
Vol. 6 (Iss. 1) 2025, pp. 580-603 African Journal of Empirical Research https://ajernet.net

A New Bivariate Family of Distributions Based on the Clayton
Archimedean Copula and Dagum Distribution

Julius Kwaku Adu-Ntim1

Akoto Yaw Omari-Sasu2

Maxwell Akwasi Boateng3∗

Isaac Adjei Mensah4

1,2,4Department of Statistics and Actuarial Science,Kwame Nkrumah University of Science and Technology,

Ghana.

3 Department of Mathematics, Kwame Nkrumah University of Science and Technology, Ghana
1 ofgord@yahoo.com

2 ayomari-sasu@knust.edu.gh
3boateng.ma@knust.edu.gh

4isaacadjeimensah@knust.edu.gh

https://doi.org/10.51867/ajernet.6.1.50

Abstract

This study introduces a novel bivariate distribution combining the Clayton Archimedean copula and the Dagum

distribution, addressing challenges in modeling complex dependencies, skewness, heavy tails, and multimodal

distributions. The proposed NBCDagE distribution leverages the Clayton copula’s ability to capture asymmetric

dependencies and the Dagum distribution’s flexibility to model diverse data behaviors, making it suitable for

reliability, finance, and survival analysis applications. Key statistical properties of the NBCDagE distribution,

including the probability density function (PDF), cumulative distribution function (CDF), product and joint

moments, and Shannon entropy, were derived and analyzed. The model demonstrates sensitivity to parameter

changes, with higher parameter values leading to sharper PDFs and lighter tails, while lower values result in flatter

PDFs and heavier tails. Joint moments and entropy analyses revealed the distribution’s ability to adapt to varying

data complexities, showcasing its robustness in capturing dependence structures and marginal characteristics.

Visual representations, including contour plots and density curves, illustrate the flexibility of the NBCDagE

model in handling a wide range of dependence patterns and data structures. The distribution’s performance

was further validated through theoretical derivations and numerical examples, highlighting its adaptability and

precision in multivariate data modeling. In conclusion, the NBCDagE distribution provides a robust framework

for analyzing bivariate data with intricate dependency structures. Its flexibility and statistical rigor make it a

valuable tool for diverse applications, paving the way for future research in higher-dimensional extensions and

practical implementations.
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1 Introduction

Classical probability distributions have long been the cornerstone for modeling empirical data, providing a

solid foundation for statistical inference, parameter estimation, and prediction (Oneto, 2020). These models,

however, often struggle to capture the complexities inherent in real-world data, such as skewness, heavy tails,

and multimodality, which are frequently observed in applied research (Plasad, 2020; Oneto, 2020). This limitation

has led to a growing demand for more flexible models that can better reflect the diverse structures of real-world

data (de Sousa Nevas, 2022). Generalized families of distributions, which extend classical models by introducing

additional shape parameters or non-standard forms, have emerged as a solution. Distributions like the generalized

Pareto, generalized exponential, and skewed distributions offer greater flexibility in modeling features such as

asymmetry, heavy tails, and non-constant variance, leading to improved model fit and predictive accuracy (Coia,

2017; Zheng et al., 2018)

The Dagum distribution, introduced by Dagum (1977), has gained significant attention for its flexibility in

modeling various types of real-world data, such as income distribution, meteorology, and reliability analysis. Its

ability to capture diverse data behaviors, including skewness, heavy tails, and bathtub-shaped hazard functions,

has made it a preferred alternative to traditional models like the Pareto and log-normal distributions (Dey, Al-

Zahrani & Samerah Basloom, 2017). The Dagum distribution has been widely applied in survival and reliability

studies by Febriantikasari et al. (2019) and Chama, Abdulkadir, and Akinrefon (2024), with recent research

expanding its scope through extensions such as Weighted and Beta-Dagum distributions (Oluyede & Ye, 2014).

Furthermore, advancements like Bayesian estimation and the inverted Dagum distribution have enhanced its

analytical capabilities (Nassir & Ibrahim, 2020; Alotaibi et al., 2021). A new generalization of Dagum distribution

with application to financial data sets by Ishak and Abiodun (2020) and comprehensive reviews of its applications

highlight its growing importance in modeling complex data structures and multivariate dependencies (Dey, Al-

Zahrani & Basloom, 2017; Ghalibaf, 2022).

Copulas are a fundamental tool for modeling the dependence structure between random variables by allowing

the separation of marginal distributions from their interdependencies. This separation enables the construction

of multivariate distributions where the marginals and their dependencies are specified independently (Hao &

Singh, 2016). Over time, copulas have become essential for representing multivariate data dependencies, driving

significant research and practical applications.

Several bivariate distributions have been derived using copulas, such as the Weibull distribution using

the Farlie-Gumbel-Morgenstern (FGM) copula, and other models like the Ali-Mikhail-Haq (AMH), Gumbel-

Hougaard, and Gumbel-Barnett copulas (Peres et al., 2018; Saraiva et al., 2018; Kularatne et al., 2021). The

Clayton copula is used to create the generalized bivariate Rayleigh distribution, as proposed by El-Sherpieny

and Almetwally (2019). The bivariate Fréchet distribution can be constructed using the FGM or AMH copulas,

while the generalized inverted Kumaraswamy distribution is based on the Marshall-Olkin method (El-Sherpieny
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et al., 2022). Additionally, Samanthi and Sepanski (2022) introduced families of bivariate distributions using four

different copulas, such as the Kumaraswamy, bivariate exponentiated half-logistic from the Marshall-Olkin class,

and the bivariate Lindley distribution derived from the FGM copula. Most recently a new bivariate distribution

based on copulas via the Lomax distribution by Aldhufairi et al. (2024)

This study introduces a new bivariate distribution that combines the Clayton Archimedean copula with

the Dagum distribution. Archimedean copulas are valued for their closed-form expressions, making them ideal

for modeling complex dependencies in multivariate data. The proposed model effectively addresses dependence

structures and data distribution features by integrating the Clayton copula’s flexibility in capturing dependencies

with the versatile hazard function of the Dagum distribution. The study examines the statistical properties of the

new distribution, including product moments, joint moments, and joint entropy, offering a robust framework for

analyzing complex bivariate data. This distribution has significant potential for enhancing modeling in finance,

reliability, and survival analysis, where dependence and distribution flexibility are crucial.

This study is structured as follows: Section 2 provides an overview of general copula-based bivariate distributions,

while Section 3 introduces the Archimedean copula, Dagum distributions, and the derivation of the bivariate

distributions based on the Clayton and Dagum models. Section 4 focuses on the methods and materials, explicitly

addressing the statistical properties of interest. Section 5 presents the discussion, and the final section addresses

the study’s conclusion.

.

2 The General Copula based Bivariate distribution

2.1 Sklar’s Theorem

Let Y = (Y1, ..., Yd) be a random vector with marginal cumulative distribution functions (cdfs) F1 (y1) , ..., Fd (yd)

and let F (y1, ..., yd) be their joint cdfs. Define

ui = Fi (yi) = P (Y i ≤ yi) , i = 1, ..., d.

(1)

Then, there is a copula function C (.) such that

C (u1, ..., ud) = P (Y1 ≤ y1, ..., Yd ≤ yd) = F (y1, ..., yd) .

(2)

By differentiating (2), the joint probability density function (pdf) follows as:

f (y1, ..., yd) = c (F1 (y1) , ..., Fd (yd))

d∏
i=1

fi (yi) , i = 1, ..., d.

(3)

In the bivariate case, we have the following:

f (y1, y2) = f1 (y1;ϕ) .f2 (y2;ϕ) .c (F1 (y1;ϕ) , F2 (y2;ϕ))
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(4)

Where:

f (y1, y2) =
∂2

∂y1∂y2
F (y1, y2)

The functions G1 (y1; ξ) = Z1 and G2 (y2; ξ) = Z2 represent the cumulative distribution functions (CDFs) of the

baseline distributions, characterized by the parameter vector ξ . According to Al-Shomrani (2023) the probability

density function (PDF) of a bivariate distribution family, constructed using any copula, is derived as:

f (Z1, Z2) = (f1 (Z1) .f2 (Z2))× c (F1 (Z1) , F2 (Z2)) dZ1dZ2

(5)

The survival function for the bivariate distribution based on any copula is also derived as:

S (Z1, Z2) = C̄
(
F̄1 (Z1) , F̄2 (Z2)

)
= F̄1 (Z1) + F̄2 (Z2)− 1 + C

(
1− F̄1 (Z1) , 1− F̄2 (Z2)

)
(6)

2.2 Product Moment of a Bivariate Distribution

Given the two random variables Y1 and Y2 with the pdf of the copula-based bivariate dostribution, the rth1 and

rth2 Joint moment is derived by the general expression;

EY1Y2
(Y r1

1 , Y r2
2 ) =

∫ .

Y1

∫ .

Y2

yr11 y
r2
1 f (y1, y2) dy1dy2

By substituting equation (5) into the above expression we have;

EY1Y2
(Y r1

1 , Y r2
2 ) =

∫ .

Y1

∫ .

Y2
yr11 y

r2
1 f1 (Z1) .f2 (Z2)× C (F1 (Z1) , F2 (Z2)) dZ1dZ2

We let F1 (Z1) = u1 and F2 (Z2) = u2 Then we have that

EY1Y2
(Y r1

1 , Y r2
2 ) =

∫ 1

0

∫ 1

0

{
G−1

1

(
F−1
1 (u1)

)}r1 {
G−1

2

(
F−1
2 (u2)

)}r2
C (u1, u2) du1du2

= Eu1,u2

({
G−1

1

(
F−1
1 (u1)

)}r1 {
G−1

2

(
F−1
2 (u2)

)}r2)
(7)

2.3 Joint Moment Generating Function of a Bivariate Distribution

For a bivariate distribution family constructed using any copula, the joint moment generating function of the

random variables. Y1 and Y2 can be expressed as follows:

MY1,Y2
(r1, r2) =

∫ .

Y1

∫ .

Y2
exp (r1y1 + r2y2) f(y1, y2)dy1dy2

By substituting equation (5), we have;

MY1,Y2(r1, r2) =
∫ .

Y1

∫ .

Y2
exp {r1y1 + r2y2} f1(Z1)f2(Z2)c (F1(Z1), F2(Z2)) dZ1dZ2

Then,

MY1,Y2
(r1, r2) =

∫ 1

0

∫ 1

0
exp

{
r1G

−1
1

(
F−1
1 (u)

)
+ r2G

−1
2

(
F−1
2 (u)

)}
C(u, v)dudv

=MU,V

{
exp

(
r1G

−1
1

(
F−1
1 (u)

)
+ r2G

−1
2

(
F−1
2 (u)

))}
(8)
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2.4 Joint Shannon Entropy of a Bivariate Distribution

The Joint Shannon Entropy of a bivariate distribution quantifies the uncertainty or randomness associated with

two jointly distributed random variables, Y1 and Y2 (Sosa-Cabrera et al., 2019) . It is mathematically defined as:

E [− log f(y1, y2)] = −
∫ .

Y1

∫ .

Y2

f(y1, y2) log[f(y1, y2)] dy1dy2

By substituting Equation (5), we have

K = E {− log f(y1, y2)} = −
∫ .

Y1

∫ .

Y2

f(Z1, Z2) log [f1(Z1).f2(Z2)c(F1(Z1), F2(Z2))] dZ1dZ2

(9)

= −
∫ .

Y1

∫ .

Y2

f(Z1, Z2) [log c(u1, u2) + log f1(Z1) + log f1(Z1)] dZ1dZ2

= −
∫ .

Y1

∫ .

Y2

c(u1, u2) log c(u1, u2) du1du2 −
∫ .

Y1

∫ .

Y2

f(Z1, Z2) [log f1(Z1) + log f1(Z1)] dZ1dZ2

Let

−
∫ .

Y1

∫ .

Y2

c(u1, u2) log c(u1, u2) du1du2 = K(U1, U2)

We have that:

−
∫ .

Y1

∫ .

Y2

f(Z1, Z2) [log f1(Z1)] dZ1dZ2 = −
∫ .

Y1

log f(Z1)

[∫ .

Y2

f(Z1, Z2)dZ2

]
dZ1

= −
∫ .

Y1

f(Z1) log f(Z1)dZ1 = K(Y1)

Similarly,

−
∫ .

Y2

log f(Z2)

[∫
Y1

f(Z1, Z2)dZ1

]
dZ2

= −
∫ .

Y2

f(Z2) log f(Z2)dZ2 = K(Y2)

Hence, K = K(Y1) +K(Y2) +K(U1, U2) (10)

3 Archimedean Copula

According to Nelsen (2006), an Archimedean copula is a function. C which takes [0, 1]
n
to [0, 1]. These are

copulas which take the form:

C (u1, ..., un) = φ−1 (φ (u1) + ...+ φ (un))

Here, φ (t) is called the generator function of the Archimedean copula and φ−1 is its inverse function. Suppose

φ : [0, 1] → [0,∞) is a continuous, strictly decreasing function that maps the interval 0 to 1 onto the non-negative

real line and has φ(1) = 0 and φ(0) ≤ ∞. Then its pseudo-inverse is defined as:
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φ[−1](t) =

φ−1(t), 0 ≤ t ≤ φ(0)

0, φ(0) < t ≤ ∞

A strict generator has φ(0) = ∞, i.e., where the pseudo-inverse function is the inverse function. A bivariate

copula (with n = 2), as described, qualifies as a copula only when the function φ exhibits convexity. For a

multivariate Archimedean copula (with n > 2) defined similarly, being a copula requires that the generator

function is strictly decreasing and has an entirely monotonic inverse. A function f(t) is considered completely

monotonic over the interval [a, b] if it meets the following criteria:

(−1)kdk

dtk
f(k) ≥ 0 ∀k ∈ N, t ∈ (a, b)

A bivariate Archimedean copula has a Kendall’s tau, ρT , as follows:

ρT = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt

In the case of a two-dimensional Archimedean copula, the distribution function is expressed as:

C(u, θ) = φ−1(φ(u1) + φ(u2); θ), u = (u1, u2)
T

where θ the control parameter measures the degree of dependency on the variables.

3.1 The Clayton Archimedean Copula

The Clayton copula has a generating function:

φ(t) =
t−θ − 1

θ

with distribution:

C(u1, u2) =
(
u−θ
1 + u−θ

2 − 1
)− 1

θ

(11)

Moreover, density functions are also derived as:

c(u1, u2) = (θ + 1)
(
u−θ
1 + u−θ

2 − 1
)− (2θ+1)

θ (u1u2)
−(θ+1)

(12)

When θ tends to 0, the variables are independent; otherwise θ > 0.

Where φ(0) = ∞ and φ−1(t) = (1 + θ t)−
1
θ , the Clayton Lower and Upper tail dependence become:

θL = lim
u→∞

(
1 +

θu

1 + θu

)−
1

θ
= 2−

1
θ
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(13)

and

θU = 2− lim
u→0

1− (1 + 2θu)
−
1

θ

1− (1 + θu)
−
1

θ

= 0

(14)

3.2 The Dagum Distribution

For a continuous random variable S to follow a three-parameter Type I Dagum distribution,

Denoted S ∼ Daq(p, q, ψ), its probability density function (pdf) is given by:

f(s; p, q, ψ) = pqψs−p−1(1 + ψs−p)−q−1

(15)

where ψ > 0 is a scale parameter and p, q are shape parameters.

The Cumulative distribution function (CDF) is given by:

F (s; p, q, ψ) = (1 + ψs−p)−q, s > 0, p, q, ψ > 0

(16)

The Quartile function is given as:

Q(u) = inf{s ∈ R : F (s) ≥ u}, 0 < u < 1

F−1(u) = Q(u) =

{
1

ψ

[
u−

1
q − 1

]}− 1
p

(17)

3.3 The NBCDag-G Model

With the baseline cdf given as G1(y1; ξ) and G2(y2; ξ), substituted into Equation (16) to give a marginal

distribution which is, respectively,

F1(G1(y1; ξ)) = (1 + ψ1G1(y1; ξ)
−p1)−q1

(18)

and

F2(G2(y2; ξ)) = (1 + ψ2G2(y2; ξ)
−p2)−q2

(19)

The NBCDag-G cumulative distribution function (cdf) is therefore derived by substituting Equation (18)

and (19) into Equation (11) and simplifies to:
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FNBCDag−G(y1, y2) =
[
[(1 + ψG1(y1; ξ)

−p1)−q1 ]−θ + [(1 + ψG2(y2; ξ)
−p2)−q2 ]−θ − 1

]− 1
θ

(20)

The associated joint pdf after differentiating (20) is of the form :

fNBCDag−G(y1, y2) = (θ + 1)
[
[(1 + ψ1G1(y1; ξ)

−p1)−q1 ]−θ + [(1 + ψ2G2(y2; ξ)
−p2)−q2 ]−θ − 1

]− 2θ+1
θ

×
[
(1 + ψ1G1(y1; ξ)

−p1)−q1 × (1 + ψ2G2(y2; ξ)
−p2)−q2

]−(θ+1)

×[p1q1ψ1g1(y1; ξ)(1 + ψ1G1(y1; ξ)
−p1)−q1−1G1(y1; ξ)

−p1−1]

×[p2q2ψ2g2(y2; ξ)(1 + ψ2G2(y2; ξ)
−p2)−q2−1G2(y2; ξ)

−p2−1]

(21)

Where

g1(y1; ξ) =
dG1(y1; ξ)

dy1
, g2(y2; ξ) =

dG2(y2; ξ)

dy2

3.4 The NBCDagE Model

By taking our baseline distribution to be an exponential distribution and assuming that Y1 ∼ g1(y1; ξ) ≡
exp(y1;ω1) and Y2 ∼ g2(y2; ξ) ≡ exp(y2;ω2), where ξ = (ω1, ω2)

T , with cdfs given as:

G1(y1;ω1) = 1− e−ω1y1 , G2(y2;ω2) = 1− e−ω2y2

and the respective pdfs given as:

g1(y1;ω1) = ω1e
−ω1y1 , g2(y2;ω2) = ω2e

−ω2y2

The New Bivariate Clayton Dagum Exponential (NBCDagE) Distribution has the cdf and pdf after substituting

the above into equations (20) and (21), respectively, as:

FNBCDagE(y1, y2) =
[[
(1 + ψ1(1− e−ω1y1)−p1)−q1

]−θ
+
[
(1 + ψ2(1− e−ω2y2)−p2)−q2

]−θ − 1
]− 1

θ

(22)

fNBCDagE(y1, y2) = (θ + 1)
[[
(1 + ψ1(1− e−ω1y1)−p1)−q1

]−θ
+
[
(1 + ψ2(1− e−ω2y2)−p2)−q2

]−θ − 1
]− 2θ+1

θ

×
[[
(1 + ψ1(1− e−ω1y1)−p1)−q1

]
×
[
(1 + ψ2(1− e−ω2y2)−p2)−q2

]]−(θ+1)

587



Vol. 6 (Iss. 1) 2025, pp. 580-603 African Journal of Empirical Research https://ajernet.net

×[p1q1ψ1ω1e
−ω1y1(1 + ψ1(1− e−ω1y1)−p1)−q1−1(1− e−ω1y1)−p1−1]

×[p2q2ψ2ω2e
−ω2y2(1 + ψ2(1− e−ω2y2)−p2)−q2−1(1− e−ω2y2)−p2−1]

(23)

Figure 1(a)(b)(c)(d) presents the bivariate cdfs, the joint densities, and the contour plot of the pdf for

the NBCDagE distribution.
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(a)ω1 = 1.5, ω2 = 1.5, ψ1 = 1.8, ψ2 = 1.8, p1 = 5.2, p2 = 5.5, q1 = 1.1, q2 = 1.3, θ = 0.02

(b)ω1 = 1.5, ω2 = 1.5, ψ1 = 1.8, ψ2 = 1.8, p1 = 5.2, p2 = 1.5, q1 = 1.1, q2 = 2.3, θ = 0.5

These plots captured in Figure 1 (a)(b)(c) and (d) analyzes the NBCDagE distribution through its PDF, CDF,

and contour plots, focusing on the impact of varying parameters. When parameter values are increased, the

peak of the PDF becomes sharper, indicating a higher probability density around specific values. Conversely,

decreasing parameters tend to flatten the PDF, spreading the probability density over a broader range of

values. Particularly, higher θ values produce a sharper and narrower PDF peak, indicating concentrated

probability density, and lead to quicker accumulation in the CDF with closer contour lines. Lower θ values

result in a flatter, wider PDF, slower accumulation in the CDF, and more dispersed contour lines. The tail

behavior is affected as well. Higher θ values lead to lighter tails, while lower values result in heavier tails.

(c)ω1 = 1.5, ω2 = 1.5, ψ1 = 1.8, ψ2 = 1.8, p1 = 5.2, p2 = 5.5, q1 = 1.1, q2 = 1.3, θ = 2.0
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(d)ω1 = 1.5, ω2 = 0.5, ψ1 = 1.8, ψ2 = 1.8, p1 = 5.2, p2 = 2.5, q1 = 2.1, q2 = 1.3, θ = 5.0

Figure 1: Plot of the cdf, pdf, and contour plot of the pdf of the NBCDagE distribution with parameter

values.

4 Methods and Materials

4.1 Some Statistical Properties

Here, we derive the marginal distribution for the NBCDagE distribution. Thus, the Dagum distribution with

an exponential baseline based on the Clayton copula with pi, qi, ψi, ωi > 0 where i = 1, 2 and θ > 0. We let

Yi ∼ NBCDagE(pi, qi, ψi, ωi, θ) where Y1 ∼ DagE(p1, q1, ψ1, ω1) and Y2 ∼ DagE(p2, q2, ψ2, ω2), then we can

derive the following:

i The marginal distribution of Y1 and Y2

f(y1) =

∫ ∞

0

f(y1, y2)dy2 = p1q1ψ1ω1e
−ω1y1(1− e−ω1y1)−p1−1(1 + ψ1(1− e−ω1y1)−p1)−q1−1

f(y2) =

∫ ∞

0

f(y1, y2)dy1

= p2q2ψ2ω2e
−ω2y2(1− e−ω2y2)−p2−1(1 + ψ2(1− e−ω2y2)−p2)−q2−1

ii The conditional density of Y1 given Y2

f(y1 | y2) =
f(y1, y2)

f(y2)
= (θ+1)

{[
[
(
1 + ψ1(1− e−ω1y1)−p1

)−q1
]−θ +

(
1 + ψ2(1− e−ω2y2)−p2

)−q2
]−θ

− 1

}− 2θ+1
θ

×
[[
(1 + ψ1(1− e−ω1y1)−p1)−q1

]
×
[
(1 + ψ2(1− e−ω2y2)−p2)−q2

]]−(θ+1)

×
[
p1q1ψ1ω1e

−ω1y1(1 + ψ1(1− e−ω1y1)−p1)−q1−1(1− e−ω1y1)−p1−1
]

(
e−ω2y2

)−p2(θ+1) ×
[
p1q1ψ1ω1e

−ω1y1(1 + ψ1(1− e−ω1y1)−p1)−q1−1(1− e−ω1y1)−p1−1
]
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iii The conditional distribution of Y1 given Y2

F (Y1|Y2) =
[
[(1 + ψ1(1− e−ω1y1)−p1)−q1 ]−θ + [(1 + ψ2(1− e−ω2y2)−p2)−q2 ]−θ − 1

]− 1
θ

(1 + ψ2(1− e−ω2y2)−p2)−q2

iv The conditional reliability of Y1 given Y2

S(Y1|Y2) = 1−
{
[(1 + ψ1(1− e−ω1y1)−p1)−q1 ]−θ + [(1 + ψ2(1− e−ω2y2)−p2)−q2 ]−θ − 1

(1 + ψ2(1− e−ω2y2)−p2)−q2

}− 1
θ

4.2 Product Moments of the NBCDagE Distribution

The product moment measures the expected value of the product of powers of two random variables, Y1 and Y2.

Mathematically, it is given by: Er1,r2(Y
r1
1 Y r2

2 )

where r1 and r2 are the powers applied to the random variables. The product moment provides insights into

the joint behavior of the two random variables, capturing their interdependence, scaling, and distributional

properties. In practical applications, the product moment helps describe complex relationships in data and aids

in understanding joint risk or variability in multivariate contexts. The product moment for the NBCDagE

using equation (7) is derived by:

Given that:

F1(s) = (1 + ψ1s
−p1)−q1 implies that

F−1
1 (u) =

{
1

ψ1

[
u−

1
q1 − 1

]}− 1
p1

and

G1(s) = 1− e−ω1salso implies that

G−1
1 (s) =

log(1− s)

−ω1
.

Let

u1 = F1(G1(y1; ξ)) = (1 + ψ(G1(y1; ξ)
−p1)−q1

by inserting the baseline distribution, we have

u1 = (1 + ψ1(1− e−ω1y1)−p1)−q1

this implies that:

y1 = G−1
1 (F−1

1 (u1)) =
1

ω1p1
log

1

ψ1
(1− u

− 1
q1

1 )

Similarly,

y2 = G−1
2 (F−1

2 (u2)) =
1

ω2p2
log

1

ψ2
(1− u

− 1
q2

2 )
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EY1,Y2(Y
r1
1 , Y r2

2 ) =
(−1)r1+r2

(ω1p1)r1(ω2p2)r2
E(U1, U2)

[(
log

1

ψ1
(1− u

− 1
q1

1 )

)r1 (
log

1

ψ2
(1− u

− 1
q2

2 )

)r2]

EY1,Y2(Y
r1
1 , Y r2

2 ) =
(−1)r1+r2

(ω1p1)r1(ω2p2)r2

1∫
0

1∫
0

[(
log

1

ψ1
(1− u

− 1
q1

1 )

)r1 (
log

1

ψ2
(1− u

− 1
q2

2 )

)r2]
c(u1, u2) du1du2

EY1,Y2(Y
r1
1 , Y r2

2 ) =
(−1)r1+r2

(ω1p1)r1(ω2p2)r2

1∫
0

1∫
0

log

1− u
− 1

q1
1

ψ1

r1 log

1− u
− 1

q2
2

ψ2

r2
×(θ + 1)(u−θ

1 + u−θ
2 − 1)

−(2θ+1)
θ (u1u2)

−(θ+1) du1du2

The product moment of the distributions, EY1,Y2
(Y r1

1 Y r2
2 ), exhibits substantial sensitivity to parameter changes

(Table 1). At baseline values, with θ = 0.5 and moderate q1, q2, p1, p2, the moments grow steadily and remain

modest. Increasing q1, q2, and θ significantly amplifies the moments, with higher values reflecting greater

variability and heavier distribution tails. Extreme growth occurs when θ is further increased, indicating

heightened tail dependencies and sensitivity to large values in the integration domain.

Additionally, reducing scaling parameters (ω1, ω2, p1, p2) dramatically increases the coefficient, leading to

exponential growth in moments. These findings underscore how parameter adjustments can drastically affect

the magnitude and behavior of moments, highlighting the model’s sensitivity and the need for careful

parameter calibration in practical applications.

Table 1: Product Moment of NBCDagE Distribution with altering parameter values.

Parameters: ω1 = 7.5, ω2 = 5.3, ψ1 = 3.1, ψ2 = 2.2, p1 = 2.7, p2 = 3.8, q1 = 4.05, q2 = 2.05, θ = 0.5

r1 ↓, r2 → 1 2 3 4 5

1 1.2951 1.4807 1.6929 1.9355 2.2128

2 1.4727 1.6837 1.9249 2.2008 2.5161

3 1.6745 1.9115 2.1888 2.5025 2.8611

4 1.9041 2.1716 2.4889 2.8455 3.2533

5 2.1651 2.4754 2.8301 3.2356 3.6992

4.3 Joint moment generating function of the NBCDagE Distribution

The Joint Moment Generating Function (MGF) of a distribution is a tool used to summarize all moments of a

random variable. For the NBCDagE, its joint MGF is derived based on the definition and specific

characteristics of the NBCDagE distribution.

By using equation (8) we have that:
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Parameters: ω1 = 7.5, ω2 = 5.3, ψ1 = 3.1, ψ2 = 2.2, p1 = 2.7, p2 = 1.8, q1 = 10.05, q2 = 7.05, θ = 1.5

r1 ↓, r2 → 1 2 3 4 5

1 2.7353 6.6019 15.9344 38.4595 92.8262

2 3.1102 7.5069 18.1189 43.7314 105.5507

3 3.5367 8.5359 20.6024 49.7261 120.0195

4 4.0214 9.7060 23.4265 56.5425 136.4716

5 4.5726 11.0365 26.6378 64.2933 155.1791

Parameters: ω1 = 7.5, ω2 = 5.3, ψ1 = 3.1, ψ2 = 2.2, p1 = 1.7, p2 = 1.8, q1 = 10.05, q2 = 7.05, θ = 10.0

r1 ↓, r2 → 1 2 3 4 5

1 4.3458 10.4891 25.3167 61.1047 147.4830

2 7.8483 18.9429 45.7207 110.3520 266.3468

3 14.1737 34.2098 82.5692 199.2901 481.0087

4 25.5971 61.7812 149.1159 359.9077 868.6773

5 46.2269 111.5737 269.2957 649.9750 1568.7870

Parameters: ω1 = 5.5, ω2 = 2.3, ψ1 = 3.1, ψ2 = 2.2, p1 = 2.7, p2 = 1.8, q1 = 10.05, q2 = 7.05, θ = 1.5

r1 ↓, r2 → 1 2 3 4 5

1 8.5950 47.8039 265.8756 1478.7471 8224.4953

2 13.3271 74.1229 412.2568 2292.8896 12752.5928

3 20.6646 114.9322 639.2298 3555.2683 19773.6903

4 32.0417 178.2095 991.1657 5512.6652 30660.3398

5 49.6827 276.3250 1536.8642 8547.7311 47540.7686

MY1Y2(t1, t2) = EU1,U2

{
exp

(
− t1
ω1p1

log
1

ψ1
(1− u

− 1
q1

1 )− t2
ω2p2

log
1

ψ2
(1− u

− 1
q2

2 )

)}

= EU1,U2
exp

{
log

(
1

ψ1
(1− u

− 1
q1

1 )

) t1
ω1p1

+ log

(
1

ψ2
(1− u

− 1
q2

2 )

) t2
ω2p2

}

= EU1,U2

[(
1

ψ1
(1− u

− 1
q1

1 )

) t1
ω1p1

(
1

ψ2
(1− u

− 1
q2

2 )

) t2
ω2p2

]

MY1Y2
(t1, t2) =

∫ 1

0

∫ 1

0

(
1

ψ1
(1− u

− 1
q1

1 )

) t1
ω1p1

(
1

ψ2
(1− u

− 1
q2

2 )

) t2
ω2p2

c(u1.u2)du1du2
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MY1Y2
(t1, t2) =

∫ 1

0

∫ 1

0

(
1

ψ1

(
1− u

− 1
q1

1

)) t1
ω1p1

(
1

ψ2

(
1− u

− 1
q2

2

)) t2
ω2p2

×(θ + 1)
(
u−θ
1 + u−θ

2 − 1
) (2θ+1)

θ (u1u2)
−(θ+1)

du1du2

This report presents an analysis of the Joint Moment Generating Function (MGF) for NBCDagE under different

sets of parameter values. The changes in the MGF values are observed by altering parameters such as ω1 , ω2 ,

ψ1, ψ2 , p1, p2 , q1 , q2 , and θ. The table 2 display the MGF values for varying values of t1 and t2 (ranging

from 1 to 5) in each case. Below, we summarize the effects of changing the parameters on the MGF values:

Table 2: Joint Moment Generating of NBCDagE Distribution with altering parameter

values.
Parameters: ω1 = 10.5, ω2 = 10.3, ψ1 = 5.1, ψ2 = 8.2, p1 = 4.7, p2 = 10.8, q1 = 10.05, q2 = 9.05, θ = 0.5

t1 ↓, t2 → 1 2 3 4 5

1 1.9539 2.4033 2.9559 3.6357 4.4718

2 3.1156 3.8321 4.7133 5.7973 7.1305

3 4.9679 6.1104 7.5156 9.2440 11.3699

4 7.9215 9.7432 11.8939 14.7399 18.1296

5 12.6311 15.5359 19.1087 23.5032 28.9084

Parameters: ω1 = 10.5, ω2 = 10.3, ψ1 = 5.1, ψ2 = 3.2, p1 = 4.7, p2 = 5.8, q1 = 10.05, q2 = 9.05, θ = 5.5

t1 ↓, t2 → 1 2 3 4 5

1 2.3373 3.4365 5.0525 7.4285 10.9217

2 3.7270 5.4796 8.0564 11.8450 17.4151

3 5.9428 8.7374 12.8460 18.8872 27.7609

4 9.4760 13.9321 20.4838 30.1163 44.2786

5 15.1098 22.2153 32.6621 48.0215 70.6038

The joint moment-generating function (MGF) exhibits complex, exponential growth patterns influenced by

various parameters (Table 2). As t1 and t2 increase, the MGF values increase across all cases, but the

parameters significantly impact the rate of increase θ, ψ, p, and others. High values of θ lead to exponential

growth in MGF values, especially when t1 and t2 are larger. The analysis of these values offers valuable insights

into how different parameter configurations affect the behavior of the MGF. It provides guidance for selecting

appropriate parameter values based on the desired rate of change in MGF values.
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Parameters: ω1 = 8.5, ω2 = 9.3, ψ1 = 2.1, ψ2 = 8.2, p1 = 4.7, p2 = 7.8, q1 = 7.3, q2 = 9.05, θ = 10.5

t1 ↓, t2 → 1 2 3 4 5

1 2.4371 3.3475 4.5981 6.3159 8.6754

2 4.3369 5.9571 8.1826 11.2395 15.4833

3 7.7178 10.6010 14.5614 20.0135 27.4735

4 13.7343 18.8652 25.9129 35.6936 48.8907

5 24.4410 33.5718 46.1136 63.4039 87.0040

Parameters: ω1 = 8.5, ω2 = 10.3, ψ1 = 10.1, ψ2 = 5.2, p1 = 5.7, p2 = 1.8, q1 = 7.3, q2 = 5.5, θ = 10.5

t1 ↓, t2 → 1 2 3 4 5

1 5.5523 19.2241 66.5612 230.4601 797.9397

2 8.9304 30.9204 107.0583 370.6757 1283.4191

3 14.3638 49.7329 172.1940 596.2008 2064.2733

4 23.1030 79.9912 276.9596 958.9386 3320.2068

5 37.1592 128.6591 445.4663 1542.3721 5340.2733

4.4 Joint Shannon Entropy of the NBCDagE Distribution

The Joint Shannon Entropy of the NBCDagE distribution quantifies the uncertainty or information content of

the system described by the joint PDF of U1 and U2 (Sosa-Cabrera et al., 2019). For a joint distribution

P (X,Y ) of random variables X and Y , the Joint Shannon Entropy (9) is developed for the NBCDagE

distribution as follows:

f1(s) = p1q1ψ1s
p1−1(1 + ψ1s

p1)−q1−1

f2(s) = p2q2ψ2s
p2−1(1 + ψ2s

p2)−q2−1

g1(s) = ω1e
−ω1s

g2(s) = ω2e
−ω2s

d

dy1
G1(y1;ω1) = g1(y1;ω1)

d

dy2
G2(y2;ω2) = g2(y2;ω2)
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F−1
1 (u1) = G1(y1;ω1), u2 = F2(G2(y2;ω2))

F−1
1 (u2) = G2(y2;ω2)

E[− log f(Y1, Y2)] = −
∫ .

Y1

∫ .

Y2

f(Z1, Z2)[log c(u1, u2) + log f1(Z1) + log f1(Z1)]dZ1dZ2

= −
∫ .

Y1

∫ .

Y2

c(u1, u2) log c(u1, u2)du1du2 −
∫ .

Y1

∫ .

Y2

f(Z1, Z2)[log f1(Z1) + log f1(Z1)]dZ1dZ2

Let

−
∫ .

Y1

∫ .

Y2

c(u1, u2) log c(u1, u2)du1du2 = K(U1, U2)

and

−
∫ .

Y1

∫ .

Y2

f(Z1, Z2)[log f1(Z1)]dz1dz2 = −
∫
Y1

log f1(Z1)

[∫
Y2

f(Z1, Z2)dZ2

]
dZ1

= −
∫ .

Y1

f(Z1) log f(Z1)dZ1 = K(Y1)

Similarly,

−
∫ .

Y2

log f2(Z2)

[∫ .

Y1

f(Z1, Z2)dZ1

]
dz2

= −
∫ .

Y2

f(Z2) log f(Z2)dZ2 = K(Y2)

Hence,

K = K(Z1) +K(Z2) +K(U1, U2)

∫ 1

0

∫ 1

0

[
(θ + 1)(u−θ

1 + u−θ
2 − 1)−

(2θ+1)
θ (u1u2)

−(θ+1)
]
log
[
(θ + 1)(u−θ

1 + u−θ
2 − 1)−

(2θ+1)
θ (u1u2)

−(θ+1)
]
du1du2
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K(Y1) = −
∫ .

Y1

f(Z1) log f(Z1) dZ1

K(U1) = −
∫ 1

0

[
f1(F

−1
1 (u1))g1(G

−1
1 (F−1

1 (u1))) log f1(F
−1
1 (u1))

]
du1

K(U2) = −
∫ 1

0

[
f1(F

−1
1 (u2))g1(G

−1
2 (F−1

2 (u2))) log f1(F
−1
1 (u2))

]
du2

f1(F
−1
1 (u1)) = f1

({
1

ψ1

[
u
− 1

q1
1 − 1

]}− 1
p1

)
= p1q1ψ1

({
1

ψ1

[
u
− 1

q1
1 − 1

]}− 1
p1

)−p1−1

1 + ψ1

({
1

ψ1

[
u
− 1

q1
1 − 1

]}− 1
p1

)−p1
−q1−1

Which is simplified as:

= p1q1ψ1

{
1

ψ1

[
u
− 1

q1
1 − 1

]} p1+1
p1

u
q1+1
q1

1

Similarly,

f2

({
1

ψ2

[
u
− 1

q2
2 − 1

]}− 1
p2

)
= p2q2ψ2

{
1

ψ2

[
u
− 1

q2
2 − 1

]} p2+1
p2

u
q2+1
q2

2

Also,

g1

(
1

ω1p1
log

1

ψ1
(1− u

− 1
q1

1 )

)
= ω1ψ

− 1
p1

1 (1− u
− 1

q1
1 )−

1
p1 ,

and

g2

(
1

ω2p2
log

1

ψ2
(1− u

− 1
q2

2 )

)
= ω2ψ

− 1
p2

2 (1− u
− 1

q2
2 )−

1
p2 .

K(U1) = −
∫ 1

0

[
p1q1ψ1

{
1

ψ1

[
u
− 1

q1
1 − 1

]} p1+1
p1

u
q1+1
q1

1

][
ω1ψ

− 1
p1

1

(
1− u

− 1
q1

1

)− 1
p1

]
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log

[
p1q1ψ1

{
1

ψ1

[
u
− 1

q1
1 − 1

]} p1+1
p1

u
q1+1
q1

1

]
du1.

Simplified as:

K(U1) = −p1q1ω1ψ
− 2

p1
1

∫ 1

0

u1

[
1− u

− 1
q1

1

]
log

[
p1q1ψ

− 2
p1

1

{[
u
− 1

q1
1 − 1

]} p1+1
p1

u
q1+1
q1

1

]
du1.

Similarly,

K(U2) = −p2q2ω2ψ
− 2

p2
2

∫ 1

0

u2

[
1− u

− 1
q2

2

]
log

[
p2q2ψ

− 2
p2

2

{[
u
− 1

q2
2 − 1

]} p2+1
p2

u
q2+1
q2

2

]
du2.

Finally,

K = E{− log[f(Y1, Y2)]} = K(U1) +K(U2) +K(U1, U2).

Table 3: Joint Shannon Entropy for the NBCDagE distribution with varying parameter

values .
Parameters: ω1 = 5.0, ω2 = 5.0, ψ1 = 2.0, ψ2 = 2.0, q1 = 2.0, q2 = 2.0, θ = 1

p1 ↓, p2 → 0.5 2.5 5 10

0.5 0.2208 2.1127 1.2441 -5.1262

2.5 2.1127 4.0046 3.1360 -3.2343

5 1.2441 3.1360 2.2674 -4.1029

10 -5.1262 -3.2343 -4.1029 -10.4732

Parameters: ω1 = 5.0, ω2 = 5.0, ψ1 = 2.5, ψ2 = 2.5, p1 = 5.0, p2 = 5.0, θ = 2.5

q1 ↓, q2 → 0.5 2.5 5 10

0.5 1.6286 2.0761 2.4664 2.9611

2.5 2.0761 2.5237 2.9140 3.4087

5 2.4664 2.9140 3.3042 3.7989

10 2.9611 3.3042 3.7989 4.2936

The entropy analysis in Table 3 across various parameter combinations reveals that as parameters such as ω1,

ω2, q1, and q2 increase, the entropy values generally rise, indicating greater system complexity and disorder.

Conversely, increasing values of θ and p2 tend to decrease entropy, signaling more excellent system stability.

Negative entropy values, particularly for higher p1 and p2, suggest instability or complex behavior, while
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Parameters: p1 = 5.0, p2 = 5.0, ψ1 = 2.0, ψ2 = 2.0, q1 = 2.0, q2 = 2.0, θ = 1

ω1 ↓, ω2 → 0.5 2.5 5 10

0.5 0.0529 0.5450 1.1602 2.3904

2.5 0.5450 1.0371 1.6523 2.8826

5 1.1602 1.6523 2.2674 3.4977

10 2.3904 2.8826 3.4977 4.7280

Parameters: ω1 = 5.0, ω2 = 5.0, p1 = 5.0, p2 = 5.0, q1 = 2.0, q2 = 2.0, θ = 1

ψ1 ↓, ψ2 → 0.5 2.5 5 10

0.5 -3.2259 -0.2750 0.1059 0.2182

2.5 -0.2750 2.6760 3.0568 3.1692

5 0.1059 3.0568 3.4377 3.55001

10 0.2182 3.4377 3.55001 3.6623

Parameters: ω1 = 5.0, ω2 = 5.0, ψ1 = 2.5, ψ2 = 2.5, p1 = 5.0, p2 = 5.0, q1 = 2.0, q2 = 2.0

θ 0.5 2.5 5 10

Shannon Entropy 2.7970 2.3307 1.9107 1.3803

positive values reflect higher system diversity and order. The results highlight a trend where higher ω1 , ω2, and

q1 , q2 values lead to more complex, disordered systems. In contrast, larger θ values contribute to more stable,

less complex systems.

5 Discussion

The findings of this study contribute to the growing body of research on multivariate distributions based on

copulas by introducing a new bivariate family combining the Clayton Archimedean copula with the Dagum

distribution. Copula-based approaches have become indispensable in modeling complex dependencies because

they can separate marginal distributions from dependency structures (Sun et al., 2019; Fang & Pan, 2021).

This study aligns with earlier works, such as those by Oh and Patton (2017), which demonstrated the utility of

copulas in capturing high-dimensional dependencies. This study expands on existing methodologies by

leveraging the Clayton copula’s flexibility in modeling asymmetric dependencies and the Dagum distribution’s

versatile hazard function, offering a model that effectively handles dependence and marginal distribution

complexities.

In comparison with other bivariate distributions derived from copulas, such as those using the

Farlie–Gumbel–Morgenstern (FGM), Ali–Mikhail–Haq (AMH), and Gumbel-Hougaard copulas, the NBCDagE

distribution offers greater adaptability. For instance, the Clayton copula, known for its ability to model strong

lower-tail dependence by Li and Kang (2018), complements the Dagum distribution’s ability to capture heavy
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tails and varying hazard functions, as also identified by Okorie et al.(2019). This combination is particularly

advantageous over simpler copula-based models like the bivariate Weibull distribution derived from the FGM

copula, which may be limited in capturing extreme dependence or tail behavior, according to Cooray (2019).

Additionally, the sensitivity of the NBCDagE distribution’s entropy and joint moments to parameter variations

underscores its potential for applications requiring precise modeling of variability and dependence, such as in

reliability analysis and survival studies.

Furthermore, the study’s findings align with recent advancements in copula-based multivariate modeling, such

as the use of Marshall-Olkin methods to construct generalized bivariate distributions like the inverted

Kumaraswamy or bivariate Lindley distributions by Peres et al. (2018) and Tahir et al. (2020). While effective

in specific applications, these models may lack the comprehensive flexibility offered by the NBCDagE

distribution, particularly in capturing diverse dependence structures and tail behaviors. The detailed

examination of the NBCDagE distribution’s statistical properties, including entropy and joint moments,

contributes a robust framework for analyzing complex bivariate data. This paper highlights the versatility of

copula-based models. It sets a foundation for future research exploring extensions to higher dimensions and

diverse application areas, such as finance, environmental modeling, and health sciences.

6 Conclusion

This study presents a new bivariate distribution family combining the Clayton Archimedean copula with the

Dagum distribution, aiming to model complex dependencies and diverse data structures. We analyzed the

impact of varying parameters(ω1, ω2, ψ1, ψ2, p1, p2, q1, q2aandθ) on the distribution’s behavior, including its

PDF, CDF, joint moments, and entropy. The analysis of the NBCDagE distribution through its PDF, CDF,

and contour plots shows that increasing parameters sharpens the PDF peak and concentrates the probability

density, while decreasing parameters flatten the PDF and spread the density over a broader range. Higherθ

values lead to lighter tails and quicker accumulation in the CDF. In comparison, lower θ values result in heavier

tails and slower accumulation, demonstrating the distribution’s flexibility in capturing varying data

characteristics. The results show that increasing parameters such as ω1, ω2, q1, andq2 leads to higher entropy

values, indicating greater complexity and disorder. In contrast, higher θ,p1 and p2 values result in lower

entropy, signaling more stable systems. Joint moments are sensitive to parameter changes, with higher values

resulting in increased variability and heavier tails. The model effectively captures various dependence

structures, making it suitable for accurate economic modeling, reliability, and survival analysis. Future research

may extend this framework to higher-dimensional settings, refine parameter estimation methods, improve

computational efficiency, and explore applications in diverse industries.
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