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This paper derives logistic models for Grant's gazelle (Gazella granti), Thompson's gazelle (Gazella 
Thompsonii) and plains Zebra (Equus burchellii), in a game ranching system. The study was conducted 
on an 8100 hectares savannah ecosystem in Machakos district, with an average annual rainfall of 

514159.3 mm. Modelled as discrete-time logistic equations with fixed carrying capacities, it captures 
the wildlife herbivore population dynamics. Time series data, covering a period of 16 years, is used to 
generate the fixed carrying capacities and the interaction parameters endogenously. The estimation of 
the logistic models involves estimation of econometric models for each herbivore species, followed by 
the recovery of the carrying capacities, mathematically. The model-generated carrying capacities are 
144.30 AU, 75.53 AU and 54.65 AU; the equivalent number of animals is 986, 929 and 144; for Grant’s 
gazelle, Thompson’s gazelle and Zebra, respectively. The derived “maximum sustainable yield” (MSY) 
stocking levels is 44 AU, 24 AU and 29 AU; the equivalent animal number is 297, 393 and 76; for Grant’s 
gazelle, Thompson’s gazelle and Zebra, respectively. Similarly, the MSY off-take level is 10.42 AU, 8.39 
AU and 6.37 AU for these species respectively. These results show that the discrete-time logistic 
models are applicable to sustainable management of game ranching enterprise. 
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INTRODUCTION 
 
Proper game management requires good grazing 
management strategies that provide effective means of 
manipulating the grazing game animals, so as to achieve 
the highest level of animal production sustainably (Pratt 
and Gwynne, 1977). The key issues in grazing manage-
ment are the determination of optimal stocking level, 
optimal species mix and carrying capacity; the latter is 
the upper bound stocking level. The current method of 
estimating these parameters involves trial and error 
approximations, based on the availability of forage on the 

one hand, and the animal forage requirements on the 
other (Pratt and Gwynne, 1977; Stoddart et al., 1975). 
This method is clearly subjective. An alternative method 
of determining herbivore optimal stocking levels, optimal 
species mix and carrying capacities is based on systems 
analysis procedures (Njoka and Kinyua, 2006; Kinyua, 
1998). 

This method involves deriving a set of logistic 
equations for each species in a given ranch (Equations 1) 
(Njoka and Kinyua, 2001), coupled with recovery of 
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carrying capacities from these equations mathematically. 
This approach is completely objective, and it is the 
underlying the objective of this study. 

Under this formulation, both carrying capacity and 
exchange ratios are endogenously determined (Kinyua 
and Njoka, 2001), making it possible to empirically 
estimate the population growth models for Grant’s 
gazelle, Thompson’s gazelle and Zebra. 
 

   
                                                                                       (1) 
                                                                                                   

for i = 1,…,n-1 j = 1,…,2 and i  j. 
 
Here Hit+1, measured in animal units, is the standing 
herbivore population at period t+1 where time step is 
measured in periods of six months. Yit+1 is a control 
variable, representing the off-take level of Herbivore 
species i at period t+1  and is measured in animal units; 
Hit  represents the standing biomass of game herbivore 
species  i at  period t and is measured in animal units; 
and Ki, also measured in animal units, represents the 
carrying capacity for game herbivore species i.  The 

parameter i represents the exponential growth rate for 

the game herbivore species i. The parameter ij repre-
sents the interaction effect of game herbivore species j 
on species i, and this interaction parameter is negative, 
zero or positive depending on whether the interactive 
relationship is complementary, supplementary or compe-
titive, respectively. This parameter also gives an estimate 
of exchange ratios or grazing pressure equiva-lence 
among species, that is, it plays the role of converting Hjt 
animal units into the equivalent Hit animal units. For this 
particular study, “n” is equal to three animal species. 
 
 

Conceptual view 
 

The formulation of wild herbivores’ discrete-time logistic 
equations with fixed carrying capacity is captured in 
Equations1 which are difference equations (Starfield and 
Bleloch, 1986; Anderson, 1991; Caughley and Sinclair, 
1994; Njoka and Kinyua, 2006). Conceptually, the term Ki 
represents the maximum number of animal units of game 
herbivore species i that can be supported through period 
t. There are three cases as shown in (Equations 2, 3 and 
4). 
 
Case 1 (stocking level below carrying capacity):   
                                             





1

)(
n

j

jtijiti HHK  ,                         (2) 

 

for i = 1,…,n, j = 1,…,n-1 and i  j.  
 

This implies that the animal unit  months (AUMs) of  avai- 
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lable forage exceeds the AUMs of forage demand by the 
standing population of game herbivores species i. The 
standing game herbivore population increases since 
there is enough forage to meet their maintenance 
requirements and leave a balance for growth and 
reproduction. 
 

Case 2 (stocking level equal to carrying capacity):  
                





1

)(
n

j

jtijiti HHK  ,               (3) 

 

for i = 1,…,n-1, j = 1,…,n-1 and i  j.  
 
This implies that the AUMs of available forage exactly 
matches the AUMs of forage demand by the standing 
population of game animal species i.  The standing 
herbivore population barely meets its maintenance 
requirements, leaving no balance for growth and 
reproduction.  As a result, the population change is zero, 
implying that Hit is at the maximum stocking level. 
 

Case 3 (stocking level above carrying capacity):   
      





1

)(
n

j

jtijiti HHK  ,             (4) 

 

for i = 1,…,n, j = 1,…,n-1 and i  j.  
 

In this case the forage demand by wild herbivore species 
i is greater than the AUMs of available forage, or the 
standing herbivore population is greater than the carrying 
capacity. The excess number of animals will die out, 
resulting in the decline of the standing population of 
herbivore species i. 

The discreet-time game herbivore logistic models, 
(Equations 1) is a quadratic equations without an inter-
cept (Beattie and Taylor, 1985) and are derived from the 
discrete time compounding equations (Equations 5a). 
 

it

t

iiit YrHH  )1(0 ,                                               (5a) 

for i = 1,…,n. 
 

Where, Hit represents the population of herbivore species 

i at period t; Hi0 represents the initial population (at 0t ) 

of herbivore species i; ri represents the rate of herbivore 
population growth per period:, Yit  represents the off-take 
level for herbivore species i  at period t; t represents 
discrete time-steps of   periods of six months. The term 

t

ii rH )1(0   is the discrete-time compounding formula, 

capturing the population growth of herbivore species i. 

When 1t , Equations (5a) become Equations (5b).  
 

1

1

01 )1( iiii YrHH  ,                                         (5b) 
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for i = 1,…, n. 

When 2t , Equations (5b) become Equations (5c).  
 

21202 )1()1)(1( iiiiiii YrHYrrHH                 (5c) 

 

for i = 1,…,n.                                                    
 
The general form of Equations (5c) is shown in Equations 
(5d); these equations are independent of time  
 

11 )1(   itiitit YrHH ,                                            (5d) 

for i = 1,…,n. 
 
From an ecological point of view, the rate of herbivore 
population growth per period (ri), is hypothesized to be 
determined by intra- and inter-species competition thus it 
is more realistically modelled as shown in Equations (5e). 
 

)}({ 1

jtij

n

jitiii HHr   .  

for i = 1,…,n, j = 1,…,n-1 and i  j.                               (5e) 
 

Here parameter i represents the fixed rate of population 

change for species i while parameter i represents intra 

species competition. Parameter ij represents inter 
species interaction between species i and species j; this 
parameter is negative, zero or positive depending on 
whether the interactive relationship is competitive, 
supplementary or complementary, respectively 
Substituting (ri) in Equations (5d) with (ri) in Equations 
(5e) yields Equation (5f) 
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j
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for i = 1,…,n, j = 1,…,n-1 and i  j.                                (5f) 
  
Multiplying out Equations (5f) and rearranging terms 
yields Equations (6a), and like Equations (1), they are 
different equations. Shifting Yit+1 from the right to the left 
hand side of Equations (6a) yields Equations (6b). 
Equations (6b) are the econometric (statistical) models, 
and although they are nonlinear in variables, they are 
linear in parameters. 
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,                      (6a) 

for i = 1,…,n, j = 1,…,n-1 and i   j. 
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for i = 1,…,n, 
 j = 1,…,n-1 and 

 i   j. 

 
 
 
 
MATERIALS AND METHODS 
 
Study area 

 
The study area is located on the David Hopcraft Ranch, 40km 
south-east of Nairobi, on the Athi-Kapiti Plains along the Nairobi-
Mombasa road in Machakos District, Eastern Province of the 
Republic of Kenya.  The ranch area is 8100 ha and its altitude is 
1600 m to 1700 m above sea level. The ranch vegetation is typical 
of eco-climatic zone 4 (Pratt and Gwynne, 1977). The ranched 
vegetation comprises of Themeda triandra grassland, a mixture of 
Balanites glabra-Themeda triandra tree grassland, Acacia 
drepanolobium and Balanites glabra bush grassland, and Acacia 

seyal and Acacia xanthophloea riverine woodland. Its average 

annual rainfall is 514159.3 mm. The median rainfall for the study 
site for the same period was 599.4 mm between 2001 and 1978 
with an annual range from 177.4 to 924.5 mm. 
 
 
Methods 

 
This study focused on analysis of sustainable management and 
sustainable conservation of Grant’s gazelle, Thompson’s gazelle 
and Zebra, coupled with game cropping. The Zebra is a large non-
ruminant grazer (267 - 318 kg) capable of consuming bulk forage 
especially grasses. The Thompson’s gazelle (20 to 25 kg) and is a 
selective feeder consuming highly nutritious grasses and while the 
Grant’s gazelle (32 to 42 Kg) is slightly stockier than the Grant’s 
gazelle, and is a mixed feeder utilizing both high quality grass and 
browse (Hofmann and Stewart, 1972). The feeding habits of the 
Grant’s gazelle would therefore overlap with that of the Thompson’s 

gazelle and the Zebra depending on forage availability and level of 
interspecies and intrapecies competition. Grazing requirement is 
also based on the metabolic weight of the animal which is 
calculated from the Animal Unit Coefficient (AUC) Table 1. 

Through on-the site visits to the David Hopcraft ranch, during 
1995 and 1996, time series data covering the period 1981 through 
1996 on Grant’s gazelle Thompson’s gazelle and Zebra populations 
and off-take levels were collected from ranch records. Animal 

numbers and off-take levels were then converted to animal units 
(AUs), effectively converting discrete data to continuous data, 
where one animal unit (AU) is equivalent to the metabolic body 
weight of 454 kg. Based on this data, the econometric population 
growth models, Equations (6b), were estimated for each of the 
three herbivore species, namely, Grant’s gazelle, Thompson’s 
gazelle and Zebra, using SPSS software (Kleinbaum and Kupper, 
1978). This procedure was used to estimate livestock growth 
models (Njoka and Kinyua, 2006); these models can also be 

estimated using cross-sectional data. 
After the estimation of the econometric models (Equation 6b), the 

logistic models (Equations 1) is recovered (Figure 1) from the 
former as follows: 

 
The derived logistic models, that is, 

 

1

2

1
)1( 









it

i

j

jtijit

itiit Y
K

HH

HH





 
 

 

(a) When    itit HY  1  
,  
for I = 1,…3 



 

 

Kinyua et al.          383 
 
 
 

Table 1. Approximate exchange ratios for animals based on metabolic body weight. 
 

Species Approximate weight (Kg) Animal unit coefficient 

Grant’s gazelle 35 0.1463 

Thompson’s gazelle 23 0.0813 

Zebra 272 0.38 
 

Source: (Kinyua, 1998) 
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the game harvests are higher than the populations growth per 
period; as a result, the populations decline. 

  

(b) When  itit HY 1 ,  

 
for i = 1,…,3, game harvests are equal to the t growth of the 
pulations per period;  as a result, the populations are constant or at 
a steady state.  
 
This also means that 
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for i=1,…,3;  

 
These equations are quadratic production functions without 
intercept. Multiplying out these equations yield their equivalent 
counterpart, also production functions without intercept (equations 
6c), as follows: 
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These equations are then solved for the first order conditions which, 
in turn, are solved simultaneously because the animal species 
share resources. The solutions are the “maximum sustained yield” 
stocking levels; by substituting the values of “maximum sustained 
yield” stocking levels into equations 6c, the outcomes are 
“maximum sustained yield” off-take levels. 
 

(c) When 

 

 itit HY  1 , 

 for i = 1,…, 3,  the game harvests are less than the growth of the 

populations per period;  as a result, the populations increase. 

 
 

RESULTS AND DISCUSSION 
 
The estimation results of Grant’s gazelle, Thompson’s 
gazelle and Zebra econometric models (equations 6b) 
are presented in Table 2. The F-test for the econometric 
models for the Grant’s gazelle, Thompson’s gazelle and 
Zebra were significant (P < 0.05). This shows that the 
econometric model is suitable for capturing the popula-
tion change for all three species. The exponential growth 
rate parameters for the three models were positive, as 
expected, and significant (P < 0.05) for all species. The 
intra-species competition parameters were negative, as 
expected, and significant (P < 0.05) for the three models. 

The interaction parameter of Grant’s gazelle and 
Thompson’s gazelle were negative (P<0.05), suggesting 
that Thompson’s gazelle is competitive with Grant’s 
gazelle. In retrospect, this negative interaction of 
Thompson’s gazelle with Grant’s gazelle could emanate 
from overlap of their feeding habits. Grant’s gazelle is a 
mixed feeder, eating both grass and browse, while 
Thompson’s gazelle is a grazer. Both species prefer open 
grassland plains. By virtue of Grant’s gazelle being a 
grazer, its feeding habit overlaps with that of Thompson’s 
gazelle and consequently they tend to compete for the 
available resources. 

The interactive parameter of Grant’s gazelle with Zebra 
is negative (P<0.1), suggesting that the two species are 
competitive on the grounds that the former is a mixed 
feeder while the latter is a grazer. The R

2 
for the model is 

0.413. Thompson’s gazelle’s interaction parameter with 
Zebra is negative (P<0.05) depicting a competitive 
relationship which may explain why Zebra competes with 
Thompson’s gazelle. Grant’s gazelle interaction para-
meter is positive suggesting complementary relationship. 
However the parameter was not significant (P>0.1) The 
R

2
 for Thompson’s gazelle model is 0.45 which is good. 
For the Zebra model, the Thompson’s gazelle’s inte-

raction parameter is negative and significant (P<0.05), 
suggesting competitive relationships between the two 
species. Both Zebra and Thompson’s gazelle are grazers 
preferring open grasslands plains. By virtue of their 
dietary requirement, Thompson’s gazelle likely competes 
with Zebra for available feed resources. In contrast
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Table 2. Parameter estimates for the econometric models. Equation (6b) (n = 3)
a 

 

Species Gr Th Zb 

Gr 
0.722 

(3.842)** 

0.001 

(0.001) 

0.007 

(1.193) 

Gr
2
 

-0.005 

(-2.121)** 
  

  
-0.006 

(-2.356)** 

1.027 

(4.335)** 

-0.017 

(-4.249)** 

Th
2
  

-0.014 

(-4.031)** 
 

Gi
2
    

Zb 
-0.005 

(-1.851) 

-0.014 

(-3.836)** 

1.258 

(5.235)** 

Zb
2
   

-0.023 

(-4.577)** 

R
2
 0.413 0.45 0.560 

F (4.755)** (5.522)** (8.579)** 
 

Gr=Grants gazelle; Th=Thompson’s gazelle; Zb=Zebra; 
a 

Results are for equations identified in top 
row of the table, with parameters indicated in the left-hand column; F and t-statistics are in 

parenthesis: ** indicates significant at the 0.05 level and * at the 0.1 level. 

 
 
 

Table 3. Parameter values for the logistic population models, Equation (1), after derivation 

from the econometric models in. 
 

Species Gr Th Zb 

Gr 0.722 -0.074 0.006 

Th 1.198 1.027 -0.328 

Zb 1.0 1.0 1.258 

K
b
  

144.3 

(986) 

75.529 

(929) 

54.645 

(144) 
 

Gr, Grant’s gazelle; Th, Thompson’s gazelle and  Zb, Zebra  
a
Results are for equations identified 

in top row of table, with parameters indicated in the left-hand column; t-statistics are in 

parenthesis: ** indicates significant at the 0.05 level and * at the 0.1 level.  
b 
Carrying capacity in AUs; figures in bracket represent carrying capacities in animal numbers. 

 
 
 
the intra-species parameter between Zebra and grant’s 
gazelle is slightly but not significantly positive (P>0.1), 
suggesting complementary relationship. This may be 
explained by the likelihood that Grant’s gazelle does not 
compete for the grass favoured by Zebra. 

The other components of the results are the recovery of 
the logistic models to estimate the species carrying 
capacity, the derivation of the “maximum sustained yield” 
stocking level and the “maximum sustained yield” off-take 
level. 

The derivation of the logistic models, as discussed 
earlier, is shown in Table 3 for Grant’s gazelle, 
Thompson’s gazelle and Zebra. The carrying capacities 
in animal units (AUs) are 144.3, 75.529 and 54.645 for 
Grant’s gazelle, Thompson’s gazelle and Zebra, 
respectively. This converts to 986 Grant’s gazelle, 929 

Thompson’s gazelle and 144 Zebra. The Carrying 
Capacity is the upper boundary stocking rate for the 
ranch. 

The “maximum sustainable yield” (MSY) stocking levels 
are 43.504AUs, 23.840AUs and 28.785AUs, or 279, 293 
and 76 animals for Grant’s gazelle, Thompson’s gazelle 
and Zebra, respectively. The “maximum sustained yield 
off-take” levels are 10.42AUs, 8.39AUs and 6.37AUs or 
71, 103 and 17 animals for these species, respectively. 
 
 
Conclusion 
 
The key issues in the sustainable management of wild 
and domestic herbivores are the optimal stocking levels, 
the carrying capacities, the “maximum sustained yield off- 



 

 

 
 
 
 
take” levels and the optimal species mix. This systems 
analysis approach, based on the logistic model, has been 
applied here to solve the range manager dilemma. This is 
a novel ground breaking approach, which provides an  
alternative to showing how the key parameters can be 
determined in a ranching enterprise. The results obtained 
in this study confirmed that it is possible to derive the 
“fixed carrying capacity” logistic model for three wildlife 
species. These models have in turn been used to 
estimate the carrying capacity for each of the species and 
provide solutions for the MSY. Observations at the David 
Hopcraft ranch showed stocking level numbers of 
between 138 and 552 Grant’s gazelle, 155 and 971 
Thompson’s gazelle and 122 and 154 Zebra over the 
period covered by the study, while the carrying capacity 
models predicted 986, 929 and 144 animal numbers 
respectively. In comparison the Grant’s gazelle remained 
consistently understocked over the years; the 
Thompson’s gazelle on average was understocked while 
the Zebra fluctuated within the range predicted by the 
model. In particular, this procedure has direct application 
in determining the number of animals to be harvested in a 
wildlife cropping policy and in wildlife culling as a 
management tool. It is also usable in determining the 
animal numbers that should be translocated for 
management purposes. Finally, this procedure can be 
used to analyse the dynamics of wild herbivores, 
including issues like the population doubling time. 
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