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ABSTRACT 
Potential benefits of dietary supplementation as quenching agent against oxidative stress-related conditions has been extensively 

investigated. Red palm oil (RPO), from the tropical plant Elaeis guineensis has captivated much interest in the health sector 

lately; hence the aim to assess the potential effects of RPO supplementation on the antioxidant status and protection against 

oxidative damage in experimentally-induced oxidative stress male Wistar rats.  Male Wistar rats were randomly divided into four 

groups (n=5). Rats were fed 0.175g RPO (7g RPO/kg chow) supplementation for 6 weeks. Oxidative stress was induced by 

intraperitoneal injections of 0.5mL (20µM/100g of body weight) organic tert-butylhydroperoxide (t-BHP). All parameters were 

determined in plasma and erythrocytes by using appropriate methods. Data were expressed as mean ± SEM. Exposure to t-BHP 

caused a significant increase in malondialdehydes (MDA) levels in plasma of non-supplemented rats. MDA was significantly 

reduced by RPO-supplementation. This proved that RPO-supplementation reduced the increase in MDA level induced by t-BHP 

injection, thereby protecting cellular integrity against induced oxidative stress. Superoxide dismutase (SOD) activity increased 

significantly (p<0.05) in group supplemented with RPO not induced with oxidative stress. This suggests that RPO 

supplementation could also improve antioxidant status in a biological system. RPO supplementation offers a protective effect 

against lipid peroxidation in an oxidative stress-induced biological system and that RPO supplementation had potential benefits 

in improving antioxidant status. 
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INTRODUCTION 

 

Oxidative stress is a metabolic state that occurs when there is a 

dysfunction in the overall balance between the production of 

reactive oxygen and nitrogen species (ROS/RNS) and the 

oxidative status shifts in favour of ROS/RNS production 

(Ceconi et al., 2003; Berk, 2007; Barbosa et al., 2008). 

Oxidative stress and ROS-mediated damage has been 

implicated in a variety of health disorders such as cancers, and 

other chronic diseases such as diabetes, cardiovascular diseases 

and infectious diseases (Salgo et al., 1995; Li et al., 2002; Park 

et al., 2002; Heistad et al., 2009). Lipid peroxidation is a 

reference marker of oxidative stress and a continuous process 

in living aerobic cells (Park et al., 2002). It is a breakdown 

chain of chemical reactions generated from the attacks of free 

radicals on polyunsaturated fatty acids (PUFAs) within the cell 

membrane (Fabbi et al., 2004). Peroxidation of unsaturated 

fatty acids leads to membrane disruption and release of highly 

reactive free radicals that alter the cellular function and 

contribute to tissue damage. Such breakdown leads to the 

generation of toxic secondary radicals, namely hydroperoxides, 

reactive aldehydes (malondialdehydes MDA, 4- 

hydroxynonenal 4-HNE) and other carbonyl compounds 

(alkoxyl radical RO•, peroxyl radical ROO•) (Ceconi et al., 

2003; Park et al., 2002).  

 Previous studies have reported on the positive correlation 

between an increase in MDA levels and the occurrence of 

diverse types of oxidative stress-related conditions. 
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Experimental, clinical and epidemiological data suggest that 

dietary antioxidants can offer protection against oxidative 

stress-related health disorders and pro-oxidant mediated 

damages in vivo (Marnewick et al., 2000; Pantsi et al., 2011; 

Aboua et al., 2012; Awoniyi et al., 2012). Red palm oil, a 

dietary vegetable oil obtained from the tropical oil palm plant  

Elaeis guineensis contains fatty acids (saturated and 

unsaturated fatty acid ratio close to one) and is rich in 

phytonutrients such as α-, β-, γ-, and δ- carotene, lycopenes, α-

, β-, γ- and δ- tocotrienols and tocopherols, and ubiquinone 

(Akusu et al., 2000; Mathan et al., 2009). Red palm oil has been 

reported to have protective effects against the consequences of 

ischemic-reperfusion injury (Narang et al., 2004; Esterhuyse et 

al., 2005; Esterhuyse et al., 2006; Bester et al., 2006). The 

present study, for the first time, investigated the effects of 

dietary RPO supplementation in oxidative stress-induced state 

in an in vivo experimental animal model. Oxygen radical 

absorbance capacity and ferric reducing ability of plasma were 

measured as well as superoxide dismutase, glutathione 

peroxidase activities, total glutathione levels, lipid peroxidation 

status and MDA. 

 

MATERIALS AND METHODS 

 

Animal Care  

All animals received humane care according to the Principle of 

the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals of the National Academy of Sciences 

(National Institutes of Health publication no.80-23, revised 

1978). Ethical approval was obtained from the Research Ethics 

Committee (REC), Faculty of Health and Wellness Sciences, 

Cape Peninsula University of Technology, Bellville, South 

Africa (NHREC: REC-230408-014). Adult male Wistar rats 

(120-150g) were obtained from the Department of Physiology, 

University of Stellenbosch, South Africa. In all experiment, 

animals were daily fed a standard rat chow (SRC) and/or 

supplementation with RPO (7g RPO/kg chow) and had free 

access to water. Animals were housed individually at 25˚± 3˚C, 

with 12h light/dark cycle and 50% ± 5% humidity.  

 

Experimental Design 

Rats were randomly divided into four groups (n=5 per group) 

and treated for six weeks as follows: Group I (Control):  fed 

25g of standard rat chow (SRC) daily; received no induction of 

oxidative stress. Group II (Control t-BHP): fed 25g of SRC 

daily; received induction of oxidative stress. Group III (6wks 

RPO): fed 25g of SRC and supplemented with 0.175g of RPO 

(7g RPO/kg chow) daily for 6 weeks; received no induction of 

oxidative stress. Group IV (6wks RPO + t-BHP): fed 25g of 

SRC and supplemented with 0.175g of RPO (7g RPO/kg chow) 

daily for six weeks; received induction of oxidative stress 

(Engelbrecht et al., 2006; Kruger et al., 2007). 

 

Groups: 

I: CTRL Normal:  Control group I fed with SRC; 

II: CTRL t-BHP:  Control group II fed with SRC and injected 

with t-BHP 

III: 6WK RPO:  Group III supplemented with RPO for 6 weeks; 

IV: 6WK RPO + t-BHP:   Group IV supplemented with RPO 

for 6 weeks and injected with t-BHP.  

Induction of Oxidative Stress 

The animals in the experimental groups were subjected to 

oxidative stress induction. For oxidative stress induction, the 

animals received a chronic intra-peritoneal injection of 0.5ml 

(20µM/100g body weight) of organic tertiary-butyl 

hydroperoxide solution (t-BHP, 70% in water, Digma, South 

Africa (Aboua et al., 2009)). Animals in the control groups 

received a chronic intra-peritoneal injection of 0.05 ml placebo 

solution made of sterile phosphate buffer saline (10 mmol/L 

PBS) with 10-fold dilution. Injections of t-BHP or PBS were 

repeated every second day for the last two weeks of the 

experiment. Injections were performed using sterile 1ml 

disposable syringe and 26 G sterile hypodermic needles.  

 

Chemicals  

2,2′-azobis (2-methylpropionamidine) dihydrochloride 

(AAPH), 6-hydroxydopamine (6-HD), 

diethylenetriaminepentaacetic acid (DETAPAC), 5,5’-Dithio-

bis-(2-nitrobenzoic acid) reagent (DTNB), fluorescein sodium 

salt, glacial metaphosphoric acid (MPA), glutathione reduced 

(GSH), glutathione reductase (GR), L-ascorbic acid, 6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid 

(trolox), iron chloride hexahydrate and 2,4,6-tri[2-pyridyl]-s-

triazine (TPTZ), malondialdehyde (MDA) standard, 

orthophosphoric acid (O-PA), perchloric acid (PCA), 

potassium phosphate (KH2PO4), reduced β-nicotinamide 

adenine dinucleotide phosphate (NADPH), sodium azide, 

sodium hydroxide (NaOH), sulphuric acid, superoxide 

dismutase standard, tert-Butylhydroperoxide (t-BHP), 

thiobarbituric acid (TBA) and trisodium citrate was purchased 

from Sigma-Aldrich (Johannesburg, SA). All solvents used 

were of analytical reagent grade. Acetic acid, chloroform, 

glacial acetic acid, hydrochloric acid (HCl), isopropanol, 

methanol, perchloric acid (PCA) 70%, sodium acetate and 

trifluoroacetic acid (TFA) were purchased from Merck 

(Johannesburg, SA). Ultrapure MilliQ water (Millipore) was 

used throughout the study. Atlas Animal Foods (Cape Town, 

SA) supplied the standard rat chow (SRC). Red palm oil was 

donated by Carotino SDN BDH (Malaysia). 

 

Preparation of Plasma and Erythrocytes Lysate 

At the end of each experiment, rats were anaesthetized using 

1mL (± 60mg/kg) of sodium pentabarbitone. Once 

anaesthetized, blood samples were collected from the rat. 

Plasma samples were obtained after centrifugation at 4000rpm 

at 4°C for 10min. To obtain erythrocytes lysate, the buffy coat 

was removed and the packed erythrocytes were washed three 

times with an equal volume of phosphate buffer saline (PBS, 

1:10). Each centrifugation run was set at 4000rpm at 4°C for 

5min. Samples were aliquoted within 6 hours of collection and 

stored at -80°C until further analysis. 

 

Oxygen Radical Absorbance Capacity (ORAC) Assay  

The oxygen radical absorbance capacity (ORAC) assay is used 

to measure the antioxidant scavenging activity of a substance 

(lipophilic, hydrophilic) by monitoring the fluorescence decay 

of the fluorescein probe. The assay used in the present study 

was determined according to a modified method (Rautenbach 

et al., 2010). All reagents and standards were prepared in 

phosphate buffer (75mmol/L, pH 7.4).  Standard solutions were 
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prepared within a range of 0-417μmol/L Trolox. In brief, 12µL 

of each sample was mixed with 138µL fluorescein (14µmol/L 

per well) in a black 96-well plate. The mixture was incubated 

for 20min at 37ºC and 50μl AAPH (4.8µmol/L) was added onto 

the plate before readings. The side wells (columns 1, 2, and 12) 

of the plate were not used and the cycle time was reduced to a 

minute to improve the accuracy of the results. Each sample was 

run in triplicate. Fluorescence readings (excitation 485nm and 

emission 538nm) were carried out in a Fluoroskan Ascent plate 

reader (Thermo Fisher Scientific, Waltham, Mass., U.S.A.). 

Data were expressed as micromoles of Trolox equivalents (TE) 

per millilitres of plasma (µmolTE/mL).  

 

Ferric Reducing Ability of Plasma (FRAP) Assay  

The ferric reducing ability of plasma or ferric ion reducing 

antioxidant power (FRAP) assay was determined according to 

modified methods (Benzie & Strain, 1996; Phipps et al., 2007). 

The FRAP reagent was prepared by mixing 30mL acetate 

buffer (300mmol/L, pH 3.6), 3mL TPTZ (10mM in 40mmol/L 

HCl), 3mL FeCl3 (20mmol/L), and 6.6mL distilled water 

(dH2O). Standard solutions were prepared in a range of 0-

1000µmol/L L-(+) ascorbic acid. Each sample was run in 

triplicate. In brief, 10µL samples/standards were mixed with 

300µL FRAP reagent in a 96-well plate and incubated for 

30min at 37ºC before reading. Absorbance was read at 593nm 

in a Multiskan Spektrum plate reader (Thermo Fisher 

Scientific, Waltham, Mass., USA). Results were expressed as 

micromoles of ascorbic acid per litre (μmol/L). 

 

Determination of Total Glutathione (GSHt) Level 

Glutathione concentration was determined according to the 

method of Boyne and Ellman (1972). Erythrocytes lysates 

(1:20) were precipitated with metaphosphoric acid (0.167g of 

glacial MPA, 0.02g EDTA and 3g NaCl dissolved in 100mL 

milliQ water) and vortexed for a minute. After centrifugation at 

12000g for 10min, lysate was diluted in 0.4mol/L sodium 

phosphate buffer (1:5).  Freshly prepared DTNB reagent (40mg 

DTNB in 100mL of aqueous 1% trisodium citrate) was added 

last. The total content of glutathione was quantified by the use 

of spectrophotometer which monitored the reduction of DTNB 

at 412nm within 2min. Each sample was run in triplicate and 

GSHt concentration was expressed as mmol/mL. 

 

Determination of Superoxide Dismutase (SOD) Activity 

Superoxide dismutase (SOD) activity was determined using a 

modified method [26]. In a 96-well plate, 170µL DETAPAC 

solution (0.1mmol/L) was added to erythrocytes lysate and 

24µL phosphate buffer was added to each well. Each sample 

was run in duplicate. Fifteen microliters of stock 6-HD was 

finally added last to the previous mixture and read immediately 

at 490nm for 4min at 1min intervals. The activity of SOD was 

calculated from a linear calibration curve, in the range of 2-

20U/mg. Samples were run in duplicate. SOD concentration 

was expressed as U/mL. 

 

Determination of Glutathione Peroxidase (GPx) Activity 

The activity of glutathione peroxidase (GPx) is derived from 

the oxidation of reduced -Nicotinamide adenine dinucleotide 

phosphate (NADPH) in a conjugated glutathione reductase 

(GR) system using t-BHP (12mmol/L) as a substrate.  The 

method used is a modified method (Ellerby & Bredesen, 2000). 

In a 96-well UV plate, 210µL phosphate buffer (50mmol/L, 

1mmol/L EDTA, pH 7.0), 2.5µL GSH (30.7mg/mL in water), 

2.5µL GR (0.1U/mL in AB), 2.5µL sample were read before 

adding 2.5µL NADPH. Two readings were recorded. The first 

reading recorded the t-BHP non-dependent NADPH oxidation 

at 340nm for 3min in 30sec intervals for samples and blank. 

The second reading was performed after adding 25µL of t-

BHP. This reading monitored the decrease of t-BHP due to 

NADPH. 

 

High Performance Liquid Chromatography (HPLC) 

Analysis of Plasma MDA Level 

Plasma MDA was determined through a modern HPLC based 

thiobarbituric acid (TBA) method. This method is highly 

specific because it quantifies the genuine MDA-(TBA)2 adduct 

formed (Lykkesfeldt, 2001). The quantitative analysis of the 

plasma content of MDA was performed using a modified 

method (Cunny et al., 2004) on Spectra system HPLC (Thermo 

Fischer Scientific, South Africa). The HPLC system consisted 

of Spectra system P2000 pump, equipped with HPLC column 

C18, 150 x 4.6mm, 5μm particle size (Agilent Zorbax, South 

Africa) and a Spectra system FL3000 fluorescence detector. 

The chromatographic conditions were: 1mL/min flow rate, 

15min run time, 20μL sample injection volume.  The mobile 

phases A and B were respectively made up of 50mM KH2PO4 

and absolute methanol adjusted to pH 5.8. A gradient program 

was used as follows: from 60% A in 2min, from 60 to 30% A 

in 8min, then back to 60% B at 12min; from 40% B in 2min, 

from 40 to 70% B in 8min, then back to 40%B at 12min and 

3min of reconditioning before the next injection. The column 

and detector array temperature was maintained at room 

temperature 25° ± 1°C. The analytical signals were monitored 

at 2-20mV potentials applied. Standard solutions were prepared 

in a range of 0.5 -10µmol/L MDA standards (in 0.1% sulphuric 

acid). High performance liquid chromatography mixture was 

made of 100µL of standards or plasma, 250µL TBA 

(40mmol/L in 0.1N NaOH) and 750µL O-PA (0.2mol/L), put 

in water-bath at 90ºC for an hour, cooled on ice  and centrifuged 

14000g for a minute. The supernatant was injected into HPLC. 

 

Statistical Analysis 

Data are expressed as mean ± standard error of the mean 

(SEM). One-way analysis of variance (ANOVA) was used to 

test for significance between the groups. Bonferroni Multiple 

Comparison analysis was used to compare the differences 

between the groups. Statistical analysis of control and RPO 

groups at baseline level reading was performed by unpaired 

Student’s t-test. Differences were considered significant at 

P<0.05. GraphPad TM PRISM5 software package was used for 

all statistical evaluations and graphical representations. 

 

RESULTS 

 

Effects of Dietary RPO Supplementation on FRAP and 

ORAC Levels 
Figures 1 and 2 showed the results of 6 weeks of RPO 

supplementation on FRAP and ORAC levels in the designated 

groups I, II, III and IV. They were no significant differences 

observed in plasma FRAP and ORAC levels among all groups. 
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Effects of Dietary RPO Supplementation on Antioxidant 

Enzyme activities 

The effects of dietary RPO supplementation on SOD and GPx 

after the two-week injection period of t-BHP and placebo are 

presented in Figures 3 and 4. After 6 weeks of RPO 

consumption, a significant increase (p<0.05) in erythrocytes 

SOD activity was observed in group III (6WK RPO) when 

compared to its control group I (CTRL Normal) (Figure 3). 

However, no significant difference (p>0.05) was observed for 

GPx after 6 weeks of dietary supplementation with RPO among 

all the groups (Figures 4). 

 

Effects of Dietary RPO Supplementation on Antioxidant 

Enzyme Activities 

The effects of dietary RPO supplementation on SOD and GPx 

after the two-week injection period of t-BHP and placebo are 

presented in Figures 3 and 4. After 6 weeks of RPO 

consumption, a significant increase (p<0.05) in erythrocytes 

SOD activity was observed in group III (6WK RPO) when 

compared to its control group I (CTRL Normal) (Figure 3). 

However, no significant difference (p>0.05) was observed for 

GPx after 6 weeks of dietary supplementation with RPO among 

all the groups (Figures 4). 

 

Effects of Dietary RPO Supplementation on Antioxidant 

Glutathione Level 

The effects of dietary RPO supplementation on erythrocytes 

total glutathione level after the two-week injection period of t-

BHP and placebo are presented in Figures 5. After 6 weeks of 

RPO consumption, no significant difference (p>0.05) observed 

in group III (6WK RPO) and groupIV (6WK RPO + t-BHP) 

when compared to the respective controls of group I (CTRL 

Normal) and II (CTRL t-BHP) (Figure 5). 

 

Effects of Dietary RPO Supplementation on Lipid 

Peroxidation Biomarker MDA Level  

The effect of dietary RPO supplementation on lipid 

peroxidation biomarker MDA after the two-week injection 

period of t-BHP and placebo are presented in Figure 6. 

Following 6 weeks of dietary RPO supplementation, MDA 

level in the oxidative stress control group II (CTRL t-BHP) was 

significantly higher (p<0.05) than the normal control group I 

(CTRL Normal). This increase in oxidative status proved that 

the model used to induce oxidative stress was effective. No 

differences (p>0.05) observed between the groups I (CTRL 

Normal) and IV (6wk RPO) for MDA levels. However, a 

significant decrease (p<0.05) in MDA level was noticed in 

group IV (4WK RPO + t-BHP) subjected to oxidative stress 

when compared to its corresponding control group II (CTRL t-

BHP). Moreover, in the oxidative stress RPO supplemented 

group, MDA levels significantly reduced to values close to 

normal control. The current result proved that RPO 

supplementation reduced the increase in MDA level induced by 

t-BHP injection.  

 

 
Figure 1:  

Effects of dietary RPO-supplementation on plasma FRAP values. 

Abbreviations: FRAP: ferric ion reducing antioxidant power, 

µmol/mL: micromole per millilitre.  

 

 

 
Figure 2:  

Effects of dietary RPO-supplementation on plasma ORAC values. 

Abbreviations: ORAC: oxygen radical absorbance capacity, µmol 

TE/mL: micromole per millilitre Trolox equivalent. 

 

 
Figure 3:  

Effects of dietary RPO-supplementation on erythrocytes SOD activity 

after 6 weeks consumption 
Abbreviations: SOD: superoxide dismutase, U/ml: unit/millilitre. 

(a) Indicates significant difference when compared with control group 

I at p<0.05.  

 



Red palm oil reduces oxidative stress  

 
141     Afr. J. Biomed. Res. Vol. 20, No.1 (May) 2017   Alinde et al 

 
Figure 4:  

Effects of dietary RPO-supplementation on erythrocytes GPx after 6 

weeks consumption.Abbreviations: GPx: glutathione peroxidase, 

nmol/min/µl: nanomole per minute per microliter. 

 

 
 
Figure 5:  

Effects of dietary RPO-supplementation on erythrocytes total 

glutathione level after 6 weeks consumption. Abbreviations: GSHt: 

total glutathione, mmol/mL: millimole per millilitre.  

 

 
Figure 6: 

 Effects of dietary RPO-supplementation on plasma MDA levels 

after 6 weeks consumption. Abbreviations: MDA: 

Malondialdehydes, µmol/L: micromole per litre. (a) Indicates 

significant difference when compared with control group I at 

p<0.05. (b) Indicates significant difference when compared with 

control group II at p<0.05.  

 

DISCUSSION 

 

Tert-butylhydroperoxide (t-BHP) is a prototypic initiator of 

oxidative stress (Garcia-Cohen et al., 2000; Kumar, 2007; 

Aboua et al., 2011). There are two pathways in which t-BHP 

can be metabolised. The first pathway leads to oxidative stress 

which involves a metabolism that leads to the formation of 

toxic peroxyl and alkoxyl radicals that initiate lipid 

peroxidation which negatively impart cellular integrity 

(Hogberg et al., 1975; Hwang et al., 2002). The second 

pathway does not lead to oxidative stress. It involves a cellular 

mechanism of detoxification against hydroperoxide-induced 

oxidative damage. During the detoxification reaction, t-BHP 

can be reduced to t-butyl alcohol which oxidised glutathione 

(GSSG) by GPx and ultimately produce GSH (Dringen et al., 

1998; Kussmaul et al., 1999). 

 In the present investigation, where oxidative stress was 

induced with t-BHP, there was improvement in the lipid 

peroxidation status after RPO supplementation. This may be 

attributed to the antioxidant properties of RPO by means of 

scavenging the effects of hydroperoxide resulting from 

induced-oxidative stress. The finding agree with a recent study 

by Aboua and co-workers (Aboua et al., 2012), who reported 

that RPO reduced lipid peroxides accumulation in vivo and 

protected the epididymal sperm against the adverse effects of 

organic hydroperoxide. Red palm oil used in the present study 

is principally rich in fat-soluble antioxidants such as carotenes, 

tocopherols and tocotrienols which may help in the prevention 

of oxidative damage to cell membranes. Carotenes and vitamin 

E tocotrienols and tocopherols are considered among the most 

effective antioxidants (Van Stuijvenberg & Benade, 2000; 

Schroeder et al., 2006; Varoglu et al., 2010). It could therefore 

be argued that the carotenoids and vitamin E tocopherols and 

tocotrienols in RPO could have played an important role in 

protecting cellular membranes in vivo. Previously, it was 

reported that lipid peroxidation was inhibited through free 

radical scavenging activity resulting from the synergism 

between palm oil antioxidants especially α-tocopherol, α- and 

γ-tocotrienols and β-carotene (Schroeder et al., 2006). Red 

palm oil in contrast to other oil seem to possess a unique blend 

of vitamin E components. For example, Sundram and co-

workers (2003) reported that RPO is not only rich in 

tocopherols but also unique because of its tocotrienols content. 

Although, the in vivo effect of RPO supplementation on the 

MDA status of oxidative stress-induced rat model had been 

scarcely investigated, administration of RPO fractions has been 

reported to show potential benefits (Budin et al., 2009; Narang 

et al., 2004; Mayne, 2003). For example, Budin and co-workers 

(2009) reported that tocotrienol rich fractions in diabetes-

induced rat model significantly decreased plasma MDA and 

other oxidative stress markers.  

 There are reports of other studies which have used plant-

rich antioxidant treatment and supplementation to counteract 

oxidative stress in animal models. For instance, Khakpour and 

co-workers reported significant decrease in MDA levels in 

mice treated with Citrus aurantium (Khakpour et al., 2012). In 

a study in ischemic stroke patients, Ginkgo biloba extract 

significantly reduced serum MDA levels (Thanoon et al., 

2012). The bioactive extract of Ginkgo biloba is made of water-
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soluble antioxidants (Thanoon et al., 2012). In our study, RPO 

consists of fat-soluble antioxidants. Our findings suggest that 

water-soluble and fat-soluble antioxidants may have similar 

effects on MDA levels. This argument is further supported by 

the fact that antioxidant supplementation in various other 

studies reduced the accumulation of MDA [Marnewick et al., 

2000; Wilso et al., 2005; Shen et al., 2012). 

 The effect of RPO supplementation on TAC in the present 

study did not significantly affect the TAC, irrespective of 

oxidative stress induction. This could possibly due to the fact 

that majority of RPO antioxidants are located in the lipophilic 

compartment of rat plasma. There is still an on-going debate 

with regards to the assessment of total antioxidants in 

biological samples. For instance, Prior and co-workers (2005) 

are in support of the fact that the methodology of assessing the 

total antioxidant capacity should include both hydrophilic and 

lipophilic compartments of blood plasma. However, separating 

hydrophilic from lipophilic measurements may have 

limitations. Determination of lipophilic ORAC assay implies 

that lipophilic antioxidants should be extracted with hexane, 

after which plasma should be dried and finally suspended in a 

mixture of acetone, acetic acid and water (Prior et al., 2003). 

We can argue that such a method may not be suitable in the 

present in vivo model. In a true biological system both 

hydrophilic and lipophilic antioxidants communicate 

continuously. Therefore, by partitioning lipophilic from 

hydrophilic extracts, we could easily divert from our initial 

goal, which was to evaluate the effects of RPO on blood 

antioxidant capacity in vivo. The results of the current study 

support the previous finding of Ayeleso and co-workers who 

reported that dietary RPO did not influence TAC measured as 

ORAC and FRAP (Ayeleso et al., 2012). Similar report by 

Ajuwon and co-workers (2013) who reported that consumption 

of RPO and rooibos had no effects on TAC measured as FRAP. 

Our findings create opportunities for further investigations to 

elucidate the effects of RPO supplementation in modulating the 

total antioxidant capacity in a biological system.  

 Our study shows that RPO consumption for a period of 6 

weeks significantly enhanced SOD activity when compared to 

normal control group. The results indicate that RPO 

supplementation, irrespective of oxidative stress induction, has 

the ability to increase endogenous antioxidant activities and 

enhance the antioxidant defence mechanism of the cell. It can 

be suggested that the potential mechanisms by which RPO 

enhance endogenous detoxification could involve one or more 

antioxidant defence mechanisms. Previous studies have shown 

that RPO antioxidant properties are adequate to potentially 

protect against oxidative stress induced-damages (Upritchard et 

al., 2003); Aboua et al., 2012).  

 Studies on dietary antioxidant supplementation have 

shown a positive correlation between natural dietary 

supplementation and increase in SOD activity and GSHt levels 

(Oguntibeju et al., 2009; Oguntibeju et al., 2010). For example, 

Ananthan and co-workers (2004) investigated supplementation 

with Gymmema montanum leaf extract, an Indian medicinal 

plant. The authors reported that diabetic state-oxidative stress-

related condition was associated with significant increase in 

SOD activity and GSHt level. In another study, Awoniyi and 

co-workers (2012) demonstrated that rooibos tea significantly 

increased the level of SOD after t-BHP induced-oxidative 

stress. Moreover, RPO supplementation improved SOD protein 

level expression in isolated hearts freeze clamped at the end of 

a working heart perfusion model of Wistar rats (Wergeland et 

al., 2011). Superoxide dismutase is a major scavenging enzyme 

which removes superoxide radical, a toxic radical, by 

converting it to more stable products such as hydrogen peroxide 

and water. An increase in SOD activity could therefore be seen 

as a possible response to reduce the risk of oxidative stress-

induced damage.  

 In conclusion, this study demonstrated that RPO 

supplementation modulated MDA levels and SOD activity in 

an in vivo experimental Wistar rat model. Also, that RPO 

supplementation offers a protective effect against lipid 

peroxidation in an oxidative stress-induced biological system. 

Moreover, RPO supplementation had potential benefits in 

improving antioxidant status. Thus, this study proposed a 

possible mechanism of actions by which RPO-supplementation 

offer health benefits in the oxidative stress model. This 

explorative study has created opportunities for further 

investigations to explore additional RPO-related health 

benefits.  
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