AEROBIC BACTERIAL ISOLATES FROM INFECTED WOUNDS

Esebelahie, N. O.*1,3, Newton-Esebelahie, F. O.2,3 & Omorieg R.3

1. Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra State, Nigeria; 2. Department of Medical Laboratory Sciences, School of Basic Medical Science, University of Benin, Benin City, Edo State, Nigeria; & 3. School of Medical Laboratory Sciences, University of Benin Teaching Hospital, P.M.B. 1111, Benin City, Edo State, Nigeria.

* Correspondence: Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra State, Nigeria. Tel: +234803794144. E-mail: newtonesebelahie@yahoo.com

ABSTRACT

Background: Wound infection causes great distress in terms of associated mortality and morbidity, increased length of hospital stay, profound discomfort and significant increased in healthcare cost. Infection in a wound delays healing and may cause wound break down, herniation of the wound and complete wound dehiscence. Therefore the knowledge of the causative agents of wound infection will be helpful in the control of wound infection and selection of empiric antimicrobial therapy as an infection control measure. Methods: A total of 207 wound specimens collected from patients attending the University of Benin Teaching Hospital were used for this study. All specimens were collected using sterile swabs sticks. Specimens were processed using standard microbiological methods. Results: A total of 278 bacterial isolates were obtained from 207 wound specimens processed in this study. Positive growth were observed in 185 (89.4%) of the wound cultures and no bacterial isolates were obtained in 22 (21.1%) of the cultured materials. Staphylococcus aureus (26.9%) was the most predominant isolate followed by Escherichia coli (12.6%). All isolates were resistant to ampicillin, amoxyillin-clavulunate and tetracycline but show variable susceptibility to other antibacterials used. Majority of the isolates produced beta lactamase. Conclusion: A high proportion of the wounds were infected. The variety of microorganisms observed in this study support the need to obtain culture specimen from infected wounds for microbiological evaluation and antibiotic susceptibility determination, so that adapted chemotherapy can be prescribed.

Key words: wound infection, polymicrobial, immune status, host

INTRODUCTION

A wound is any physical injury involving a break in the skin (1). The exposed subcutaneous tissues provides a favourable substratum for a wide variety of microorganisms to contaminate and colonize, and if the involved tissue is devitalized and the host immune response is compromised, the conditions become optimal for microbial growth (2). This is because the host immune response plays a critical role in determining whether wound infection will arise (3).

Wound infection refers to the deposition and multiplication of bacteria in tissue with an associated host reaction (4). This may be characterized by the classic signs of redness, pain, swelling and fever (5).

The progression of a wound to an infected state is likely to involve a multitude of microbial or host factors including the type, site, and depth of wound, the extent of non viable exogenous contamination, the general health and immune status of the host, the microbial load, and the combined virulence expressed by the types of microorganisms involved (2).

Although the majority of wounds are polymicrobial involving both aerobes and anaerobes, aerobic pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, and beta haemolytic Streptococci have been most frequently reported as the cause of delay wound healing (6-9, 3). However, Trengrove et al., (10) reported that no single microorganism or group of organisms was more detrimental to wound healing than any other.

The following organisms are commonly associated with wound infection: Streptococcus pyogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella species, Proteus species, Clostridium species and Bacteroidesfragilis, Candida species and Aspergillus species (1-3). Wound infections cause great distress in terms of associated mortality and morbidity; increased length of hospital stay, delayed wound healing, profound discomfort and significant increased in healthcare cost (11).

Numerous reports exist in the literature regarding wound infection (1-3, 12-17). However, a reassessment of the etiology and antimicrobial susceptibility pattern of wound infection is necessary.
for current management of this infection. This study focused on determining the spectrum of aerobic bacterial associated with wound infection in Benin City and their susceptibility to various antibacterial agents.

MATERIALS AND METHODS.

Study Population
A total of 207 wound specimens collected from patients attending the University of Benin Teaching Hospital were used for this study. The Ethical Committee of University of Benin Teaching Hospital approved the protocol for this study.

Specimen Collection and Processing
All specimens were collected using sterile swab sticks. Specimens were processed according to the method previously described (19). Briefly, the swabs were streaked on the surface of Blood agar, MacConkey agar and incubated aerobically at 37°C for 24 hrs. Smears were prepared on slides and stained by Gram technique, and examined using 40x and 100x objectives for pus cells and bacterial. Emergent colonies from culture were identified.

Identification of Isolates
All bacterial isolates were identified according to the criteria described by Cowan and Steel (20). The criteria include colonial appearance, morphological characteristics as seen by staining and biochemical tests.

Antibacterial Susceptibility Test
The disc diffusion susceptibility test was performed according to the modified Bauer-Kirby method (21-22).

Determination of Beta Lactamase Production
Beta lactamase production were determined using the iodometric tube method previously described (23).

RESULTS.
The results obtained in this study are shown in table 1-4. Table 1 shows the infection rate from processed specimen. Gender has no effect on wound infection rate. 22 (21.1%) of the processed specimen yielded no bacterial isolate. A total of 278 bacterial isolates were recovered from various infected wounds, majority of the isolates were from males. S. aureus seems to be the most common isolate while E. feacalis is the least (Table 2). All isolates were resistant to Ampicillin, Amoxicillin-clavulanate and tetracycline, while they showed variable susceptibility to other antibacterial agents (Table 3). A total of 258 (92.8%) out of 278 isolates produced beta lactamase. Majority of the bacterial isolates produced beta lactamase (Table 4).

<table>
<thead>
<tr>
<th>TABLE 1: INFECTION RATE FROM PROCESSED SPECIMEN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

DISCUSSION
Infection in a wound delays healing and may cause wound break down, herniation of the wound and complete wound dehiscence (24). Therefore the knowledge of the causative agents of wound infection will be helpful in the control of wound infection and selection of empiric antimicrobial therapy as an infection control measure in hospital and community settings. This study was carried out to generate data that will be useful in the formulation of policy that will aid in the aforementioned areas. The results obtained in this study reveal that 185 (89.4%) out of 207 wounds swabs yielded growth with 50.2% being polymicrobial. The prevalence of high rate of wound infection as well as polymicrobial infection had also been reported by Shittu et al., (9). Gender had no effect on wound infection rate.
A total of 278 clinical isolates were obtained from this study. *S. aureus* (26.9%) was the most predominant isolate in this study. This agrees with the reports of previous investigators (9, 15, 17, 25-26). But does not agree with the report of Thanni et al (18) who reported *S. aureus* as the second most common organism in their study. The other isolates in decreasing order of prevalence were *K. pneumoniae* (17.6%), *P. aeruginosa* (16.9%), *E. coli* (12.6%), *P. mirabilis* (8.6%), *P. vulgaris* (7.2%), coagulase negative *S. aureus* (5%), *E. feacalis* and *P. rettgeri* (2.5%) respectively. These isolates are common isolates found in wounds (9, 25). These isolates contribute to pathology of the wound infection, for example Streptococcal invasion of wound delays healing as well as results in deterioration of wounds (27). Pseudomonas spp, Enterococci spp, and Proteus spp are responsible for extensive tissue destruction with poor blood circulation to the affected site especially diabetic foot ulcer (28).
TABLE 4: NUMBER AND TYPE OF ISOLATES PRODUCING BETA LACTAMASE

<table>
<thead>
<tr>
<th>ORGANISMS</th>
<th>NO TESTED</th>
<th>NO POSITIVE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>75</td>
<td>69 (92.0)</td>
</tr>
<tr>
<td>Coagulase negative Staphylococci</td>
<td>14</td>
<td>13 (92.8)</td>
</tr>
<tr>
<td>Enterococcus fecalis</td>
<td>7</td>
<td>7 (100.0)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>35</td>
<td>31 (88.6)</td>
</tr>
<tr>
<td>Klebsiellapnuemoniae</td>
<td>49</td>
<td>44 (89.8)</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>20</td>
<td>18 (90.0)</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>24</td>
<td>24 (100.0)</td>
</tr>
<tr>
<td>Providenciarettegeri</td>
<td>7</td>
<td>7 (100.0)</td>
</tr>
<tr>
<td>Psuedomonasaeruginosa</td>
<td>47</td>
<td>45 (95.8)</td>
</tr>
</tbody>
</table>

| TOTAL | 278 | 258 (92.8) |

All isolates were resistant to ampicillin, amoxicillin-clavulanate and tetracycline. The resistant observed for ampicillin and tetracycline could be due to their long period of use. But that of amoxicillin-clavulanate is surprising as the use of this drug is more recent than ampicillin and tetracycline. Susceptibility pattern of the bacterial isolates to other antibacterial agents varies.

Majority of the bacterial isolates in this study produced beta lactamase. This enzyme is used by microorganism to inactivate beta lactam antibacterials. This may explain the resistance observed for ampicillin, amoxicillin and amoxicillin-clavulanate. The fluoroquinolones and gentamicin were more effective in this study. This agrees with the report of Mordi and Momoh, (15). These antibacterial should be use in the management of wound infection. The variety of microorganisms observed in this study support the need to obtain culture specimen from infected wounds for microbiological evaluation and antibiotic susceptibility determination, so that adapted chemotherapy can be prescribed. This will not only facilitate successful wound management but also assist in the control of antibiotic usage and hence stem the spread of antibiotic resistant bacterial. Continous dialogue between the microbiology department and wound care practitional is strongly advised.

REFERENCES

