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Very Low Frequency Electromagnetic (VLF-EM) and electrical resistivity surveys were conducted at 
Modomo/Eleweran, along Ede-road, south western Nigeria, with a view to delineate the 
hydrogeophysical characterization of the study area. The area is underlain by the Precambrian 
Basement Complex rocks. The VLF-EM traverses were established along 6 traverses with a station 
interval of 10 m with lengths ranging from 130 to 360 m. Linear features presumed to be geologic 
fissures inferred from the filtered real pseudo-sections helped in selecting twenty-nine VES points that 
were further probed using ABEM SAS 300 C Resistivity Meter. The spreading were carried out using the 
convectional Schlumberger electrode configuration with half-current electrode separation (AB/2) 
varying from 1 to 100 m was used for the sounding. The VES data were presented as depth sounding 
curves and were appropriately iterated using RESIST version (1.0) software. The VLF filtered real profile 
displayed a low peak trend depicting poor or no fracture signature. Four lithological formations were 
delineated which included the topsoil, weathered layer, partly weathered/fractured basement and fresh 
bedrock. The delineated weathered and fractured basement columns constituted the aquifer units. 
Additionally, from the geophysical parameters viz a viz thin overburden thickness, clayey weathered 
layer and low fractured frequency characterized by the study area, it is inferred that the groundwater 
potential of the area varies between poor and low. However, the study justified the use of a combined 
geophysical investigation as a better tool in evaluating the groundwater potential in the basement 
complex. 
 
Key words: Weathered layer, geological fissures, aquifer, electrical resistivity, geoelectric section, 
electromagnetic. 

 
 
INTRODUCTION 
 
Groundwater has been described as water which occurs 
in the vadoze zones (Fitts, 2002) which filled the pore 
space of soil and fissure below  the  water  table  (Freeze 

and Cherry, 1979). This can be extracted by boreholes 
and hand-dug wells occur in a highly permeable 
geological  formation  known   as   aquifers   which   have
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properties that allow storage and movement of water 
(Eduvie, 2006).  

However, the study area is underlain by the 
Precambrian Basement Complex rocks where 
groundwater occurs either in the weathered mantle or in 
the joint and fracture systems in the unweathered rocks 
(Olorunfemi and Olorunniwo, 1985; Dan-Hassan and 
Olorunfemi, 1999). The highest groundwater yield in 
basement terrain is found in areas where thick 
overburden overlies fractured zones (Olorunniwo and 
Olorunfemi, 1987). These zones are often characterized 
by relatively low resistivity. However, the indiscriminate 
sinking of boreholes without employing systematic 
scientific approach, that is, pre-drilling geophysical 
investigation has led to unsuccessful boreholes with poor 
or low yield (Bayode et al., 2007). 

The study area has been experiencing a rapid rate of 
development due to its proximity to the Obafemi Awolowo 
University (OAU) Campus. This has led to an increase in 
the higher demand for potable water especially during dry 
seasons. The incessant failure in many boreholes sunk in 
this area necessitates the need for a detailed geophysical 
investigation to delineate suitable aquifers for 
groundwater development in the area.  

Naghibi et al. (2015) studied the use of statistical 
models viz a viz frequency ratio (FR) and Shannon's 
entropy (SE) and machine learning models to map the 
groundwater potential in an underground tunnels, springs 
and semi-deep wells. However geophysical method has 
been found widely applied in much hydrogeophysical 
investigation because of its fast and non-invasive 
approach especially in a basement complex basement. 
Hence, an integrated geophysical approach involving the 
Very Low Frequency (VLF) Electromagnetic and 
Electrical Resistivity methods was used in this study to 
delineating geological deep fissures or crevices that may 
allow accumulation of groundwater.  

The major objective of the study is to apply an 
integrated geophysical approach in evaluating the 
groundwater potential of the area. However the 
electromagnetic (VLF) method has been applied 
extensively as a rough and rapid reconnaissance tool in 
groundwater investigation especially in basement 
complex terrain. 

The electrical resistivity method on the other hand has 
been used as a tool to provide a geoelectric picture of the 
subsurface sequence of a particular area of interest. Also 
the groundwater accumulation potential in a basement 
complex terrain has been statistically evaluated from 
geoelectric parameters using the Schlumberger Vertical 
Electrical Sounding (Oyedele and Olayinka, 2012). 

Physiography and geology 
 
Modomo/Eleweran has an aerial extent of 0.52 km

2
 and 

is located between latitudes 7° 30
/
 30

//
 N and 7° 30

/ 
52

//
 N 

and longitudes 4° 29
/ 
10

// 
E and 4° 29

/
 35

//
 E. The study 

area is accessible through a dirt road emanating from a 
left flank of Ife-Ede road (Figure 1). The study area is 
underlain by the Precambrian Basement Complex rocks 
of southwestern Nigeria (Rahaman, 1976; Nuhu, 2009). 
The main geological unit in the area is the dark, greenish 
grey granite-gneiss and pegmatite veins. The granite-
gneiss rock belongs to the Migmatite gneiss complex 
which constitutes one of the major rock units of the 
Precambrian Basement of the southwestern Nigeria 
(Nuhu, 2009) (Figure 2). The topography of the study 
area consists of a gentle plain with a topographic 
elevation of less than 300 m above sea level. In a typical 
basement complex terrain, groundwater is confined within 
weathered layer and or fractured/jointed or sheared 
basement columns (Afolayan et al., 2004). Groundwater 
development in such a geological area is a function of the 
weathered layer thickness, its clay content and the 
magnitude of fractures. 

 
 
MATERIALS AND METHODS 

 
Geophysical survey and data processing  

 
Very Low Frequency Electromagnetic (VLF-EM) measurements 
were made using GEONICS EM-16 equipment. NAA Cutler Maine 
USA transmitter with frequency range of 24 to 27 KHz was used as 
a based station (McNeill, 1980). The instrument measured the field 
generated as a ratio of secondary magnetic field to primary 
magnetic field caused by the presence of the N anomaly (target). 
Six traverses were cut with station intervals of 10m along NE-SW, 
W-SE, SE- NW, NE-SW, NE-SW and NW-SE direction to effectively 
monitor the subsurface inhomogeneity. The real raw (real part of 
the signal) collected were further subjected to a filtering process to 
generate the filter real and the imaginary part (Quadrature) data 
(Olayanju et al., 2009). The filter real in addition with the raw data 
was plotted against distance to generate  
the VLF-EM profiles. The interpreted results of the VLF-EM field 
measurements helped in selecting the locations of vertical electrical 
soundings.  

Twenty-nine Vertical Electrical Sounding (VES) stations were 
probed in the area using conventional Schlumberger configuration.  
Field measurements were acquired with ABEM Signal Averaging 
System (SAS) 300 C Terrameter Resistivity Meter. The apparent 
resistivity obtained was plotted on a log-log graph paper with the 
electrode separation (AB/2) on the abscissa and apparent resistivity 
(ρa) values as the ordinate. The true resistivity and thickness of the 
subsurface layers were interpreted by partial curve matching with 
the two layer model master curves and the corresponding auxiliary 
curves.  The  thickness  and  resistivity  values  obtained   from   the 
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Figure 1. Base map of the study area. 

 
 
 
partial curve matching were then used for a quantitative computer 
iteration using the Resist Software algorithm RESIST version1.0 
(Velpen, 1988). The results obtained from the computer modeling 
are presented in Table 1. The iterated geoelectrical parameters 
obtained (Table 1) were used to generate geoelectric sections and 
contour maps for the study area in accordance with the analysis of 
geo-electrical data by Oyedele  et al. (2013) in their work to 
generate groundwater potential map in a complex basement. 

 
 
RESULTS AND DISCUSSION 
 
The acquired data were processed and subjected to 
detailed interpretation aimed at unraveling the subsurface 
conductivity and/or resistivity in the study area. 
Conductive features, which are characterized by 
appreciably positive filtered real VLF-EM profile peaks 
(Figure 3a to f), were interpreted as probable geologic 
fissures capable of holding significant quantity of water. 
The EM profiling shows that the VLF-EM anomaly varies 
from -42 to -4 and -16 to 18 in the raw real and filtered 
real  components,  respectively.  The   VLF   filtered   real 

profiles displayed peak values of less than 18% indicating 
poor or no fracture signature. The results of the electrical 
resistivity data are presented as sounding curves (Figure 
4a to d). Eight VES curve types were identified in the 
area revealing four geo-electric layers consisting of the 
topsoil, weathered layer (clay/sandy clay/laterite), partly 
weathered/fractured basement and fresh basement. 

The study area is also characterized by topsoil 
resistivity values which range between 53 and 697 Ωm 
with thickness ranging from 0.4 to 1.4 m. The weathered 
layer resistivity varies between 29 and 243 Ωm with 
thickness ranging from 0.4 to 16.3m. The resistivity of the 
weathered layer reflects the variable composition of clay, 
sandy clay and laterite while the resistivity values of the 
fresh basement range between 225 and 16527 Ωm.  

The isopach and isoresistivity maps of the weathered 
layer (Figures 5 and 6) respectively depicted a high 
composition of clayed materials except beneath VES5 
where the inferred lithology was partly weathered 
basement and fractured basement (Oyedele et al., 2013). 
The  inferred  lithology  also  suggests  a   good   fissured 
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Figure 2. Geological map of the study area. 

 
 
 
basement with accumulation of water (good aquiferous 
unit) due to a very low resistivity indicated compared to 
other VES location beneath by fractured basement. The 
presumed aquifer corroborates with the existing drilled 
borehole 2 (BH 2) which happened to be the only viable 
of all existing boreholes drilled in the area. The isopach 
map of the overburden (Figure 7) depicted marked 
resemblance to that of the weathered layer with respect 
to thickest and thinnest portions. The thickest and 
thinnest portions of the weathered layer and the 
overburden correspond to the depression and the ridges 
respectively on the bedrock relief map which also 
depicted the direction of groundwater flow. The spatial 
map is in corroboration with the study reported by 
Oyedele et al. (2013) in their analysis of geo-electrical 
data to generate spatial distributions of relevant geo-
electric parameters to map groundwater potential in a 
complex basement of Southwest Nigeria. 

In addition, the coefficient of anisotropy map revealed 
the location beneath VES5, VES14, VES19, VES20 and 
VES26 with coefficient of anisotropy 1.8, 1.5, 1.4, 2.3 and 
1.6 respectively indicating a presumable fractured 
basement (Figure 8). However the higher resistivity 
depicted in these locations suggests a probable fractured 
lineament   due   to   a   joint  (strike)    feature    between 

Pegmatite and Granite-gneiss from the geological map 
passing through the locations with very low or no fissured 
characteristics. While location beneath VES5 indicating a 
very low resistivity depicting probable aquifer unit. 

In general, the study revealed the groundwater 
potential of the area to be generally low with limited 
hydrogeological significance.  
 
 
CONCLUSION AND RECOMMENDATIONS 
 
An integrated geophysical investigation conducted at 
Modomo/Eleweran area, Osun State revealed the 
lithological formation to be made up of topsoil, weathered 
layer (consisting of clay, sandy clay and laterite), partly 
weathered/fractured basement and fresh basement rock. 
It was observed that the area is characterized by a thin 
overburden thickness, clayey weathered layer and low 
fracture fracture signature. Due to the moderate 
overburden thickness, lower weathered layer resistivity 
and high anisotropy value observed in location beneath 
VES5 and VES20, it can be inferred that these locations 
would be favourable zones for sitting a borehole. Based 
on the result of this study, it is clearly shown that the 
groundwater potential of  the  area  varies  between  poor  
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Table 1. VES Interpreted results of the study area. 
 

VES 
stations 

Layers 
Resistivity 

(Ohm-m) 

Thickness 

(m) 

Overburden 

thickness (m) 

Curve 

types 
Inferred Litho-strata 

1 

1 200 0.5   Topsoil (Sandy clay) 

2 57 0.9 1.4  Weathered layer (Clay) 

3 161 4.2   Partly weathered basement 

4 68 6.7   Fractured Basement 

5 6305   HKH Fresh Basement 

       

2 

1 230 0.8   Topsoil (Sandy clay) 

2 89 16.3 17.1  Weathered layer (Clay) 

3 571   H Fresh Basement 

       

3 

1 313 0.5   Topsoil (Clayed sand) 

2 146 6.6 7.1  Weathered layer (Sandy clay) 

3 246   H Fresh Basement 

       

4 

1 130 0.5   Topsoil (Sandy clay) 

2 70 9.5 10  Weathered layer (Clay) 

3 225   H Fresh Basement 

       

5 

1 166 0.4   Topsoil (Sandy clay) 

2 29 2.3 2.7  Weathered layer (Clay) 

3 71 4.6   Partly Weathered Basement 

4 6 5.3   Fractured Basement 

5 289   HKH Fresh Basement 

       

6 

1 69 0.8   Topsoil (Clay) 

2 137 1.0   Lateritic clay 

3 63 8.1 9.9  Weathered Basement 

4 13594   KH Fresh Basement 

       

7 

1 78 0.7   Topsoil (Clay) 

2 176 1.8 2.5  Weathered layer (Sandy clay) 

3 285 10.4   Partly weathered basement 

4 16527   AA Fresh Basement 

       

8 

 

1 66 1.4 1.4  Topsoil (Clay) 

2 243 11.3   Partly Weathered layer 

3 3681   A Fresh Basement 

       

9 

1 58 0.9   Topsoil (Clay) 

2 83 0.4 1.3  Weathered layer (Clay) 

3 343 7.1   Partly Weathered basement 

4 597 7.5   Partly Weathered basement 

5 1438   AAA Fresh Basement 

       

10 

1 312 0.4   Topsoil (Clayey sand) 

2 130 10.4 10.8  Weathered layer (Sandy clay) 

3 1665   H Fresh Basement 
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Table 1. Contd. 
 

       

11 

1 135 1.3   Topsoil (Sandy clay)  

2 327 4.7   Weathered layer (Laterite) 

3 95 4.4 10.4  Weathered Basement 

4 640   KH Fresh Basement 

       

12 

1 410 0.7   Topsoil (Laterite) 

2 110 6.2 6.9  Weathered layer (Sandy clay) 

3 2762   H Fresh Basement 

       

13 

1 85 0.9   Topsoil (Clay) 

2 245 4.3   Weathered layer (Laterite) 

3 82 6 11.2  Weathered Basement 

4 2260   KH Fresh Basement 

       

14 

1 199 0.9   Topsoil (Sandy clay) 

2 671 4.7   Weathered layer (Laterite) 

3 94 8.4 14.0  Weathered Basement 

4 6098   KH Fresh Basement 

       

15 

1 181 0.5   Topsoil (Sandy clay) 

2 72 1.2 1.7  Weathered layer (Clay) 

3 167 11.1   Partly Weathered Basement 

4 1465   HA Fresh Basement 

       

16 

1 697 0.4   Topsoil (Laterite) 

2 239 2.1 2.5  Weathered layer (Sandy clay) 

3 737 9.5   Partly Weathered Basement 

4 5269   HA Fresh Basement 

       

17 

1 100 1.1 1.1  Topsoil (Clay) 

2 1006 5.3   
Partly Weathered/ Fresh 
Basement 

3 2631   A Fresh Basement 

       

18 

1 206 0.6   Topsoil (Sandy clay) 

2 169 4.3 4.9  Weathered layer (Sandy clay) 

3 1247   H Fresh Basement 

19 

1 113 0.9   Topsoil (Sandy clay) 

2 167 5.6 6.5  Weathered layer (Sandy clay) 

3 2612   A Fresh Basement 

       

20 

1 53 0.6   Topsoil (Clay) 

2 472 0.7   Weathered layer (Laterite) 

3 29 5 6.3  Weathered Basement 

4 608 6.1   Partly Weathered Basement 

5 1165   KHA Fresh Basement 
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Table 1. Contd. 
 

       

21 

1 76 0.7   Topsoil (Clay) 

2 74 3.7 4.4  Weathered layer (Clay) 

3 3190   H Fresh Basement 

       

22 

1 139 0.8   Topsoil (Sandy clay) 

2 157 2 2.8  Weathered layer (Sandy clay) 

3 1015   A Fresh Basement 

       

23 

1 206 0.6   Topsoil (Sandy clay) 

2 104 2.4 3.0  Weathered layer (Sandy clay) 

3 414 2.3   Partly Weathered Basement 

4 673   HA Fresh Basement 

       

24 

1 300 0.6   Topsoil (Clayey sand) 

2 84 1.4 2.0  Weathered layer (Clay) 

3 348 11.5   Partly Weathered Basement 

4 891   HA Fractured Basement 

       

25 

1 162 0.9   Topsoil (Sandy clay) 

2 66 1.1 2.0  Weathered layer (Clay) 

3 360 11.8   Partly Weathered Basement 

4 2853   HA Fresh Basement 

       

26 

1 460 0.8   Topsoil (Laterite) 

2 477 4   Weathered layer (Laterite) 

3 39 1.2 6  Weathered Basement 

4 4449   KH Fresh Basement 

       

27 

1 149 0.4   Topsoil (Sandy clay) 

2 91 2.1 2.5  Weathered layer (Clay) 

3 200 5.4   Partly Weathered Basement 

4 6759   HA Fresh Basement 

       

28 

1 131 0.9   Topsoil (Sandy clay) 

2 161 4.0 4.9  Weathered layer (Sandy clay) 

3 836   A Fresh Basement 

       

29 

1 220 0.4   Topsoil (Sandy clay) 

2 169 4.3 4.7  Weathered layer (Sandy clay) 

3 7135   A Fresh Basement 

 
 
 
and low. Further extensive geophysical survey should be 
carried out in locations around VES2, VES14 and VES20 
with a wider spread to probe into the fractured basement. 
In addition drilling to the basement is suggested  in  order 

to tap the reserved groundwater within the vadoze and 
fractured zones. However, the study established the 
advantage of a combined geophysical investigation as a 
better tool in evaluating the groundwater  potential  in  the 
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Figure 3a. VLF profile and geo-electric section along traverse 1. 
 
 
 

 
 

Figure 3b. VLF profile and geo-electric section along traverse 2. 
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Figure 3c. VLF profile and geo-electric section along traverse 3. 

 
 
 

 
 

Figure 3d. VLF profile and geo-electric section along traverse 4. 



 
Taiwo et al.          201 

 
 
 

 
 

Figure 3e. VLF profile and geo-electric section along traverse 5. 

 
 
 

 
 

Figure 3f. VLF profile and geo-electric section along traverse 6. 



 
202          Afr. J. Environ. Sci. Technol. 
 
 
 

 

 

 

 
 
Figure 4a. Typical observed H-type (3-layered) curve. 

 
 
 

 
 

Figure  4b. Typical observed A-type (3-Layered) curve. 
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Figure 4c. Typical observed KH-type (4- layered) curve. 

 
 
 

 

 
 

Figure 4d. Typical observed HKH-type (5-layered) curve. 
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Figure 5. Isopach map of the weathered layer. 
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Figure 6. Isoresistivity map of the weathered layer. 
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Figure 7. Isopach map of the overburden. 
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Fig.8:Map showing the coefficient of anisotropy. 
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Figure 8. Map showing the coefficient of anisotropy. 
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