom growers.

Presently, the identity of bacteria contaminants of mushroom spawns and culture plates in Nigeria has not been well documented. Therefore, the objective of this study was to isolate and characterize such bacteria and make suggestions on how they could be controlled.

MATERIAL AND METHODS

Sample Preparation

Rice straw spawns were prepared in 350ml jam bottles using the method of Fasidi and Ekuere (1993). The bottles after being filled with substrates were covered with aluminum foil and autoclaved at 1.02/kgcm⁻² pressure for 20 minutes. After cooling, the

^{*} jonathangbola@yahoo.com

bottles were inoculated with 5 – day old (actively growing) mycelial discs of *P. atroumbonata* and *S. commune* and incubated at $30 \pm 2^{\circ}$ C for 21 days. The bacteria infected spawns were assessed visually for colony formation and selected for microbial analyses.

For culture plates, healthy fruit bodies of *P. atroumbonata* and *S. commune* were tissue –cultured to obtain mycelia using the method described by Jonathan and Fasidi (2001). The pure mycelial cultures of these fungi were maintained on plates of PDA supplemented with 0.5% yeast extract. The plates were assessed visually for colony formation after 4 days to verify contamination of mushroom spawn from unwanted bacteria.

Isolation of Bacteria

Ten grammes (10.0g) each of infected spawns of *P. atroumbonata* and *S. commune* were separately soaked in 90.0cm³ of sterile de-ionised water in 250cm³ conical flasks. The mixture was shaken properly and 1.0cm³ of it was transferred into a sterile McCartney bottle containing 9.0cm³ of sterile de-ionised water. This process was repeated for other sterile McCartney bottles so that at the end, dilution of 10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} and 10^{-6} folds were obtained. Each dilution was then plated out by spread plate method on plate count agar (PCA) (Oxoid)and nutrient agar (NA) (Oxoid) (Okafor, 1977).

A standard plate count was carried out on colonies obtained on solid PCA using electronic Gallenkamp model colony counter and the unit expressed in cfu/ml. All the bacterial isolates were streaked separately onto nutrient agar and, Eosine methylene blue agar (EMB) plates to obtain pure cultures and determine their colonial morphology respectively. For agar plates that contained mycelia of P. atroumbonata and S. commune, the bacteria infected plates were also streaked onto a new petri dishes containing sterile NA and EMB. They were incubated at 35°C for 48 hours. The bacteria isolated from spawns were subjected to Gram's reaction, motility, catalase, oxidase, indole and other standard biochemical tests shown on Table 3 (Prescott et al, 1993. Bacterial identification and characterization were carried out by comparing the results obtained with the characterization definitions of Skinner and Lovelock (1979) and that of Bergey's'Manual of systematic determinative bacteriology (2001).

Effect of Temperature on Growth of Bacteria Isolates

Five milliliters of nutrient broth (NB0 (Oxoid) were dispensed into each of the 27 screw capped test tubes. They were autoclaved at 1.02kgcm⁻² pressure for 15 minutes. After cooling, the test tubes were inoculated with 0.1ml of different bacterial isolates and incubated at 10, 20, 25, 30, 35, 37, 40 and 45^oC respectively. Each treatment was replicated thrice. The control tubes were left without any inoculum. Growth was measured after 48 hours at 540nm using a Pye unicam spectrophotometer.

Effect of pH on Growth of Bacteria Isolates

Citrate-Phosphate buffer solutions of pH 5.0, 6.0, 7.0, 8.0 and 9.0 were prepared (Ekunsanmi and Arojojoye 1997). Double strength nutrient broth (20.0cm³) was added to equal quantity of each buffer solution in separate 150.0cm³ conical flask to give 40.0cm³ nutrient broth of normal strength. Three replicates of these were prepared for each pH and the bottles were autoclaved at 1.02kgcm⁻² pressure for 15 minutes.

After cooling, the flasks were singly inoculated with the bacterial isolates and incubated at 35°C for 24 hours. Growth was assessed by turbidity after 48 hours using a Pye unicam Spectrophotometer at 540nm wavelength. A graph of growth against time was then plotted for the different pH levels.

RESULTS AND DISCUSSION

Six different bacteria species were isolated from mushroom spawns and culture plates used in these studies. The isolates consisted one Gram-negative bacteria of (Pseudomonas aeruginosa Bl₃) and five Gram positive bacteria (Leuconostoc mesenteroides BI₁; Bacillus subtilis, BI₂; Staphylococcus aureus, Bl₄; Bacillus cereus, BI₅; and Bacillus licheniformis, BI₆). They were identified by a series of morphological, biochemical as well as physiological characteristics using the standard characterization procedure of Skinner and Lovelock (1979) and that of Bergey's Manual of systematic bacteriology (2001).

The frequency of occurrence of each bacteria isolate is represented on Table 1. *Bacillus subtilis* BI_2 was isolated in all the five samples. *Staphylococcus aureus* BI_4 was recorded four times while *B.licheniforms* BI_6 was isolated three times (Table 1). The frequency of occurrence of *B.subtilis* is not a surprise because Corlett and Brown (1980) implicated this organism as one of the major bacterial contaminants of laboratory cultures. This organism has also been linked with the spoilage of various foods such as bread, fish, milk, soymilk and mayonnaise (Akinrele, 1984).

Table 1:

Percentage of Occurrence of Microbial Isolates From Five Isolation

Bacterial Isolates	MU	N.R	% occ.
B ₁	PCA	2	40%
B ₂	PCA	5	100%
B ₃	PCA	2	40%
B ₄	PCA	4	80%
B ₅	PCA	1	20%
B ₆	PCA	3	60%

Legend: MU = Medium used, NR = Number of times an organism is recorded. % 0cc. = Percentage of occurrence PCA = Plate Count Agar.

Isolate BI₂ was characterised as *B.subtilis* because it was Gram positive bacillus with central spores. The organism reduced nitrate, hydrolysed starch, gelatin and casein (Table 3). Morphologically, it formed creamy, circular and translucent colonies with 1.2mm diameter and its consistency was friable (Table 1). This result agrees with the standard descriptions of Prescott et al (1993). А simplified classification based on morphology, endospore formation, Voges proskuer test, gelating hydrolysis, indole production and sugar fermentation tests were used to classify mesophillic spore formers as *B.cereus* (Isolate BI_5) and *B.lichinifomis* (BI_6)

respectively (Table 3). These properties agree with the standard characterization procedure of Bergey's Manual of determinative bacteriology (2001). Bacilli genera were also linked with the spoilage of a Nigerian local snack "(dodo ikire)" by Jonathan and Olowolafe (2001), and fermentation of oil been seeds by Kolawola and Okonkwo (1985).

Isolate BI_2 was characterized as L.mesenteroides (Table 2 and 3) because of its tiny colonies, dull dried surfaces, nonmotility, hydrolysis of casein and its reaction on catalase and oxidase was negative. This organisms has been implicated in the spoilage of castol oil and Pineaple (Barber et al 1987). Bacterial isolate Bl₄ was identified as S. aureus. The cells of this organism were Gram-positive cocci in clusters. It fermented mannitol strongly with gas production and the coagulase test was positive. This bacteria could have been introduced into the mushroom spawns after sterilization during inoculum. The inability of Bl₃ to ferment most sugars, ability to hydrolyse starch and its motility polar flagellation were among the characteristics used to classify it as *P. aeruginosa*. Similar observation was made by Jonathan and Olowolafe (2001) who reported that *P.aeruginosa* can oxidize most sugars but cannot ferment them. The complete absence of coliforms from the mushroom spawns and culture plates indicate the absence of feacal contamination (Brock et al, 1986).

Table 2: Colonial morphology of the isolates							
	Bl₁	Bl ₂	BI ₃	BI4	BI₅	BI ₆	
Medium	PCA	PCA	PCA	PCA	PCA	PCA	
Colour	Off white	Creamy	Off white	Light yellow	Creamy	Creamy	
Shape	Spherical	Circular	Spherical	Circular	Circular	Spherical	
Size	1.0mm	1.2mm	1.7mm	0.9mm	1.5mm	1.6mm	
Surface	Dull and dry	Dull and	Dull	Dull and	Dull	Dull and	
		rough		rough		dry	
Fdge	Entire	Rhizoid	Entire	Undulate	Rhizoid	Entire	
Opacity	Opaque	Translucent	Opaque	Opaque	Opaque	Opaque	
Degree of	Moderate	Profuse	Scantly	Profuse	Moderate	Moderate	
Growth							
Elevation	Flat	Low convex	Plateaux	Flat	Low	Flat	
Consistency	Friable	Friable	Friable	Friable	Friable	Friable	
Emusifiability	Easy	Easy	Easy	Easy	Easy	Easy	

 Table 2: Colonial morphology of the isolates

African Journal of Biomedical Research 2004 (Vol. 7) / Gbolagade J.S

	Bl	BI ₂	Bla	Bla	BI5	Ble
Cell shape	Spherical in pairs or clumps	Fat rod in singles or short chain	Small slender rods in pairs or short chain	Spherical and in clumps	Short rod in chins mostly	Small rods in pairs or clumps
Gram Reaction	+Ve	+Ve	-Ve	+Ve	+Ve	+Ve
Endo spore formation	-Ve	+Ve	-Ve	-Ve	+Ve	+Ve
Spore position	No spore	Central	No Spore	No Spore	Central	Central
Motility	-Ve	+Ve	+Ve	-Ve	+Ve	+Ve
Catalase	-Ve	+Ve	+Ve	+Ve	+Ve	+Ve
Oxidase	+Ve	-Ve	+Ve	-Ve	-Ve	+Ve
Indole reaction	-Ve	-Ve	-Ve	-Ve	+Ve	+Ve
Gelatin hydrolysis	-Ve	+Ve	-Ve	-Ve	+Ve	+Ve
Methyl red test	+Ve	+Ve	-Ve	-Ve	+Ve	-Ve
Vogos Proskauer text	+Ve	+Ve	-Ve	-Ve	+Ve	-Ve
Casein hydrolysis	+Ve	+Ve	+Ve	-Ve	+Ve	+Ve
Starch hydrolysis	-Ve	+Ve	+Ve	-Ve	+Ve	+Ve
Nitrate reduction	-Ve	+Ve	-Ve	+Ve	+Ve	+Ve
Coagulase test	-Ve	-Ve	-Ve	+Ve	-Ve	-Ve
Urease test	-Ve	-Ve	-Ve	-Ve	-Ve	-Ve
Glucose	А	А	-Ve	AG	А	AG
Fructose	-Ve	А	-Ve	A	A	AW
Galactose	А	-Ve	-Ve	А	А	-Ve
Sucrose	AW	А	-Ve	А	А	AG
Maltose	-Ve	А	-Ve	А	AW	А
Lactose	AG	AW	-Ve	A	A	-Ve
Raffinose	-Ve	А	-Ve	A	-Ve	A
Mannitol	-Ve	AW	AW	AG	A	A
Propable	Leuconostoc	Bacillus	Pseudomonas	Staphylococcus	Bacillus	Bacillus
Identity	Mesenteroides	Subtilis	Aeruginosa	Aureus	Cereus	Licheniformis

Table 3.	Microscopic	and	Biochemical	Characteristics	of	Isolated Bacteria
I able J.	1111010300010	anu	Diochemical	Characteristics	U	ISUIALEU DAULEITA

Legend: -Ve = Negative reaction, +Ve = positive reaction, AG= Acid with gas production, A= Acid production only, AW = Weak acid production.

Table 4: Effect of Temperature on Growth of Bacteria Isolates

OPTICAL DENSITY OF BACTERIA ISOLATES AT 540nm								
Temperature (⁰ C)	L. mesenteroides	B. subtilis	P. aeruginosa	S. aureus	B. cereus	B. licheniformis		
10	1.25e	0.75d	1.87c	0.61	1.1ef	1.85d		
20	1.47de	2.00bc	2.83b	2.00d	2.00d	2.25d		
25	2.00cd	2.79b	3.00b	2.65cd	2.50cd	3.58c		
30	2.50c	2.64b	3.08b	2.93c	3.00bc	4.25ab		
35	4.25a	4.30a	4.15a	4.00b	3.63ab	4.50a		
37	3.50b	3.85a	4.50a	4.92a	4.00a	3.75bc		
40	1.35e	1.75c	1.83c	2.10d	1.90de	1.23e		
45	1.00e	1.42cd	0.70d	1.00e	0.47f	0.85e		
LSD (0.05)	0.75	0.82	0.67	0.78	0.83	0.55		

Temperature had significant effect on growth of bacterial isolates (Table 4). *Leuconostoc mesenteroides, B. subtillis* and *B. licheniformis* had their optimum temperature of growth at 35^oC.This result agrees with the suggestion of Brock et al (1986) that these microorganisms are mesophiles. *Pseudomonas aeruginosa, S.aureus* and *B.cereus* grew best at $37^{\circ}C$ (Table 4). The ability of these bacteria, to grow optimally at $37^{\circ}C$ probably enables them to survive well inside human body.

The effect of pH on the growth of bacteria isolates was shown on figure 1. It was observed that all the bacterial isolates grew over a range of pH (5.0 - 9.0). This was in

accordance with suggestion of Corlett and Brown (1980) that microorganisms could grow over a wide range of pH. The pH that supported the optimum growth of isolates *B. licheniformis* (Bl₆) and *S.aureus* (Bl₄) was 8.0 while *L.mesenteroides* (Bl₁), *P.aeruginosa* (Bl₃), and *B.cereus* (Bl₅) grew best at 7.0. These results agree with the report of Griffin (1994) that pH and temperature are the two most important environmental factors that control the growth of microorganisms.

In Nigeria, the major obstacle of artificial mushroom production is contamination from unwanted microorganisms. This normally leads to discouragement and economic loss to mushroom growers. A mushroom farmer must be able to identify and eradicate these microbial contaminants which could affect mushroom yield. This could be achieved by proper sterilization and incorporation of appropriate antibacterial agents into the medium used for mycelial propagation of these mushrooms. An ideal sterility should also sbe maintained during the spawning processes.

REFERENCES

Akinrele, I.A (1984). Fermentation of Cassava. J. Food and Agric 15: 589-594.

Bano, Z. (1976). The Nutritive Value of Mushrooms. *Indian Mushroom Science 1:* 473-487.

Barber, R.S; Achinewu, C and Ibiama, E.A. (1987). The Microbiology of Ogiri production from castol oil seeds *Food Microbiol.* 5; 177-183.

Bergey's Manual of Determinative Systematic Bacteriology (2001). Buchanan R.E and Gibbon N.E eds (2^{nd}) . The William and Wilkins Co. Baltimore.

Brock, D.T., Thomas, K.Brock, M and David, M.W 1986). Basic microbiology with applications. Antibiotics as other chemotherapeutics agents (3rd Ed.). 114-115.

Corlett, D.A and Brown, M.H (1980). Effect of pH on Growth of microorganisms In; Microbial Ecology of Foods (Silliker J.K. Ed) Academic Press. London.

Ekunsanmi, T.J.and Arojojoye, A.M (1997). Isolation of Yeast from Palm Wine using media prepared from Banana and Plantain. J. Sci. Research 3:1:61-65.

Fasidi, I.O. (1996). Studies on Volvariella esculenta (Mass) Singer: Cultivation on Agricultural Wastes and Proximate composition of Stored Mushrooms. *Food Chem* 55(2) 161-163.

Fasidi, I.O. and Ekuere, U.U. (1993). Studies on *pleuotus tuber-regium* (fries) Singer: Cultivation, proximate composition and Mineral contents of Sclerotia. *Food Chem.* 48:255-258.

Griffin, D.H. (1994). Fungal physiology (2nd Ed.) New York; Wiley Liss.

Jonathan, S.G and Olowolafe, I.B (2001). Studies on Nutrient contents and Microorganisms Associated with 'Dodo ikire' a plantain snack from Western Nigeria. *NISEB Journal* (1)1:27-33.

Jonathan, S.G and Olowolafe, I.B (2001). Studies on the Requirements for Vegetative Growth of *Lepiota procera* (Fr) S.F. Gray, a Nigerian Edible Mushroom. *Bull. Sci. Ass.Niger.* 23:183-188.

Jonathan, S.G. (2002) Vegetative Growth Requirements and Antimicrobial Activities of Some Higher Fungi in Nigeria. Ph.D thesis University of Ibadan. Ibadan. Nigeria.

Kolawole, D.O and Okonkwo, B.A. (1985). Microbiology of Traditional Fermented Oil Bean Seeds for 'Uk-pala' a Nigerian condiment *NIFOJ* 3:1,2,3, 149-152.

Ogundana, S.K. and Fagade, O.E. (1982). Nutritive Value of Some Nigerian edible Mushrooms. *Foods Chem.* 8:263-268.

Okafor, N. (1977). Microorganisms associated with Cassava fermentation for gari production *J.Appl. Bac.* 42:279-248.

Prescot, L.M; Harley, J.P. and Klein, D.A. (1993). Microbiology (2nd Ed.) WMC BrownComm. U.S.A.

Skinner, F. A. and Lovelock D.W (1979). Identification Methods for Microbiologist (2nd. Ed.). The Soc. For Appl. Bacterial. Technical Series Academic Press London.

Stamets, P. (1993). Growing Gourment and Medicinal Fungi. Ten Speed Berkely. C.A.

Received: September, 2003

Accepted in final form: July 2004