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ABSTRACT  

Chemical reaction rate laws facilitate the design and control of chemical processes. In turn 

rate laws are often arrived at after assumption of the steady state approximation, whereby the 

steady state is characterized by the First State Rate Law, defined for reactions involving very 

reactive intermediates, by assuming that the concentrations of the chemical species, involved as 

very reactive intermediates can be eliminated by equaling their rate of formation to their rate of 

disappearance, in which case the concentration of the intermediate can be assumed to be constant. 

In this communication theoretical evidence, as well as experimental evidence from the literature, is 

presented showing that the steady state can also be characterized by the Second Steady Rate Law 

based on pseudo-zero order kinetics. In addition, equations are derived showing that the 

concentration of the steady state intermediate can be expressed in terms of the initial concentration 

of the reactant, and that the steady state approximation is valid within the kinetic limits bounded by 

truly first (or second) order rate laws and the truly equilibrium rate law. The article has the 

following highlights: 1. The steady state in chemical kinetics is defined by the First Steady 

State Rate Law in terms of the constancy of the concentration of the reaction intermediate, and by 

the Second Steady State Rate Law in terms of the constancy of the rate of reaction. 2. Both 

First and Second Steady State Rate Laws can be used as bases for assuming the steady state 

approximation. 3. The limits of the validity of the steady state approximation are defined.    
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INTRODUCTION 

Knowledge about chemical kinetics enables us to understand, design, and control chemical 

reactions in the laboratory, to understand and explain the actions of enzymes in biochemical 

systems including the human body, to design and control chemical processes in oil refineries and 

other chemical industries [1-3], as well as to describe drug absorption and metabolism in the 

human body [4]. The most important parameter in the study of kinetics of chemical reactions is the 

rate law or rate equation, from which we can infer the rate constant and the stoichiometry of the 

reaction [1]. In the derivation of the rate law corresponding to the mechanism of a complex 

chemical reaction it is necessary to express the concentrations of all intermediates in terms of the 

concentrations of the primary reactants, because intermediates are transient.  

This often requires making some assumptions [5-11]. One of the most commonly employed 

assumption is the steady-state approximation [5-11], first proposed by Bodenstein, and 

independently by Chapman and Underhill in 1913 for the photochemical gas phase reaction 

between chlorine and hydrogen [12-14]. The resulting stationary-state method was further 

developed by Christiansen, Herzfeld and Polanyi [15-19]. According to the stationary-state 

method, the concentrations of the chemical species, involved as very reactive intermediates (I) can 
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be eliminated by equaling their rate of formation to their rate of disappearance, in which case the 

concentration of the intermediate can be assumed to be constant [15], and hence: 

𝑑𝐼

𝑑𝑡
= 0           (1) 

Equation 1 holds for reactions involving very reactive intermediates, since for very reactive 

intermediates, the rate limiting step is the formation of the intermediate, hence the rate of 

disappearance of the intermediate is necessarily equal to the rate of its formation, in which case the 

concentration of the intermediate should remain constant. Thus, in this case, Equation 1 rigorously 

defines the steady state in chemical kinetics with respect to the constancy of the concentration of 

very reactive intermediates and constitutes the first steady state rate law.  Thus, the steady state 

approximation, as proposed by Bodenstein and by Chapman and Underhill [12-14], assumes the 

first steady state rate law. 

The steady state approximation is invoked when an overall chemical reaction consists of a 

series of consecutive elementary steps. Such reactions are encountered in several chemical kinetic 

systems, well-known examples of which include acid-base catalysis, enzyme catalysis, 

nucleophilic and electrophilic substitution reactions, quasi-unimolecular reactions, and free radical 

reaction [6]. The steady state approximation is also used in many cases for which the first steady 

state rate law is not applicable, which is often difficult to justify. Although the validity of the 
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steady state approximation in such cases has been the subject of debate since it was first proposed 

by Bodenstein and Chapman and Underhill in 1913 [12-14], and has been discussed by several 

authors [7-11,20-27], there is no consensus as to the conditions for a steady state in chemical 

kinetics, the validity of the steady state assumption, its applicable time regime, or its accuracy 

[10,23,27,28], It is therefore important that students of chemistry, especially at undergraduate 

level, understand (a) what is meant by the steady state in chemical kinetics, (b) the steady state 

approximation and its validity, its time regime of application and the central role it plays in 

chemical kinetics. 

This paper addresses the difficulties currently encountered with respect to the conditions 

for a steady state in chemical kinetics, the validity of the steady state assumption, and its applicable 

time regime. It is shown that (a) the steady state can also be characterized in terms of the second 

steady state rate law based on pseudo zero-order kinetics, (b) the steady state concentration of the 

intermediate can be expressed in terms of the initial concentration of the reactant, and (c) the 

steady state approximation is applicable within the kinetic limits represented by the truly first (or 

second) order rate law and the truly equilibrium rate law. Empirical evidence from the literature is 

presented in support of the validity of the second steady state rate law. 
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THEORETICAL 

Consider the reaction: 

𝐴 ⇆  𝐴‡ → 𝑃          (2) 

The elementary steps for this reaction are shown in Table I: 

Table I. Elementary steps for a first order reaction 

Step 
Elementary 

reaction 
Rate constant Transformation 

1 A → Aǂ k1 
Activation (Aǂ = activated 

complex) 

2 Aǂ → A k-1 De-activation 

3 Aǂ → P k2 Reaction (P = products) 

 

The rate of formation of Aǂ is given by: 

𝑑[𝐴‡]

𝑑𝑡
= 𝑘1[𝐴]         (3) 

The rate of disappearance of Aǂ is: 

−
𝑑[𝐴‡]

𝑑𝑡
= [𝐴‡](𝑘2 + 𝑘−1)        (4) 

If −
𝑑[𝐴‡]

𝑑𝑡
=

𝑑[𝐴‡]

𝑑𝑡
 

[𝐴‡] = (
𝑘1

𝑘−1+𝑘2
) [𝐴]        (5) 
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Substituting Equation 5 into Equation 1,  

𝑑[𝐴‡]

𝑑𝑡
=

𝑑

𝑑𝑡
(

𝑘1

𝑘−1+𝑘2
) [𝐴] = 0       (6) 

Equation. 6 is only possible if [A] is constant. This is only true for equilibrium reactions at 

equilibrium and can only be approximately obeyed for other reactions. The question to be 

answered is: Under what circumstances, other than equilibrium conditions, is Equation 6 valid? 

Note, [𝐴] = [𝐴]𝑜 − ∆[𝐴]𝑡, where [𝐴]𝑜 = initial concentration of A, and ∆[𝐴]𝑡 is the change in the 

concentration of A at any time t. When t = 1, i.e., in unity time of reaction,  

[𝐴]𝑡=1 = [𝐴]𝑜 − ∆[𝐴]𝑡=1 

When  [𝐴]𝑜 ≪ ∆[𝐴]𝑡=1  

[𝐴]𝑡=1 = [𝐴]𝑜, a constant.        (7) 

From TABLE I, 

𝑑𝑃

𝑑𝑡
= 𝑘2[𝐴‡]         (8) 

In terms of [A]t=1 and [A]o, Equation 5 becomes 

[𝐴‡] = (
𝑘1

𝑘−1+𝑘2
) [𝐴]𝑡=1 = (

𝑘1

𝑘−1+𝑘2
) [𝐴]𝑜      (9) 

Substituting for [A‡] in Equation 8: 



AJCE, 2024, 14(1)                                                                                   ISSN 2227-5835                                                                                                                                               

8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑑𝑃

𝑑𝑡
= (

𝑘1𝑘2

𝑘−1+𝑘2
) [𝐴]𝑜 = 𝑘𝑜 , 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (10) 

where ko is a zero-order rate constant.  

A zero-order reaction implies a constant or linear rate of reaction, and under these 

conditions, 

 ∆[𝐴]𝑡=1 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛.    

i.e., the steady state as defined by Equation 6 obtains when   ∆[𝐴]𝑡=1 ≪ [𝐴]𝑜 , and is defined for 

the constancy of the rate of reaction or formation of reaction products. Equation 10 constitutes the 

second steady state rate law and obtains when the numerical value of the rate of reaction is 

insignificant compared to, or significantly smaller than, the numerical value of the initial 

concentration of the reactant. Thus, in essence the Second Steady State Rale law is in effect the 

Stationary-state hypothesis applied to the rate of reaction, i.e., the rate of reaction is “at all times 

much less than the numerical value of the concentrations of the reactants and products” [15]. This 

situation is most likely to be encountered with extremely slow reactions as measured by the rate of 

disappearance of the reactant. 

Note Equation 10 can be written as 

𝑑𝑃

𝑑𝑡
= (

𝑘1𝑘2

𝑘−1+𝑘2
) [𝐴]𝑜 = 𝑘𝑜 = 𝑘2𝐴‡       (10) 
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Therefore 

𝐴‡ =
𝑘0

𝑘2
= (

𝑘1

𝑘−1+𝑘2
) [𝐴]𝑜        (11) 

i.e., A‡ is a constant related to [A]o by Equation 11. 

Equation 11 limiting cases:  

Limiting Case I: k-1 ≫ k2, i.e., the Second Steady State Rate Law limit: 

𝐴‡ = 𝐾(𝐴⇌𝐴‡)[𝐴]𝑜        (12) 

where 𝐾(𝐴⇌𝐴‡) is the equilibrium constant for the 𝐴 ⇌ 𝐴‡ reaction. Thus, beyond Limiting Case I, 

the reaction becomes an equilibrium reaction.  

Limiting Case II:  k2 ≫ k-1, i.e., i.e., the First Steady State Rate Law limit. 

𝐴‡ = (
𝑘1

𝑘2
) [𝐴]𝑜         (13), 

Or 

𝑘1[𝐴]𝑜 = 𝑘2𝐴‡         (14 ),  

i.e., rate of formation of the intermediate is equal to its rate of disappearance as proposed by 

Bodenstein [12,13] [9,10], and Chapman and Underhill [14] in 1913. 

Equation 14 is a First order reaction. 

In between Limiting cases I and II, A‡ is given by Equations. 9 and 11.  
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Differentiation of Equations 11, 12 and Equation 13 lead to the First Steady State Rate Law thus: 

𝑑𝐴‡

𝑑𝑡
= 0          (1) 

The only assumptions made in arriving at Equations 10 to 11 are that 

1. The rate of formation of reaction intermediates is equal to the rate of their disappearance as 

proposed in 1913 by Bodenstein [9,10] and Chapman and Underhill [14],  

2. ∆[𝐴]𝑡=1 ≪ [𝐴]𝑜, i.e., the numerical value of the rate of reaction is insignificant compared 

to, or significantly smaller than, the numerical value of the initial concentration of the 

reactant, consistent with the Stationary-state hypothesis for chain reactions [15]. 

 

EXPERIMENTAL APPROACH 

 While it is difficult to demonstrate the First Steady State Rate Law experimentally, the 

Second Steady State Rate Law is easily demonstrated experimentally by measuring the rate of 

disappearance of the reactant or the rate of formation of reaction product, which should be zero 

order. The resulting regression curve should exhibit high linearity confirmed by a high regression 

coefficient. Experimental evidence for the Second Steady State Rate Law is available in the 

literature as discussed below.  
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RESULTS AND DISCUSSION 

Chemical degradation of organic substances 

 Linear rates of reaction were confirmed experimentally in the case of chemical 

degradation of organic compounds (e.g., hydrolysis) by Zaranyika et al. [29-31], when aqueous 

solutions of tetracycline, oxytetracycline, doxycycline and chlortetracycline were studied under 

dark conditions and the residual concentrations of the antibiotics monitored as a function of time.   

Photochemical degradation of organic substances 

 The existence of linear rates of reaction have also been confirmed experimentally in the 

case of photochemical degradation of organic compounds by Collin et al. [32]. Collin et al. 

obtained linear rates of photochemical degradation when aqueous suspensions of particulate black 

carbon (BC) and aqueous solutions of BC derived from arctic biomass were exposed to sunlight, 

and the partial or complete mineralization was quantified as photochemical CO2 emission and O2 

consumption relative to dark controls. Similarly, linear rates of photochemical degradation were 

also confirmed experimentally when aqueous solutions of tetracycline, oxytetracycline, 

doxycycline and chlortetracycline were exposed under natural sunlight conditions and the residual 

concentrations of the antibiotics monitored as a function of time relative to dark controls (by 

Zaranyika et al. [29-31]. 
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Microbial degradation of organic substances 

 The existence of linear rates of reaction were confirmed experimentally in the case of 

microbial degradation of pesticides by Schmidt et al. [33]. Schmidt et al. conducted microbial 

degradation experiments with different initial pesticide concentrations and microbial populations 

and showed that the degradation was zero-order with respect to pesticide concentration.  

Multi-phase pseudo-zero order rate law 

 Current formalism for the dissipation of persistent organic pollutants in the terrestrial 

environment assumes that dissipation follows first order kinetics, although Edwards in 1966 had 

observed that the dissipation of DDT in the environment rarely conforms to first order kinetics and 

proposed that the dissipation is instead composed of 2 to 4 linear portions [34]. The existence of 

multi-phase linear rates of dissipation has now been demonstrated by Zaranyika et al. [35], who 

recently showed that the dissipation curves of DDT in several tropical soil environments can be 

resolved into biphasic or triphasic linear dissipation profiles and attributed this to the existence of 

different speciation forms of the insecticide in the medium. Several other incidences of the 

existence of multi-phase linear rates of dissipation have been reported in the literature for other 

organic environmental pollutants including organochlorine insecticides (endosulfan I and II) [36], 

organophosphate herbicides (glyphosate and dimethoate) [37,38], and tetracycline antibiotics 
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(oxytetracycline, doxycycline, chlortetracycline and tetracycline) [29-31]. The assumption of the 

steady state pseudo zero-order rate law in such cases is therefore fully justified. A generalized 

multi-phase pseudo zero-order rate law which governs the dissipation of persistent organic 

compounds in the soil and aquatic environments has since been proposed to account for such 

dissipation curves [30], the criteria for conformance to the multi-phase pseudo-zero order rate law 

being: (a) each linear phase should exhibit high linearity, and (b) the slopes of the different linear 

phases should differ significantly. 

The steady state approximation 

 The steady state approximation is commonly used quoting the first steady state rate law 

[7,8,11,25,26]. The use of the steady state approximation on the basis of the second steady state 

rate law, though currently not common, is fully justified. In addition, as indicated above, in 

between the First and Second Steady State Rate Law limits, the steady state approximation is 

applicable based on Equation 11. Outside these limits, the reactions follow the truly equilibrium 

rate law or truly first (or second) order rate laws, although in terms of the Activated Complex or 

Transition State theories, truly first (or second) order rate laws are extremely rare if at all possible.    
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CONCLUSIONS 

From the foregoing discussion, the following conclusions can be made: (a) The steady state 

in chemical kinetics is characterized by the first steady state rate law, dI/dt = 0, for reactions 

involving very reactive intermediates (I), and by the second steady state rate law, dP/dt = k, for 

very slow reactions as measured by the rate of formation of products (P), or by -dA/dt = k, the rate 

of disappearance of the reactant (A). (b) Both steady state rate laws can be cited as bases for 

assuming the steady state approximation. (c) In both cases, the concentration of the steady state 

intermediate can be expressed in terms of the concentration of the initial concentration of the 

reactant. (d) The steady state approximation is applicable within the limits represented by truly 

first (or second) order rate law and the truly equilibrium rate law. 
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