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Abstract 

The growth and decline of population in nature and the struggle of species to 
predominate over one another has been a subject of interest dating back through the 
ages.  Applications of simple mathematical concepts to such phenomena were noted 
centuries ago.  This paper discusses mathematical models in biology, their 
formulation, analysis and interpretation.  Much emphasis is placed on how 
appropriate assumptions simplify the problem, how important variables are identified 
and how differential equations are tailored to describing the essential features of a 
continuous process.  The trust of this paper is the application of mathematical models 
in helping to unravel the underlying mechanisms involved in biological and 

ecological processes. 
 

Introduction 

In contemporary society, almost all domains of human knowledge have to 
apply mathematical and computational methods.  Mathematics is thus 
“sine quo non” in the area of science and technology.  Biology is a natural 
science that deals with the study of living things and their interactions with 
their environment.  In their study biologists make use of mathematical 
models containing differential equations which enable them come out with 
laws regarding the behavior of living things in relation to their environment.  
The increasing study of realistic mathematical models in ecology (basically 
the study of the relation between species and their environment) is a 
reflection of their use in helping to understand the dynamic processes 
involved in such areas as predator-prey and competition reactions, multi-
species societies and ecological control of pests. 

The increasing use of mathematics in biology is inevitable as biology 
becomes more quantitative.  Mathematical biology research, which has 
direct impact on agriculture development, is useful and functional as an 
academic activity to pursue.  From mathematical point of view, the art of 
good modeling relies on: 
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First: A sound understanding and appreciation of the biological 
problem; 

Second:  A realistic mathematical representation of the 
important biological phenomena.  That is the variables involve 
must be carefully defined and the governing laws identified.  
The mathematical model is the some equations representing 
an idealization of the physical laws, taking into account some 
simplifying assumptions in order to make the model tractable. 

Third: Finding useful solutions.  When permitted, exact solutions 
are usually desired, but in many cases, one must rely on 
appropriate solutions, using numerical techniques. 

Fourth: A biological interpretation of the mathematical results 
in terms of insights and predictions is then given.  That is the 
solutions obtained should be consistent with physical 
intuition and evidence. 

The Biological Problem 

Human activities have brought about drastic changes in the global 
environment.  One grave consequence of this is the increased incidences 
of biological invasions and growth.  In nature, all organisms reproduce, 
migrate or disperse and go to extinction.  These processes can take a 
diversity of forms as in walking, swimming, flying or being transported by 
wind or flowing water.  Dispersive movements become noticeably active 
when an offspring leaves its natal sites, or when an organism’s habitat 
deteriorates from overcrowding.  Seen from a geological time scale, the 
geographical distribution of species on the earth’s surface has changed 
each time a large-scale climatic or geomorphological change has taken 
place (Cox and Moore, 1993).  These changes have resulted in 
geographical separations in a species’ range, at times causing further 
speciation. 

Mathematical Formulation 

The spatial spread of an invading species can basically be seen as a 
process in which individuals disperse while multiplying their numbers.  
One model in which dispersal is formulated as a random diffusion 
process is the Fisher’s equation.  Assume that a few individuals invade 

the center of a two-dimensional homogenous space.  If ),( txn  denotes the 

population density at time t  and spatial coordinate ),( yxx = , the 

Fisher’s equation in two-dimensional space is expressed as 
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The left-hand side of this equation indicates the change in the population 
density with time, which is caused by random diffusion and local 
population growth, expressed respectively by the first and second terms 
on the right-hand-side.  D is the diffusion coefficient, which is a measure 
of how quickly the organisms disperse.  The population growth is 
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formulated by the logistic growth function, where ε  is the intrinsic rate 
of increase and )0(≥µ  represents the effect of intraspecific competition 

on the reproduction rate.  Fisher (1937) first proposed this equation as a 
model in population genetics to describe the process of spatial spread 
when mutant individuals with higher adaptivity appear in a population. 

The Diffusion Model 

If a range expands solely by diffusion without population growth, the 
Fisher equation (1) becomes the so-called diffusion equation in two-
dimensional space: 
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In this model, let the number of individuals that invade the origin at time 

0=t  be 0n .  Then the initial distribution is given by )()0,( 0 xnxn δ= . 

Here, )(xδ  is the delta function, which indicates that the probability of 

finding an individual is concentrated in the immediate vicinity of the 
origin.  Under this initial condition, the diffusion equation (2) has a 
solution: 
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which is the two-dimensional Gaussian (or normal) distribution.   

Let 
22 yxr += , the radial distance from the origin to a point ),( yx , 

then equation (3) is rewritten as a function of r  and t : 
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Here, ),( trn  expresses the population density of an arbitrary point on a 

circle of radius r. 

Logistic Model 

The model above describes the spread of population by diffusion alone.  If 
conversely the population changes by growth (i.e. reproduction), alone 
without diffusion, equation (1) becomes the so-called logistic equation.  
Thus we shall have: 
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where ),( trn  is the population density at time t  for some fixed location.  

The expression )( nµε −  represents the per capita growth rate, which 

declines linearly with the density.  The intrinsic rate of increase ε  is the 
growth rate (i.e., difference between the birth rate and death rate) when 
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density is low, while nµ  represents the density effect on the reproductive 

rate.  As the density grows, competition for food or space increases, 
either directly through interactions between individuals or directly by 
exploitation of resources, resulting in the decline of the rate of 
reproduction.   

Let 
µ
ε

=k , then equation (5) becomes 
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where k  is the carrying capacity of the environment, which is usually 
determined by the available sustaining sources.  If there is no 

competition within the species (i.e. 0=µ ), the logistic equation becomes 

the so-called Malthusian equation 

n
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whose solution is given by 

tentn ε
0)( = ,  (8) 

where 0n  denotes the initial density.  When 0>ε , the population 

increases exponentially without limit.  On the other hand when 

competition exists within the species (i.e., 0>µ ), the solution for 

equation (5) is given as: 
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                       Fig. 1 Solution of Malthusian equation and logistic equation. 
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Figure 1 shows the change in density over time as given by equations (8) 
and (9).  Initially when the density is low, the curves for both equations 
increase exponentially.  With increasing density, the effect of compition 
becomes apparent in the logistic equation, with the growth rate slowing 
down after the density reaches half the carrying capacity, and eventually 

the density asymptotically approaches the carrying capacity k .   

There are two steady states or equilibrium states for equation (6) namely 

0=n  and kn =  where 0=
dt

dn
.  The steady state 0=n  is unstable since 

liberalization about it gives n
dt

dn
ε≈  and so n  grows exponentially from any 

initial value.  The other steady state kn =  is stable.   

Linearization about it gives  

)(
)(

kn
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knd
−−≈

−
ε  and so kn→  as ∞→t . 

From equation (6), if kn <0 , )(tn  simply increases monotonically to k.  In 

this case there is a qualitative difference depending on whether 
20
kn >  or 

20
kn < . 

With 
20
kn < , the form has a typical sigmoid character.  If 

20
kn > , )(tn  

decreases monotonically to k. (See Fig. 2).  This implies that the per capita 

rate is negative. The carrying capacity k  determines the size of the stable 
steady state population while ε  is a measure of the rate at which it is 
reached. 
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Fig. 2 Logistic population growth. 

 

Generalization 

To place both of the above into a somewhat broader context, we proceed 
from a more general assumption, that for an isolated population (no 
migration) the rate of growth depend on the population density.  Therefore 
we write that 
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)(nf
dt

dn
= .  (10) 

In this model, we consider the function f  as an infinite power (Taylor) 

series as sufficiently smooth: 
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Thus any growth function may be written as a (possibly infinite) polynomial 

(Lamberson and Biles, 1981).  In equation (10) we require that 0)0( =f  to 

dismiss the probability of spontaneous generation, the production of living 
organisms from inanimate matter (Hutchinson, 1978).  In any growth law 
this is equivalent to 

0)0(
0

==
=

f
dt

dn

n

. 

In this case assume that 

00 =a  

=
dt

dn
⋅⋅⋅+++ 3

3

2

21 nanana  

      )()( 2

321 nngnanaan =⋅⋅⋅+++= . 

The polynomial )(ng  is the intrinsic growth rate of the population.  The 

function )(nf  in equation (10) is nonlinear so the steady state solutions n  

are solutions of 0)( =nf .   

There may be several steady state solutions depending on the form of )(nf .  

The gradient )(nf ′  at each steady state then determines its linear stability.  

These steady states solutions are linearly stable to small perturbations if 

0)( <′ nf  and unstable if 0)( >′ nf .   

Because of its simple structure and explicitly solution, the logistic equation 
has been widely employed in theoretical work and in empirical studied to 
describe the growth of populations both in the field and under laboratory 
conditions (Brown and Rottry, 1993). 
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