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Abstract 

This paper investigates an unconstrained form of classical Weber problem. The main idea 
is to reformulate Weber problem as an unconstrained minimum norm problem. A result 
based on the representation of the objective function as a Lipschitzian function, which is 
necessarily a convex function, is proposed. The existence of global solution to such 
problem is proven using coercivity assumptions. 
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Introduction 

The continuous single-facility location problem can be stated as follows: find the location for a 

new facility ( )
ff yxX ,= such that the sum of the weighted distances from X to n existing facility 

locations ( )( )niyxP iii ...,1,, == is minimized. 

If we let ( )iPXd , represent the distance between X and iP and let iw represent the positive weight 

associated with travel between iP and X, then the problem can be formulated as: 

   ( ) ( )∑
=

=
n

i

ii
X

PXdwXfminimize
1

,            (1) 

Where distance is measured using the Euclidean-distance metric i.e., 

   ( ) ( ) ( )( ) 2122
, ififi yyxxPXd −+−=            (2) 

This problem is sometimes called the Weber problem. The Weber problem (WP) has two very 

important properties. First, ( )Xf is a convex function which ensures that any local optimum is 

also a global optimum. Second, the optimal location for the new facility must lie within the convex 
hull of the existing facility locations. 

In recent times, research have been carried out on the minimum norm problems and resolved using 
several techniques, see ([1,3,4,5,11]) to mention a few. Such problems have been found useful in 
approximation theory, statistical estimation problem [11], signal and image reconstruction as well 
as in other engineering applications [3]. 

In the [3], the author showed that minimum norm problem can be recast as fixed point problem 

and showed Txx = .He further proved the existence and uniqueness of the minimum solution of 

operator equation exists and is unique, if T is non expansive. The research carried out by [4] was to 
find the minimum norm solution of a linear programs by a Newton-type method which was shown 
to be globally convergent. In [1], the equivalency of this type of problem was shown using duality 
principle. 

A recent stride reported in [11] was directed at an estimation problem using simple random 
sampling technique. The idea was used in formulating the estimation problem as an equivalent 
minimum norm problem in the Hilbert space and resolved by an appropriate application of the 
classical projection theorem. 
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In this paper, we show that a facility location problem otherwise called Weber problem can be 
recast as a minimum norm problem and resolved as a global solution using coercivity assumptions. 

Preliminary and Notation 

Let X be a real Banach space with . and
*X the dual of X. For a function 

ℜ→Xf : and ℜ∈λ consider 

   ( ){ }+∞<∈= xfXxfdom |:  

   [ ] ( ){ }λλ ≤∈=≤ xfXxf |:  

   [ ] ( ){ }λλ <∈=< xfXxf |:  

The set fdom is called the domain of the function f, while the sets [ ]λ≤f and [ ]λ<f are the level 

set and strict level set of f at heightλ .The indicator function of the subset A of X is 

lA ℜ→X: , lA(x): = 




∈∞+

∈

AXxif

Axif

/

0
 

( )XΓ  is the class of lower semicontinuous proper convex function ℜ→Xf : . We conclude the 

section by introducing some definitions and a theorem (which is proved in [9]) that will be useful 
subsequently. 

 

Definition 1 

A set  is said to be weakly closed (w-closed) if it is closed with respect to the topology 

( )*, XXσ on X. 

 

Definition 2 

A set XK ⊂ is said to be weakly compact (w-compact) if every sequence from K contains a 
weakly convergent subsequence. 

Definition 3 

A function f is lower semicontinuous (lsc) at 0x if for every 0∈> there exists a neighbourhood U 

of 0x such that ( ) ( ) ∈−> 0xfxf for all x in U. Equivalently, this can be expressed as 

   ( ) ( )0xfxfinflim
x

≥
∞→

 

Definition 4 

A function f is w-lsc if its lower semicontinuous with respect to the topology ( )*, XXσ on X. 

 

Theorem 1 Weierstrass theorem 

A lower semicontinuous functional on a compact subset K of a normed linear space X achieves a 
minimum on K. 
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Unconstrained Minimization Reformulation 

In order to find an unconstrained minimization reformulation for the minimum norm solution for 
Weber problem (1), we exploit the result of Boyd and Vanderberghe [2] as follows: 

As an application, we can think of the points as locations of plants or warehouses of a company, 
and the links as the routes over which goods must be shipped. The goal is to find locations that 
minimize the total transportation cost. In another application, the points represent wires that 
connect pairs of cell. Here the goal might be to place the cells in such a way that the total length of 
materials needed to interconnect the cells is minimized. 

In the simplest version of the problem, the cost ijf associated with arc (i,j) is the distance between 

nodes i and j: i.e., ( ) jijiij xxxxf −=, , such that we minimize 

   ( )
( )
∑

∈

−=
Aji

ji xxxgminimize
,

           (3) 

We can use any norm, but the most commonly used is the Euclidean or the l1-norm. We can 
include nonnegative weights that reflect differences in the cost per unit distance along different 
arcs: 

   
( )
∑

∈

−
Aji

ji xx
,

               (4) 

By assigning a weight  wij=0 to pairs of nodes that are not connected and wij=1,  otherwise, we 
can express this problem more simply using the objective 

   ∑
<

−
ji

jiji xxw                   (5) 

Thus, the Weber problem (1) can be reformulated as: 

   ( ) ( )∑
=

−==
n

i

iii
X

PXminPXdwminXfmin
1

,           (6) 

Let ( ).,XD ⊂ be a non-empty set and consider the distance function  

   ( ) ( ) { }DccuinfcududXd DDD ∈−==ℜ→ :,,:          (7) 

Having Xu∈ , an important problem consists of determining the set 

   ( ) ( ){ }uduuDcuP DD =−∈= |            (8) 

( )xPu D∈  is called a minimum solution of x by elements of D. 

 

PROPOSITIO8 3.1 

Let ℜ→Dd D : be a distance function and ( ).,XD ⊂  be a non-empty set. 

Then Dd is Lipschitzian. 

 

Proof of proposition 3.1 

Let ( ) { } ( ) { }DccyinfydDccuinfud DD ∈−=∈−= :,:            (9) 

         ( ) ( ) yucycuydud DD −≤−−−=−          (10) 
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Using triangle inequality 

  ( ) ( ) yucycuydud DD −≤−−−=−          (11) 

  ( ) ( ) yuydud DD −≤−⇒            (12) 

For all Xyu ∈,  

Dd⇒ Is Lipschitzian with Lipschitz constant 1. 

 

4. Existence and Uniqueness Theorems 

Consider the constrained 

   ( ) Cxxfmin ∈,            (13) 

   subject to Cl  

To problem (13), we can associate an unconstrained problem: 

   ( ) Xxxfmin ∈,            (14) 

where Clff +=  

we call value of problem (13) the extended real 

   ( ) ( ) ( ){ } ℜ∈∈== CxxfinfCfvPv |,         (15) 

An optimal solution of problem (13) is an element Cx∈ with the property that ( ) ( )Pvxf = . We 

denote by ( )PS or ( )CfS , the set of optimal solutions of problem (13). Therefore, 

( ) ( ) ( ){ } ( ) ( ){ } ( )PSxfxfXxXxxfxfXxCxPS =≤∈∀∈=≤∈∀∈= ;|;|      (16) 

if φ≠∩ fdomC . The set ( )CfS , is denoted by fargmin  

The most important result which assures the existence of minimum solution for (1) is the famous 
Weierstrass’s theorem. But we may use for the same purposes, some coercivity conditions because 
the underlying spaces are not compact. It is obvious that f is coercive if and only if all level 

set [ ]λ≤f are bounded; when f is convex then f is coercive if and only if the level set [ ]λ≤f is 

bounded for some finf>λ . 
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DEFI8ITIO8 4.1 

Let ℜ→Xf : , we say f is coercive if 

   ( ) ∞=
∞→

xf
x
lim             (17) 

Lemma 4.1 

Let ( ).,X be a normed space and ℜ→Xf : . Then ( ) ∞=
∞→

xf
x
lim if and only if [ ]λ≤f  is 

bounded for every ℜ∈λ i.e., f is coercive if and only if the level set is bounded. 

 

 

Proof of Lemma 4.1: 

Since f is coercive i.e. ( ) ∞=
∞→

xf
x
lim , ∃ a scalar r>0 such that ( ) λ>> xfrx ,  ℜ∈∀λ  

   ( )rBfr ,0:0, ⊂≤>∃ℜ∈⇔ λλ          (18) 

This completes the proof. 

Theorem 4.1 ([13,  p.100]) 

Let ( )Xf Γ∈  

(i) If there exists ( )Cfv ,>λ such that λ≤f is weakly compact, then ( ) φ≠CfS ,  

(ii) If X is a reflexive Banach space and f is coercive then ( ) φ≠CfS ,  

 

Proof of Theorem 4.1 

(i) Of course, ( ) [ ]( )λ≤= ffvXfv ,, . Since f is lower semicontinuous (lsc) and convex, f is 

weakly lower semicontinuous. The conclusion follows using the Weierstrass theorem 

applied to the function [ ]λ≤ff |  

(ii) Because f is coercive (see Lemma 3.1), [ ]λ≤f is bounded for every 

ℜ∈λ since [ ]λ≤f is weakly closed and X is reflexive, we have that [ ]λ≤f is weakly 

compact for every ℜ∈λ . The conclusion follows from (i). 

Theorem 4.2 

Let XD ⊂ be a non-empty closed convex set and Xu ∈0  

(i) If X is a reflexive Banach space then ( ) φ≠0uPD  

(ii) If X is a strictly convex normed space then ( )0uPD has at most one element. 

 

Proof of Theorem 4.2 

(i) Let us consider the function Dluf +−= 0: . Since f is Lipschitzian, then it is necessarily 

convex and lower semicontinuous. By theorem 4.1, there exists Xu ∈ such 

that ( ) ( )ufuf ≤ for every Xu∈ i.e. ( )0uPu D∈  
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(ii) We have already seen that ( )uPD ={u}for Du∈ . Let Du∉ suppose that there are two 

distinct elements 21 , xx  in ( )uPD . Then ( ) Dxx ∈+ 21
2

1
, and 

( ) 021 >=−=− uduxux D . Since X is strictly convex, we obtain 

 ( ) ( ) ( ) ( )uduxuxuxuxuxx D=−+−<−+−=−+ 212121
2

1

2

1

2

1

2

1

2

1
 

This contradiction proves that ( )uPD  has at most one element.   □ 

 

Concluding Remarks 

In this paper, we investigated and reformulated the Weber problem as an equivalent minimum 
norm problem. We have also shown that the objective function is Lipschitzian and thus, 
established the existence of global minimum norm solution using coercivity conditions. 
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