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Abstract 
“Mayer waves” are long-period (6 to 12 seconds) oscillations in arterial blood pressure, which 

have been observed and studied for more than 100 years in the cardiovascular system of 

humans and other mammals. A mathematical model of the human cardiovascular system is 

presented, incorporating parameters relevant to the onset of Mayer waves. The model is 

analyzed using methods of Lyapunov stability and Hopf bifurcation theory. The analysis shows 

that increase in the gain of the baroreflex feedback loop controlling venous volume may lead to 

the onset of oscillations, while changes in the other parameters considered do not affect 

stability of the equilibrium state. The results agree with observations of Mayer waves in human 

subjects, both in the period of the oscillations and in the observed age-dependence of Mayer 

waves. This leads to a proposed explanation of their occurrence, namely that Mayer waves are 

a “gain-induced instability”. 

 

Introduction 

The existence of fluctuations in blood pressure has been known since the introduction of the recording 

manometer by C. Ludwig, (Penaz and Mayer, 1978). These fluctuations, usually referred to as waves, 

are classified by various methods including the name of the discoverer, the origin, physiological 

cause, or the frequency or period. The term Mayer waves refers to periodic fluctuations in blood 

pressure which are slower than respiration in animals with normal respiratory movements. They were 

announced by S. Mayer and hence the name. They are also known as third order waves. The 

frequencies reported by various authors for Mayer waves differ considerably. Those described by 

Mayer in rabbits had a frequency of 6-9 waves/min., while other researchers have found waves with 

frequencies ranging from 7-12 waves/min. in humans (Penaz and Mayer, 1978).  

Some researchers have proposed to designate these waves as the “10-second-rhythm” (see for 

example Penaz and Mayer, 1978). The onset of Mayer waves may result in serious physiological 

implications, such as fainting. Mayer waves are of interest to researchers seeking to fully understand 

the functioning of the cardiovascular system. It is generally conceded that Mayer waves appear most 

often when the subjects are exposed to abnormal conditions. Lack of oxygen, the effects of severe 

haemorrhage, and other extreme or sudden changes in blood supply to parts of the body favour the 

appearance of these slow periodic fluctuations (Anderson et al., 1950). Experiments have shown that 

when the blood pressure is measured for subjects lying in a supine position and then in a tilted 

position, there may exist Mayer-like oscillations for the tilted position. A remarkable feature observed 

in these experiments is that the Mayer waves occur more frequently in younger subjects, and 

disappear with age (Epstein et al., 1968; Kaplan et al., 1991; Miyamoto et al., 1982).  

It is essential, for survival, that blood pressure be controlled to stay within a narrow, safe range. This 

function is performed by the body’s control mechanisms, the fastest being the baroreflex. The 

baroreceptors are stretch sensors located in the systemic arteries which detect changes in blood 

pressure. The baroreflex feedback loops respond to baroreceptor impulses to control blood pressure 

via three mechanisms: heart rate, systemic capillary resistance and venous volume. All the three 
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mechanisms are explored in this work. DeBoer ( Deboer et al., 1987) proposed that blood pressure 

variability is caused by a time delay in the baroreceptor loop. If this were the case, one would expect 

the delay to increase with age due to a slowing of the body’s responses. This would then cause an 

increase in the existence of Mayer waves in older people. While one does not discount the 

contribution of delay, it appears not to be the main cause of Mayer waves.  

It is hypothesized that blood pressure variability may be attributed to a change in feedback gain, 

extending the work of (Wesseling et al., 1982). Previous studies of feedback-control systems in 

physiology (Glass and Mackey, 1988; Langford, 1977), and in engineering (Hassard et al., 1981), 

have shown that an increase in feedback gain can cause a system to change behaviour from a steady 

state to an oscillating state. This may be called a “gain-induced instability” and has been studied by 

use of the Hopf Bifurcation theory. Since young adult humans tend to have quicker reflexes and better 

muscle tone than the elderly, they can be expected to have higher gain in the baroreceptor loop. Thus 

our hypothesis that Mayer waves may be a gain-induced instability is consistent with the observed 

age-related data. A mathematical model can be used to give greater insights into the roles of the 

various mechanisms affecting Mayer waves. In addition to incorporating temporal dynamics, this 

model will allow investigation of the effects of each of the three baroreflex feedback loops, 

independently of the other two. Parameter values in the mathematical model are chosen to correspond 

to a typical adult human being. 

The primary objective of this study is to develop a dynamical model for the mammalian circulatory 

system and use it to analyze blood pressure variability dynamics, as a function of the physiological 

parameters in the model. The model is used to establish the existence of Mayer waves and their 

disappearance   with age. 

The Model 

While it is desirable to include the behaviour of each cardiovascular component in a model of the 

circulation, certain components can be lumped together without sacrificing the qualitative behaviour 

of the system (Avula et al., 1978; Lipsitz and Goldberger, 1992). The modeling assumptions and the 

development of the model, first for the basic fluid flow of blood in the cardiovascular system, then 

with the nonlinear baroreflex control are stated below: 

Assumptions 

1. The cardiovascular system is a closed-looped hydrodynamic system comprising two heart pumps, 

two large arteries, two veins and the two capillary networks, corresponding to the systemic and 

pulmonary circulations respectively. The total blood volume is constant in time. 

2. The large arteries and veins and the heart are compliance vessels (Anderson et al., 1950), that is, 

volume is proportional to pressure in these vessels. On the other hand, the smaller arteries and 

veins in the capillary networks are resistance vessels, that is, flow is proportional to pressure. The 

unstressed volume of blood vessels is negligible at all parts of the circulation except in the 

systemic veins. 

3. Flow from the heart is continuous, that is the pulsatile nature of blood pressure is neglected and 

only average pressures and volumes, over the period of the pulse, are dealt with. 

4. The pressure in the heart when relaxed, is equal to that of the veins supplying blood to it.  

5. The baroreceptor feedback gain and its dependence on systemic arterial pressure is modelled as a 

Hill function (described below). 

6. Changes in venous volume, systemic resistance and heart rate act independently in parallel on 

blood pressure. 

7. Compliance is constant in all parts of the cardiovascular system except the systemic veins, where 

it may be varied by the baroreflex. 

8. Resistance is constant for the capillary networks of the pulmonary circulation, but may be varied 

by the baroreflex in the systemic circulation. 
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Model Development 

A notational convention adopted throughout this model is that dynamic variables are represented by 

lower case letters, while parameters and labels are written in upper case. A simple linear model of the 

cardiovascular system is first constructed, then the baroreflex control system is added. Given that Q is 

concentration of blood and λ is a constant, Diagram shows the flow of blood from the heart to other 

parts of the body and back to the heart: 

 

                                               

 

 

Figure 1:  Diagrams showing the flow of blood in the heart. 

 

 

 

 

Linear Cardiovascular Model 

The following linear relationship between volume, V, pressure, P and compliance, C, in the large 

vessels (arteries and veins) of the circulation (Hoppensteadt and Peskin, 1992), is the mathematical 

form of Assumption 2.  

     V C P= ×  (1) 

There are four such equations in the model, corresponding to the systemic arteries and veins, and the 

pulmonary arteries and veins, for which the variables V, P, C are distinguished by subscripts SA, SV, 

PA, PV respectively. However, Equation (1) suggests that if P = 0, then V = 0, which is not the Case, 

especially in the systemic veins which typically contains about 70% of the blood in a human body. 

More realistic relations are: 

    SA SA SAV C P= ×  (2) 

      SV SV SV DV C P V= × +  (3) 

    PA PA PAV C P= ×  (4) 

    PV PV PVV C P= ×  (5) 
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where VD is the unstressed volume, that is the volume of the vessels at p = 0. The unstressed volume 

in the systemic venous circulation is very important, as over one-half of the venous volume is 

unstressed volume (Coleman, 1985). However, the unstressed volume in the other three compliance 

vessels is neglected. The flow, q in the vessels of the capillary networks, modelled (Hoppensteadt and 

Peskin, 1992). as resistance vessels, is  

 A VP P
q

R

−
=  (6) 

Here PA, PV and R represent the pressure in the arteries and veins and resistance respectively, in either 

the systemic or pulmonary circulation. Thus there two such equations of the form (6), for systemic 

and pulmonary capillary flows, distinguished by the subscripts S and P respectively on all variables: 

 SA SV
S

S

P P
q

R

−
=  (7) 

 PA PV
P

P

P P
q

R

−
=  (8) 

From the Frank-Starling Assumption 4, the following relations for the left and right cardiac outputs, 

qL and qR, respectively are given: 

 L L PV L PVq F C P K P= ⋅ ⋅ = ⋅  (9) 

 R R SV R SVq F C P K P= ⋅ ⋅ = ⋅  (10) 

Here CL and CR are the compliances in the left and right hearts respectively and F is the heart beat 

frequency. The subscripts A and V represent arteries and veins respectively, while the subscripts S 

and P stand for the systemic and pulmonary circulations, respectively. The rate of change of volume 

of an incompressible fluid in a vessel is the difference between the rates of flow of the fluid, into and 

out of the vessel. Hence, the following differential equations are obtained, for the change of volume of 

blood in the systemic arteries, systemic veins, pulmonary arteries and pulmonary veins respectively: 

 SA
L S

dv
q q

dt
= −  (11) 

 SV
S R

dv
q q

dt
= −  (12) 

 PA
R P

dv
q q

dt
= −  (13) 

 PV
P L

dv
q q

dt
= −  (14) 

Lq , Rq , Sq  and Pq , represent flow through the left heart, the right heart, the systemic capillaries and 

the pulmonary capillaries, respectively. At this stage there are twelve equations with twelve 

unknowns: eight algebraic equations (1)-(10) and four differential equations (11) - (14). The eight 

algebraic equations may be used to eliminate the flow variables q and the pressure variables p from 

the system of differential Equations. The result is a system of four differential equations in the four 

volume variables.  From Assumption 1, that blood is conserved, the following is obtained: 

 SA SV PA PV OV V V V V+ + + =  (15) 

where OV  is the total blood volume, a constant. Equation (15) indicates that the four volume variables 

are not independent. As VPA has the smallest value, it is chosen for elimination and a system of three 
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equations in VSA, VSV and VPV, is obtained as follows (mathematically any one of the four volume 

variables could be eliminated). 

Hence the mathematical model of the cardiovascular system consists of the following system of three 

ordinary differential equations. 

SVS

D

SVS

SV

SAS

SA

PV

PV
L

SA

CR

V

CR

V

CR

V

C

V
CF

dt

dv

⋅
−

⋅
+

⋅
−⋅⋅=                (16) 

[ ]1SV SA R
SV D

S SA S SV SV

dv V F C
V V

dt R C R C C

 ⋅
= − + − ⋅ ⋅ 

               (17) 

1PV O SA SV PV L
PV

P PA P PV PV

dv V V V V F C
V

dt R C R C C

 − − − ⋅
= − + ⋅ ⋅ ⋅ 

              (18) 

Note that this model is linear in the three volume variables represented by lower case V’s. The system 

becomes nonlinear, on the inclusion of the baroreflex feedback control loops. 

Model with Baroreceptor Control 

The Hill function is defined by: 

 ( )
n

n n n

x
y f x

a x
= =

+
 (19) 

The baroreceptor response curve described in the literature strongly resembles a Hill function and 

therefore is modelled in this thesis as: 

 
( )

( )
( ) ( )

n

SA
n SA n n

C SA

P
B P

P P
=

+
 (20) 

where nB  is the total baroreceptor afferent activity, n is a measure of the baroreflex gain, and PC, is 

the critical arterial pressure. The term “gain” normally is used to represent a ratio of the change in 

output to a change in input, for very small changes in nB . This is however, essentially the 

mathematical definition of a derivative. The figure below shows the graph of the Hill function with n 

= 3 and PC = 1 using TI 89. 

 

Figure 2: Graph of the Hill function 

Thus, for our model, using the Hill function for the baroreflex response, the gain is defined by the 

derivative 

Bn(PSA) 

Bn(PSA) = 0 PSA = 0 

PSA 
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 n

SA

dB

dP
µ =  (21) 

Thus, this becomes 

( ) ( )

( ) ( )

1

2

n n

SA C

n n

C SA

n P P

P P

µ
−
⋅

=
 + 

 

If SA CP P=  

 
4 C

n

P
µ =  (22) 

that is, gain µ is equal to the slope of the response function (for fixed n), at a particular point.  

This is a good measure of the gain as it is very close to the maximum value of the slope. The variables 

are scaled so that 1CP = , and µ 4nµ = . Also, PSA is proportional to VSA (since CSA is a constant), so 

Bn can be expressed in terms of VSA rather than PSA. This yields: 

 
( )

( )
( ) ( )

n

SA SA
n SA n n n

SA C SA

V V
B P B

C V V

 
= =  + 

 (23) 

where VC is the volume at the critical pressure. Changes in heart rate, F and systemic capillary 

resistance, RS must be in an opposite direction to a change in arterial blood pressure, in order to 

restore normal pressure. Thus a simple model of the baroreflex action on F is: 

 
( )

(1 )
( ) ( )

n

O C
O n n n

C SA

F V
F F B

V V
= − =

+
 (24) 

where FO is a constant. Equation (24) implies that if Bn approaches 1 (i.e. very large pressure PSA), 

then F will be zero. However, one would expect that in reality F will have a non zero minimum value 

even when Bn approaches 1. The following is a more realistic representation: 

 1
1 2 2

( )
(1 )

( ) ( )

n

C
n n n

C SA

F V
F F B F F

V V
= − + = +

+
 (25) 

where F1 and F2 are constants, and F2 is the value of F when Bn = 1. Similarly, the baroreflex action on 

RS is modelled as: 

 1
1 2 2

( )
(1 )

( ) ( )

n

C
S n n n

C SA

R V
R R B R R

V V
= − + = +

+
 (26) 

On the other hand, changes in systemic venous compliance, CSV, and systemic venous unstressed 

volume, VD, are in the same direction as a change in arterial blood pressure. Thus the action of the 

baroreflex on each of VD and CSV is modelled as: 

 1 2D nV D B D= ⋅ +  

or 

 1
2

( )

( ) ( )

n

SA
D n n

C SA

D V
V D

V V
= +

+
. (27) 

Likewise, 
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 1 2SV nC C B C= ⋅ +  

or 

 1
2

( )

( ) ( )

n

SA
SV n n

C SA

C V
C C

V V
= +

+
 (28) 

Now, from the basic linear cardiovascular model (16), (17) and (18), four different nonlinear 

cardiovascular models are obtained, corresponding to insertion of the baroreceptor feedback function 

into each of F, RS, CSV and VD, as above. This allows independent investigations of each of the four 

feedback loops, which would be difficult and dangerous to carry out experimentally on live subjects.  

 

Parameter Determination 

Many of the parameters in this model are available in the literature, as displayed in Table 1. The 

remaining parameters, F1, F2, R1, R2, C1, C2, D1, D2, CSV, VC and VD are not found in the literature and 

need to be determined. 

Critical Volume, Vc 

No value of VC is in the literature. However the normal resting value of VSA is known to be 1.0 litre. It 

is assumed that the resting and critical states are the same and hence VC is taken as 1.0 litre. Since VC 

plays the role of a in equation (22), this has the bonus effect simplifying the formula (22) for the gain, 

to 4nµ = . 

Table 1 Typical parameter values for an adult human being  

PARAMETER !ORMAL VALUE 

Compliance in Systemic Arteries, CSA 0.01 litres/mm Hg 

Compliance in Pulmonary Arteries, CPA 0.00667 litres/mm Hg 

Compliance in Pulmonary Veins, CPV 0.08 litres/mm Hg 

Systemic resistance, RS 17.5 mm Hg/(litre/min.) 

Pulmonary resistance, RP 1.79 mm Hg/(litre/min.) 

Compliance in Right Heart, CR 0.035 litres/mm Hg 

Compliance in Left Heart, CL 0.014 litres/mm Hg 

Heart rate, F 80 beats/min. 

(Source: Hoppensteadt and Peskin, 1992) 

 

Normal Systemic Venous Unstressed Volume, VD 

An exact normal value of VD is not found in the literature. However, (Coleman, 1985), gives the value 

of VD as ”over half” the systemic venous volume VSV. As the normal value of VSV is 3.5 litres, the 

normal value of VD is taken as 2.0 litres in this study. 

Normal Systemic Venous Compliance, CSV 

The normal systemic venous compliance is given as 1.75 litres/mm Hg (Hoppensteadt and Peskin, 

1992). This value of CSV does not account for systemic venous unstressed volume. However, this 

study considers the systemic venous unstressed volume. Using Equation (3), with VSV = 3.5 litres, VD 

= 2.0 litres and PSV = 2 mm Hg, the corresponding value of CSV is computed as 0.75 litres/mm Hg. 

Normalized Hill Function Constants, F1, F2,R1,R2,C1,C2,D1, and D2 

These constants are required for the use of the Hill function to model the baroreceptor afferent 

activity, Bn, acting on the systemic venous compliance, systemic venous unstretched volume, 
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systemic resistance and heart rate. This current study appears to be the first time such an approach has 

been taken, hence the non-availability of these constants. Therefore, sets of different values of each of 

these constants are investigated in this study, over ranges which yield baroreceptor responses 

consistent with experimental observations. 

Analysis and Discussion 

Analysis  

The control of the baroreflex on heart rate, F, systemic capillary resistance, RS, systemic venous 

unstressed volume, VD, and systemic venous compliance, CSV, are investigated individually in the 

mathematical model. Specifically, the appropriate non-linear baroreflex response function, from (25) 

to (28) is substituted in each parameter in turn, to obtain the corresponding model for investigating the 

baroreflex effect on the parameter under consideration.  Each of the four models is analyzed to find 

out if a bifurcation occurs as the baroreceptor gain µ varies, using Hopf’s Bifurcation Theory.  

First, the steady state solution of each model was found. Then the system of equations was linearised 

at this steady state. The value of the Jacobian matrix evaluated at the steady state was found. Since it 

is a real 3 × 3 matrix, with constant real entries, the eigenvalues are either all three real or else one 

real and two complex conjugate. The eigenvalues of the resulting matrix were also found. In each case 

there existed, for some values of µ, one real and two complex eigenvalues. The real part of the pair of 

complex conjugate eigenvalues was plotted as a function of µ, to find out if a crossing point existed. 

The value of µ at which the real part crosses the µ-axis is what is known as the crossing point or Hopf 

bifurcation point. At this point there exists a pair of purely imaginary eigenvalues (±i) and the steady 

state is said to be non-hyperbolic. When a crossing point was found, the imaginary part of the 

complex eigenvalues was plotted to obtain its value at the crossing point. The third (real) eigenvalue 

always remained negative. According to the general theory of Liapunov stability, when the real part of 

the complex eigenvalues crosses from negative to positive, the equilibrium state changes from 

asymptotically stable to unstable. The computation of the eigenvalues and the plotting of the curves 

were done using Mathlab. From the Hopf Bifurcation Theorem (Hassard et al., 1981), generically at 

such a crossing point, a periodic solution is either created or destroyed. Further numerical 

computations verify the existence of a stable limit cycle near the crossing point. The imaginary part at 

the crossing point gives a good approximation to the frequency of the resulting oscillations. 

Baroreflex Control of Heart Rate 

Models with RS, CSV and VD taken as constants and F given by Equation (25) were considered. 

1CV =  and 1SAV = .  Then 2
1

2
F

F
F +=  

Assuming a normal heart rate of 80 beats/min., values of F1 and F2 considered were: F1 = 160 

beats/min. and F2 = 0 beats/min., F1 = 80 beats/min. and F2 = 40 beats/min., and F1 = 40 beats/min. 

and F2 = 60 beats/min. All of these models exhibited a stable steady-state, for all values of gain µ 

tested. No evidence of waves was found, (Abbiw-Jackson, 1997) as shown in Figure 3. 
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Figure 3  Graph of Baroreflex action on changes in heart rate, F, using TI 89 

 

Baroreflex Control of Systemic Resistance 

Models with the baroreflex affecting only systemic resistance RS, while CSV, VD and F are taken as 

constants, are considered next. RS is given by Equation (26) and a typical value of systemic resistance 

is 17.5 mmHg/(litre/min.). 

 1
2

2
S

R
R R= +  

Values of R1 and R2 used are: R1 = 35 mm Hg/(litre/min.) and R2 = 0 mm Hg/(litre/min.), R1 = 20 mm 

Hg/(litre/min.) and R2 = 7.5 mm Hg/(litre/min.), and R1= 15 mm Hg/(litre/min.) and R2 = 10 mm 

Hg/(litre/min.). These models had a stable steady-state for all values of gain, µ tested, and showed no 

indications of waves (Abbiw-Jackson, 1997), as shown in Figure 4. 

 

 

Figure 4  Graph of Baroreflex action against Resistance, RS, using TI 89 

F 

Bn(PSA)  

RS 

Bn(PSA)  
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Baroreflex Control of Venous Volume 

The baroreflex influences the systemic venous volume through the unstressed volume, VD and the 

compliance, CSV. Models with the baroreflex controlling CSV and VD individually were considered. 

For both cases the models exhibited unstable steady-states for gains past a crossing point with pure 

imaginary eigenvalues. Figures (5 to 8) display four graphs obtained for models with the baroreflex 

controlling unstressed venous volume. It shows graphs of the real parts of the complex eigenvalues, 

for models with D2 equal to 0, 0.5, 1.0, and 1.5 litres, respectively. Note that Re(λ) crosses through 

zero in all cases. This implies a Hopf bifurcation, giving birth to an oscillation or wave. 

Similarly, Figures (9 to 11) are obtained from models with the baroreflex controlling venous 

compliance only. It shows graphs of the real parts of the complex eigenvalues for three cases of 

models with C2 equal to 0, 0.25, and 0.5 litres/mm Hg, respectively. All three cases give a Hopf 

bifurcation. The values of the imaginary parts of the complex eigenvalues at the crossing points give 

the angular frequency of the oscillations produced.  

Control of Venous Volume 

The mathematical model has been constructed so that the systemic venous unstressed volume VD is 

controlled by the baroreflex, while RS, CSV and F are assumed to remain constant. The explicit effect 

on VD of the baroreflex is given by Equation (27). Different choices of the constants D1 and D2 in (27) 

were considered. The stability of the equilibrium state is investigated, by computation of the 

eigenvalues of the Jacobian matrix, using Mathlab, in exact rational arithmetic. The results presented 

here are expressed in terms of exact rational numbers, free of the round off errors which would be 

introduced by finite decimal representations. 

D1 = 4.0 litres and D2 = 0 litres 

Using equations (16), (17), (18), we obtain the system of equations representing the circulation for 

each set of values for D1 and D2 as follows: 

( )
( ) 












+







−+
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



+






−= µ

µ

4

4
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1105

32
14V
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PVSA
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dt
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
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


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



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
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
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
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
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4
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320
V

21

80

7
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SA

SA
SA

SV

V

V
V

dt
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PVSVSA
PV VVV

dt

dV
1058484420 −−−=  

The steady state values of the system are found to be: VSA = 1.0 litres, VSV= 3.5 litres, and VPV = 0.4 

litres. Linearization of the model at the steady state gives the matrix A. 















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
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−
−

=
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8
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7

40

µ

µ

A  

The eigenvalues of A are: 
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For values of µ of interest, eigenvalue λ1 is real and negative. Eigenvalues λ 2 and λ 3 are complex 

conjugates, with real part which crosses through zero from negative to positive as µ increases, near µ 

= 18, as shown in the figure below:  

 

           

Figure 5: Re(λ) as a function of µ for controlled   Figure 6: Re(λ) as a function of µ for  

                VD with D2 = 0 litres.                     controlled VD with D2 = 0.5 litres 
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Figure 7: Re(λ) as a function of µ for controlled   Figure 8: Re(λ) as a function of µ for 

                VD with D2 = 1.0 litre        controlled VD with D2 = 1.5 litres 

 

Control of Venous Compliance 

A mathematical model is constructed in which the systemic venous compliance CSV is controlled by 

the baroreflex, while RS, VD and F, are held constant. CSV is given by Equation (28). The stability of 

the model, for different values of C1 and C2 is explored. The results of these calculations are presented 

in Figure (9 to 11). 

 

           

Figure 9: Re(λ) as a function of µ for controlled   Figure 10: Re(λ) as a function of µ for Controlled 

                Csv with C2 = 0 litres/mm Hg.         Csv with C2 = 0.25 litres/mmHg. 
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      Figure 11: Re(λ) as a function of µ for  

                         controlled Csv with C2 = 0.5 litres/mm Hg. 

 

Discussion 

Models with only heart rate F, or systemic capillary resistance RS, controlled by the baroreflex did not 

exhibit a Hopf Bifurcation, while the models with systemic venous compliance, CSV or systemic 

venous unstressed volume, VD controlled by the baroreflex were capable of Hopf bifurcation. Hence 

the effect of the baroreflex on F and RS, individually, is not the cause of oscillations. However, if the 

effect of the baroreflex on F and RS were combined in models with the effects on VD or CSV, they may 

play a part in causing instability.  

It is observed that for all models with VD and CSV individually controlled by the baroreflex, the real 

part of the complex eigenvalues increases as the gain, µ, increases and the graph crosses the µ-axis at 

a positive value of µ. This implies a Hopf bifurcation and the presence of a limit cycle oscillation. The 

stability of this limit cycle oscillation has been verified numerically. The similarity of the results 

obtained for models with CSV and VD individually controlled by the baroreflex is to be expected, as 

the two have similar effects on blood flow. The model with the baroreflex controlling only CSV is 

more stable than that with the baroreflex controlling only VD. Thus it appears that the baroreflex 

control of VD is more important than the control of CSV where gain induced instability is concerned, 

but control of CSV also plays an important part.  

Further insights were obtained on varying two parameters in the model simultaneously; namely, the 

gain parameter µ together with either one of D2 or C2 (the minimum unstressed systemic venous 

volume or compliance respectively). As either of D2 or C2, increases, the value of gain at which the 

graph crosses the µ-axis increases. This suggests that an increase in D2 or C2 increases the stability of 

blood pressure. Changing the value of D2 or C2 causes re-setting of the baroreceptor curve. However 

as different people may have different D2 and C2 values, different people can be expected to take 

different times before Mayer waves are observed, when subjected to identical Mayer wave inducing 

stresses. In particular it could be expected that young and old people will have different D2 and C2 

values and this may explain the difference in the incidence in Mayer waves observed in young and old 

people. As one would expect, larger D2 and C2 values in older people, correspond to veins which have 

become stretched and less fit.  

In Figure 12, D2 is plotted against the crossing point value of gain µ. The top left region represents the 

parameter values for which the equilibrium state is stable, and corresponds to older subjects, who 

would tend to have smaller gains µ, and larger D2 values. The lower right region represents unstable 

equilibria, susceptible to oscillations, and corresponds to youth. Thus, stability depends on both the 

baroreflex gain µ and D2.  Thus, young adults, with high gain and small D2, are in the unstable region, 

while older adults with the opposite characteristics are in the stable region. A similar situation holds 

for µ and C2. The conclusion is that the existence of Mayer waves and their disappearance with age 

can be explained, at least in part, as a case of gain induced instability. 
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Figure 12:   Graph of D2 against crossing point values of µ 

 

Conclusions 

A simple model for the human cardiovascular system with baroreceptor control feedback has been 

proposed. The model has been reduced to a single delay-recruitment equation, and the behaviour of 

solutions have been studied analytically and numerically. Steady solutions can lose stability in a Hopf 

bifurcation to oscillatory solutions, consistent with Mayer waves, as delays are increased, or as 

feedback gain is increased, or as peripheral resistance is reduced. Chaotic dynamics are not a feature 

of our model. 

The model indicates that sympathetic control of peripheral resistance is more important than 

sympathetic control of heart rate, and that solution stability is more sensitive to delay than to gain. 

The consequences of ageing are considered and found to be consistent with our model, with decreased 

gains giving more stable behaviour. Thus the principal conclusion of this paper is that the existence of 

Mayer waves and their disappearance with age may be explained by means of the Hopf bifurcation 

theorem, as a case of gain induced oscillations. 
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