Mini Review

Cryptosporidium Zoonosis in Nigeria

Ayinmode, A. B. and Fagbemi B. O
Department of Veterinary Microbiology and Parasitology,
Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria

ABSTRACT: Cryptosporidium is a coecidian parasite that infects a wide range of vertebrate hosts including man. The parasite is now of potential significance from both clinical and public health perspectives in that it causes severe diarrhoea in immunocompromised individuals and can be transmitted from livestock to man. This paper critically examines all the published evidence of cryptosporidiosis infection in man and animal in Nigeria, in order to ascertain the presence of the zoonosis cycle of the disease. There were ten publications on the prevalence of cryptosporidiosis in human patients between 1987 and 2008 in Nigeria, while there yet to be a single evidence of the presence of the disease in animals. All the studies neither identified nor characterized the species of cryptosporidium in their findings and none of the published data examined the possibility of animals being the source of the infection to humans. The limitation of the published studies and the implication of the findings are discussed in this review.

Key Words: Cryptosporidiosis; Zoonosis; Genotype; Prevalence

INTRODUCTION

Cryptosporidium species are intracellular protozoan parasites that infect a wide range of vertebrates, causing potentially fatal diarrhea in immuno-compromised individuals especially in AIDS patient. It is self-limiting but often causes prolonged diarrheal disease in the immuno-competent patients (man and animal). (Crawford et al., 1988; Current, 1986a; Current et al., 1983; Fayer et al., 1986).

The link between human and animal cryptosporidium infections has been a question that has dominated much of the research effort and there is considerable epidemiological data demonstrating strong links between contact with infected livestock and human infections (Fayer et al., 1986).

However, most published reports are of limited value in determining the zoonotic potential of the infection; since they only relied on prevalence data that were conducted using morphological criteria to identify oocysts and generally presented results for Cryptosporidium spp without specifying the genotypes involved.

Recent molecular epidemiologic studies conducted using genotyping tools have helped in understanding the transmission and public health significance of the disease. Two most commonly detected genotypes in human clinical specimens are the human (or type I; now recognised as a distinct species, C. hominis) and cattle (or type II; C. parvum) genotypes (McLauchlin et al., 2000). The human genotype (C. hominis) is restricted to humans (and possibly primates) (Mallon et al., 2003; Morgan-Ryan et al., 2002), while the cattle genotype is infective to most mammals (Alves et al., 2001; Graczyk, 2001; McLauchlin et al., 2000; Siefker et al., 2002); and there are data suggesting that Cryptosporidium zoonotic transmission of the bovine genotype of C. parvum occurs, both as a waterborne zoonosis and by direct contact with farm animals (Mallon et al., 2003; McLauchlin et al., 2000). Lack of host specificity of Cryptosporidium makes the potential for zoonotic infection a genuine problem (Fayer et al., 1986).

The methods for detecting of Cryptosporidium spp in feces usually involve microscopic examination of stained fecal smears (modified Ziehl-Neelsen, safranin methylene blue, auramine-phenol), antigen detection...
Crypotosporidium zoonosis in Nigeria

The search revealed that between 1987 and 2008 only ten articles have been published on crypotosporidiosis in Nigeria. All the papers dealt with Cryptosporidium infection in humans, while to the best of our knowledge none addressed the prevalence of the disease among animals and there is also no evidence of the possibility of transmission between man and animals. No study either identified or characterized the species of crypotosporidium they were dealing with in their findings.

The disease was reported in only 7 out of the 36 (16.7%) states of the Federation (Table 1). Three of these studies were community based (Banwat et al., 2003; Ikeh et al., 2007; Okafor et al., 1996) and the others where conducted in the hospital. Three studies focused on children (Banwat et al., 2003; Nwabuisi, 2001; Okafor et al., 1996), while only two investigated the prevalence of the disease in patients with AIDS (Adesiji et al., 2007, Nwokediuko et al., 2002). The prevalence of infection were observed to be higher in Plateau (29%) Ikeh et al., 2007), Enugu (25.7%) (Okafor et al., 1996), Kaduna (21%) (Kwaga et al., 1988), and Kwaara (15.1%) (Nwabuisi, 2001) than in the other states of Nigeria.

Table 1
Summary of reports (1987 - 2008) of Cryptosporidium sp oocysts in stool specimens from different geographic study populations in Nigeria

<table>
<thead>
<tr>
<th>State</th>
<th>Species</th>
<th>No. Patients</th>
<th>% positive</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ogun</td>
<td>Humans</td>
<td>479</td>
<td>5.3</td>
<td>(Reinthaler et al., 1987)</td>
</tr>
<tr>
<td>Kaduna</td>
<td>Humans</td>
<td>75</td>
<td>21</td>
<td>(Kwaga et al., 1988)</td>
</tr>
<tr>
<td>Lagos</td>
<td>Humans</td>
<td>890</td>
<td>0</td>
<td>(Oyerinde et al., 1989)</td>
</tr>
<tr>
<td>Enugu</td>
<td>Humans</td>
<td>413</td>
<td>2.5</td>
<td>(Okafor et al., 1994)</td>
</tr>
<tr>
<td>Enugu</td>
<td>Humans</td>
<td>373</td>
<td>25.7</td>
<td>(Okafor et al., 1996)</td>
</tr>
<tr>
<td>Kwaara</td>
<td>Humans</td>
<td>198</td>
<td>15.1</td>
<td>(Nwabuisi, 2001)</td>
</tr>
<tr>
<td>Enugu</td>
<td>Humans</td>
<td>189</td>
<td>0</td>
<td>(Nwokediuko et al., 2002)</td>
</tr>
<tr>
<td>Plateau</td>
<td>Humans</td>
<td>340</td>
<td>4.8</td>
<td>(Banwat et al., 2003)</td>
</tr>
<tr>
<td>Plateau</td>
<td>Humans</td>
<td>204</td>
<td>25</td>
<td>(Ikeh et al., 2007)</td>
</tr>
<tr>
<td>Osun</td>
<td>Humans</td>
<td>150</td>
<td>52.7</td>
<td>(Adesiji et al., 2007)</td>
</tr>
</tbody>
</table>

The prevalence of infection was mostly observed to be higher in children that were either diarrhoeic and/or malnourished (Banwat et al., 2003; Nwabuisi, 2001; Okafor et al., 1996), except in one study where it was observed to be higher in adult (Okafor et al., 1994).
However, a study (Oyerinde et al., 1989) with the highest sample population (890 patients) collected over a period of one year recorded no positivity. One of the two studies conducted on HIV positive patients recorded no positive case of cryptosporidiosis (Nwokediuko et al., 2002), While the other on the contrary reported high prevalence of the disease in HIV positive patients (52.7% of the 100 HIV positive samples) (Adesiji et al. 2007).

Detection methods and species identified
All the investigations were conducted using basic staining techniques such as, Modified cold Ziehl-Neelsen, Formalin-methylene blue (FMB) and Safranin-methylene blue (SMB). The stained slides were observed under the light microscope for the detection of Cryptosporidium oocysts.

There is no evidence of identification and characterization of species in all the studies published on cryptosporidiosis in Nigeria. All the reports relied on morphological criteria using microscopic methods to generate prevalence data.

Overview of the situation in Nigeria
From the foregoing, it is clear that available information on human and especially animal Cryptosporidiosis in Nigeria is scanty. The reason for this is not known. But one could speculate that some of the reports may be unpublished, while some may have been published in journals that are not well disseminated. However, it is very obvious that cryptosporidiosis in Nigeria is under-investigated and has not yet received the necessary attention from human and veterinary parasitologists in Nigeria.

Six out the eight available studies on humans in Nigeria showed that the disease is present (Banwat et al., 2003; Kwaga et al., 1988; Nwabuisi, 2001; Okafor et al., 1994; Okafor et al., 1996; Reinthaler et al., 1987) and is of considerable significance in diarrhoeic patients (Kwaga et al., 1988; Nwabuisi, 2001; Okafor J.I., 1996), while two studies reported that the disease did not occur in normal diarrhoeic human patients (Nwokediuko et al., 2002) and those with HIV (Oyerinde et al., 1989). The discrepancy in the reports may be due to differences in their methods of detection. Although there is no available report in Nigeria on the disease in animal, it has been suggested that the prevalence of the disease is lower in animals than in humans (Mahdi et al., 2002).

It is rather shocking to know that there is no published work in cryptosporidiosis in animals in spite the fact that the infection has adverse influence on animal growth, feed conversion efficiency, and milk production (Esteban et al., 1995; Thompson et al., 2005). The infection in cattle has also been suggested to be the major infection source to humans through direct contact with contaminated faeces or water and pasture run-off. (LeChevallier et al., 1991).

A major problem observed in the reviewed reports is the inability of the methodology employed to identify the circulating species of Cryptosporidium in Nigeria, since it is impossible to assign Cryptosporidia to species on the basis of microscopic morphology alone. This also implies that the investigations cannot detect the existence of a zoonotic cycle in the dynamics of the disease. Furthermore, considerable experience with the concentration and staining techniques and magnification of about x 100 oil magnification are often required to obtain an accurate diagnosis, or else yeast cells and debrils or other cyst forming protozoans (like Cyclospora sp) could be mistaken for Cryptosporidium cyst when using the basic staining techniques (Current et al., 1991).

While the published data on cryptosporidiosis in Nigeria remains helpful indicators that the infection may be present in Nigeria, more so that most of the risk factors for the disease are also present, the circulating species of Cryptosporidium and possible zoonosis remains a speculation; pending the time when procedures that will identify cryptosporidium specific polyclonal or monoclonal antibodies (e.g. Enzyme linked immunosorbent assay, fluorescence microscopy, direct immunofluorescence assay), and Molecular based techniques are used.

In conclusion, as the perception of Cryptosporidium changed from that of a rare opportunistic pathogen to that of an important worldwide cause of diarrheal illness in humans and domesticated animals, the disease merits further investigation in Nigeria. For this reason, collaborative works with researchers in the developed nations are encouraged. Also worth mentioning is the need to establish viable research networking between the human and veterinary, clinicians, epidemiologists, molecular biologists, and parasitologists in order to have an integrated approach that will undoubtedly lead to a better understanding of zoonotic cryptosporidiosis in Nigeria.

REFERENCES
Cryptosporidium zoonosis in Nigeria

