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The major goal of this research was to delineate the shallow groundwater irrigated areas (SGI) in the 
Atankwidi Watershed in the Volta River Basin of West Africa. Shallow ground water irrigation is carried 
out using very small dug-wells all along the river banks or shallow dug-outs all along the river bed. 
Each of these dug-wells and dug-outs are highly fragmented small water bodies that irrigate only a 
fraction of an acre. However, these are contiguous dug-wells and dug-outs that are hundreds or 
thousands in number. Very high spatial resolution (VHSR) Quickbird imagery (0.61 to 2.44 m) was used 
to identify: (a) dug-wells that hold small quantities of water in otherwise dry stream; and (b) dug-outs 
that are just a meter or two in depth but have dug-out soils that are dumped just next to each well. The 
Quickbird VHSR imagery was found ideal to detect numerous: (i) dug-wells through bright soils that lay 
next to each dug-well, and (ii) water bodies all along the dry stream bed. We used fusion of 0.61 m 
Quickbird panchromatic data with 2.44 Quickbird multispectral data to highlight SGI and delineate their 
boundaries. Once this was achieved, classification techniques using Quickbird imagery was used 
within the delineated areas to map SGI and other land use/land cover (LULC) areas. Results obtained 
showed that SGI is practiced on a land area of 387 ha (1.4%), rainfed areas is 15638 ha (54.7%) and the 
remaining area in other LULC. These results were verified using field-plot data which showed an 
accuracy of 92% with errors of omissions and commissions less than 10%.  
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BACKGROUND AND RATIONALE 
 
Land use and land cover studies involving the use of 
satellite image data require multispectral imagery from 
different seasons or dates and process methodologies 
used must be pixel oriented. Latest high resolution 
sensors, and others yet to come, together with the new 
existing data process environments, lead to important 
changes in the classification methodology (Manakos et 
al., 2000). High spatial resolution imagery gives more 
accurate information about the earth’s surface. In African 
countries, it is generally difficult to map land use and land 
cover classes because there are no agriculture bunds in 
agriculture forms. Agriculture and other land use and land 
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cover areas are very similar because of the nature of 
small-holder agriculture which is dominant in most parts 
of the continent. Image interpretation can be conducted 
digitally or visually. In case of high resolution images, 
interpretation depends on visual interpretation 
(Fijałkowska et al., 2005). Lewinski and Zaremski (2004) 
proposed the possible use of object-oriented classi-
fication and have shown that it results in impediment by 
the detailed information of the VHR images. Plantier et al. 
(2006) found that maximum likelihood technique could be 
applied for land use classification. However, the level of 
accuracy is low. In this study authors adopted methodo-
logies from (Thenkabail et al., 2004; Gumma et al., 
2009). 

The importance and practice of the shallow ground 
water irrigation actually increases along the dryer river 
areas, since in these areas, the importance of dry season 
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Figure 1. Volta basin with Atankwidi Watershed and its drainage network (extracted from SRTM DEM). 

 
 
 
agriculture for increasing food production is a priority for 
agricultural development. Our current research efforts are 
directed at delineating the shallow groundwater irrigated 
areas in the Atankwidi Watershed including land use land 
cover and its methodologies. 

The main objective of this project was to evaluate and 
map shallow groundwater irrigated areas and other land 
use and land cover based on intensive field plot data and 
high resolution imagery. The specific objectives of the 
project were to: (1) Delineate the shallow ground eater 
irrigated areas including land use land cover map using 
Quickbird data (08th May 2008); (2) Conduct accuracy 
assessment using field plot data; and (3) Develop a 
methodology for delineating shallow ground water 
irrigated areas.  
 
 
THE STUDY AREA 
 
The Atankwidi is a tributary of the White Volta, flowing 
south from Burkina Faso into the Upper East Region of 
Ghana between Navrongo and Bolgatanga. The 
Atankwidi   watershed   (Figure   1),   276 km2  in  area,  is 

typical of agricultural catchments found in the Upper East 
Region, which is situated between the northern Guinea 
and the Sudan savanna zones. Within the transition 
zone, vegetation is characterized by open woodland 
savannas associated with perennial grasses in the south, 
and increasingly with annual tussock grasses in the 
northern zone (Iloege, 1980; Windmeijer and Riesse, 
1993). Annual precipitation is around 990mm distributed 
over pronounced rainy (April to October) and dry 
(October to March) seasons, and annual average 
temperatures are above 18°C (Martin, 2005). 

The Soil Research Institute of Ghana distinguishes 
three main soil types in the catchment (Environmental 
Protection Agency / World Bank, 1999). These are: (1) 
Leptosols, which are predominant along the elevated 
northern and eastern border; (2) Fluvisols, which are 
found in the flat terrain to the sides of the main stream, 
and (3) Lixisols, which covers the rest of the catchment. 
The hydrogeology and climatic conditions of the 
catchment are typical for a large part of the Volta River 
basin. Thus the results of studies conducted in this 
catchment are transferable to other areas of the basin. 
The Antankwidi catchment is one  of  the  areas  with  the  
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Figure 2. Methodology flow chart showing approach used to delineate shallow 
ground water irrigated areas (SGI) from other land use\land cover (LULC) 
areas.  

 
 
 
highest groundwater use per km2 in the Volta River Basin 
(Martin, 2006). The main aquifer is the regolith aquifer in 
the weathered zone of granitoids. This hydrogeology is 
typical for about two thirds of the area of the Volta River 
basin, which are underlain by Birimian rocks. More than 
80 % of all boreholes in the basin target the weathered 
rock aquifer. Hydrological conditions in the study area are 
therefore representative for the main groundwater 
resources in the basin. 
 
 
METHODOLOGY 
 
Land use changes were investigated using Quick Bird images for 
year 2008. An overview of the methods and analytical techniques 
are shown in Figure 2. Briefly, the process involved the 
Normalization of each of the four bands in the Quick Bird imagery 
using the reflectance model (Gumma et al., 2009). Quick Bird 
image was then classified using unsupervised ISOCLASS cluster K-
means classification (reference).  

Bi-spectral plots that represent each unsupervised class in two-
dimensional feature space were then generated using the red and 
near infrared bands (band 3 and band 4). Class identification and 
labeling was based on these bi-spectral plots, as well as ground 
truth data and very high resolution images (from Google Earth). The 
grouping of these classes was based on spectra l signatures,  large 

volumes of ground truth data and the use of very high resolution 
imagery. Mixed classes were resolved through the inclusion of 
relevant spatial data (such as elevation and rainfall), and 
establishing methods for irrigated area calculations and accuracy 
assessments.  
 
 
Image normalization 
 
Satellite sensor data 
 
The Quickbird imagery was purchased through Landsat Science 
Team allocations. The characteristics of this image are shown in 
Table 1. The image was converted into at-sensor reflectance based 
on the equations and algorithms presented in (Markham and Barker 
(1986), Thenkabail et al. (2004). The Quickbird data (Table 1) were 
used as the primary data source for delineating shallow groundwater 
irrigated areas in the watershed. 
 
 
Quickbird data to radiance 
 
The radiometric resolution of Quickbird imagery is 11-bit and stored 
in 16-bit. There are two steps to calculate radiance from digital 
number. Quickbird DNs were converted to radiance (m W cm-2 sr-1) 
using the equation  
 
Lij = DNij*[CalCoefj]-1 ,                                                                     (1) 



458          Afr. J. Environ. Sci. Technol. 
 
 
 

Table 1. Characteristics of satellite sensor data used in the study. 
 

Spatial Spectral Radiometric Band range Irradiance Sun 
elevation 

Earth sun 
distance Data points Sensor 

  (meters) (#) (bit) ((((µµµµm) (W m-2sr-1 µµµµm-1) �θθθθ D (#per hectares) 
0.45 - 0.52 1381.79 
0.52 - 0.60 1924.59 
0.63 - 0.69 1843.08 

QUICKBIRD 0.61-2.44 4 11 

0.76 – 0.89 1574.77 

68.23 1.0005 10000, 625 

 
 
 

 
 
Figure 3. Field-plot data showing dug-wells and dug-outs. 

 
 
 
where Lij and DNij are the in-band radiance at sensor aperture (mW 
cm-2-sr-1 ) and image product digital value of the ith pixel in the jth 
band, respectively, and CalCoefj is the in-band radiance calibration 
coefficient (DN cm2*sr m-1W-1). Since the Quickbird image used in 
this study was acquired after February 22, 2001, the values of 
CalCoefk factor as 0.064 for Pan band, 0.016 for blue, 0.014 for 
green, 0.013 for red and 0.015 for NIR.  
 
 
Radiance to reflectance 
 
A reduction in between-scene variability can be achieved through a 
normalization for solar irradiance by converting spectral radiance, 
as calculated above, to planetary reflectance or albedo (Markham 
and Barker, 1985; 1987). This combined surface and atmospheric 
reflectance of the Earth is computed with the following formula: 
 

�p = S

2

cosESUN
dL

θ
π

λ

λ

                                                               (2) 
 
where �p is the at-satellite exo-atmospheric reflectance, L� is the 
radiance (W m-2 sr-1 �m-1), d is the earth to sun distance in 
astronomic units at the acquisition date (see Markham and Barker, 
1986), ESUNλ is the mean solar exo-atmospheric irradiance (W m-2 

sr-1 µm-1) or solar flux (Neckel and Labs, 1984), and Sθ
 is solar 

zenith angle in degrees (that is, 90 degrees minus the sun elevation 
or sun angle when the scene was recorded as given in the image 
header file). 

Field-plot datasets 
 
Field-plot data was collected between June 3rd -13th, 2008 for 190 
sample sites (Figure 4) covering major irrigated areas (which 
includes shallow dug wells and dug outs in riverbed) along the river, 
rainfed fallows and other land use land cover classes and its 
percents in the watershed. In addition, ground truth observations 
were made extensively, while driving, by capturing other few more 
locations for additional information in class identification. 

The Landsat data requires a minimum sampling unit (which is 
suitable for <30 m resolution like IKONOS, Quickbird etc) of 30 x 30 
m for ground truth validation. The approach we adopted was to look 
for contiguous areas of homogeneous classes within which we can 
sample. A large contiguous information class constituted our 
sampling unit, within which we sample a representative area of 30 
by 30 m. The emphasis was on “representativeness” of the sample 
location in representing one of the classes to ensure precise 
geolocation of the pixel. Class labels were assigned in the field. 
Classes have the flexibility to merge to a higher class or break into 
a distinct class based on the land cover percentages observed at 
each location. The precise locations of the samples were recorded 
by a Garmin GPS unit. The sample size varied from 10 - 40 
samples for each category, and also at each location we captured 
two to three photographs (Figure 3). At each location the following 
data were recorded (e.g): 
 
1. GT Site no 
2. Coordinates (Using GPS) 
3. Topographic position 
4. Agriculture technique (Rainfed, Irrigated: dryseason, and etc) 
5. Irrigation techniques \ watering methods: Ex; 



Krishna et al.          459 
 
 
 

 
 
Figure 4. Location of ground-truth sampling sites in the Atankwidi Watershed over laid on 
QuickBird imagery. 
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a. Dug well irrigated areas during dry season 
b. Dug out irrigated areas during dry season 
c. Combined dug well and dug out irrigated areas during dry season 
 
9. Fringe length and bottom width  
10. Shape of the valley 
11. Soil moisture 
12. Land use/land cover (LULC) classes  
13. Land cover types (% cover): trees, shrubs, grasses, barren 
land/soil, rock, water, built-up, farmland, and others. 
14. Crop grown on farm land: for summer seasons and rainy 
season, Ex: Cassava/Yam, Cocoa, Vegetables/Fruits, Sorghum/ 
Maize, Banana, Rice, Barren Farmland, Plantations and others. 
 
435 Digital photos hot linked at 190 locations 
 
The data were organized in Arc view 3.2a, Arc Map, ARC Info 9.1 
and ERDAS Imagine 9.1 compatible formats with accompanying 
metadata so as to spatially locate them over the QuickBird image 
data precisely (Figure 4). 
 
Unsupervised classification 
 
Unsupervised classification using ISOCLASS cluster algorithm 
(ISODATA in ERDAS Imagine 9.2TM) followed by progressive gene-
ralization (Cihlar et al., 1998) was used to classify the data. With a 
maximum of 40 iterations and convergence threshold of 0.99, 40 
classes were generated. Use of unsupervised techniques is 
recommended for large areas that cover a wide and unknown range 
of vegetation types, and where landscape heterogeneity com-
plicates identification of homogeneous training sites (Achard et al., 
1995; Cihlar, 2000). 

The 40 classes obtained from the unsupervised classification 
were merged using bi-spectral plots, intensive ground truth data 
(described below), and Google earth imagery (Gumma et al., 2009; 
Thenkabail et al., 2005; Tucker et al., 2005). For cloud patches we 
used old data sets (06th February 2008). 
 
 
Class identification and labeling process 
 
Class identification and labeling is based on Bispectral plots, 
ground truth data and Google earth imagery. 
 
 
Bi-spectral plots 
 
The spectral properties of the classes obtained through 
unsupervised classification were performed on the megafile using 
ISODATA statistical cluster algorithm for multi dimensional data 
(ERDAS, 2008). The Bi-spectral plot for all classes was obtained by 
plotting the spectral reflectance of Band 3, Red (Quickbird), on X 
Axis and spectral reflectance of Band 4, Near Infrared (Quickbird), 
on Y Axis (Figure 5). The diagonal line in the graph represents the 
soil line. The Soil line clearly separates the classes with vegetation 
above the soil line from the classes without vegetation below the 
Line. The classes with similar spectral reflectance fall nearby as a 
cluster such classes may represent same category with a slight 
variation in reflection. These classes like water bodies and forest 
with large variation in Vegetation can be easily identified and 
labeled. 
 
 
Ground truth datasets 
 
Ground-truth data was collected between June 3rd -13th, 2008 for 
190 sample sites covering major irrigated areas (which includes 
shallow dug wells and dug outs in riverbed) along the  river,  rainfed  

 
 
 
 
fallows and other land use land cover classes and its percents in 
the watershed. In addition, ground truth observations were made 
extensively, while driving, by capturing other few more locations for 
additional information in class identification. 

The precise locations of the samples were recorded by a Garmin 
GPS unit. The sample size varied from 10-40 samples for each 
category, and also each location we captured two to three photo 
graphs. These groundtruth data and associated photographs were 
used in class identification and labeling process.  
 
 
Google earth data 
 
Google Earth (http://earth.google.com/) contains increasingly 
comprehensive image coverage of the globe at very high resolution 
0.61 - 4m, with different seasonal images. In this study, Google 
Earth data were used for: a) Identification and labeling of classes 
(cloud affected areas), b) accuracy assessment of irrigated areas 
and c) finally the classified output overlay on Google Earth to verify 
the classes. 
 
 
Resolving mixed classes 
 
Some classes were locally misclassified and intermixed with 
neighboring classes and such misclassified pixels were normally 
identifiable using groundtruth data points where land use types 
were mapped out of their normal context (Fuller et al., 1998). For 
example, the class “fallow” mix with “rangelands”. Such mis-
classification could be removed by contextual correction methods 
(Groom et al., 1996; Thenkabail et al., 2006). These mixed classes 
separate out from the classification and masking the original image 
and then reclassified in to 10 classes to separate mix classes. 
Based on the above procedure, identified classes were with the 
base classified map.  
 
 
Accuracy assessment 
 
The accuracy assessment was carried out using (Congalton and 
Green, 1999) as follows: 
  
A c cu r ac y of  ir r ig a t ed  a re a  c la ss  =   

 
Fie ld -p lo t e d irr ig a t e d  p oin t s cla s s if ie d  as  i rr ig a te d  a re a  

T o ta l n u m b er  o f  f iel d -p lo te d  p o in ts  o f  ir r i g a te d  a re a  c las s  
x  1 0 0  

 
 
Err ors  of  com miss ion for irrigated area c lass  =  

 
N on-Irrig ated f ield-plot points  classif ied as  irri gated ar ea 

Total numb er of non-irrigated f ield-plot points  

x  10 0 

 
  

Errors of commission for irrigated area class =  
 

Irrigated field-p lot points falling on nonirrigated area class x 100 

Total number of field-ploted points of irriated area class 
 

 
 
RESULTS AND DISCUSSION 
 
Land use / land cover maps 
 
The unsupervised classification based  on  the  ISODATA  
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Figure 5. Bi-spectral plot to separate shallow ground water irrigated areas from other land use\land cover (LULC) areas. 

 
 
 
clusters was done initially by obtaining 40 classes. Mixed 
classes were re-classified into 10 classes, thus, resulting 
in a total of 50 classes. These were, then, grouped into 
14 broad classes which were mapped to show clear 
spectral separability (Figure 6). Classes identified based 
on field-plot data includes GPS referenced digital images 
and field observations. The land use land cover (LULC) 
areas in the watershed were shown in the Table 2. More 
than a third of the basin is rangeland-rainfed fallows 
(40%). Rainfed agriculture is by fare the most dominant 
production system in the Atankwidi basin and irrigation is 
relatively limited only 0.1% in terms of area but well 
spread out in the Ghana portion of the watershed. In the 
Burkina side there is no SGI. 
 
 
Accuracy assessment 
 
A qualitative accuracy assessment was performed to 
check if the shallow groundwater irrigated areas are 
classified as irrigated or not, without checking for crop 
type or type of irrigation. The accuracy assessment was 
performed using field-plot data, to derive robust 
understanding of the accuracies of the  datasets  used  in 

this study. The field-plot data was based on an extensive 
field campaign conducted throughout Atankwidi 
Watershed during dry season by International Water 
Management Institute researchers and consisted of 190 
points. Accuracies are varying from 61 to 100%. Barren 
lands are less accurate because it spreading up stream 
watershed and mix with rangelands. Accuracy assessment 
provides realistic class accuracies (see equations above) 
where land cover is heterogeneous and pixel sizes 
exceed the size of uniform land cover units (Gopal et al., 
1994, Thenkabail et al., 2005; Gumma et al., 2009). For 
this study we had assigned 3 x 3 cells of QuickBird pixels 
around each of the field-plot points to one of six 
categories : absolutely correct (100% correct), mostly 
correct (75 % or more correct), correct (50% or more 
correct), incorrect (50% or more incorrect), mostly 
incorrect (75% or more incorrect), and absolutely 
incorrect (100% incorrect). Class areas were tabulated 
for a 3 x 3-pixel (9 pixels) window around each field-plot 
point. If 14 out of 14 QuickBird classes matched with 
field-plot data, then it was labeled according to the six 
categories defined. The accuracy assessments patterns 
are presented in Table 3. This data shows that use of 
remote and high image resolution can be very accurate
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Figure 6. The shallow ground water irrigated areas (class 11) along the stream course in the Atankwidi watershed. Clear 
delineation of SGI from other areas is apparent. 
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Table 2. Land use / land cover areas and its percentages. 
 

S/No. Land use/Land cover Area (Ha) % area 
1 Water bodies 31.82 0.1 
2 Riverbed and bare soils 116.58 0.4 
3 Settlements 104.96 0.4 
4 Barren lands  3014.16 10.5 
5 Barrenlands mix with rangelands 2852.02 10.0 
6 Rangelands Mix with Barren lands 873.19 3.0 
7 Rangelands mix with fallows, Short shrubs 2079.77 7.3 
8 Rangelands-rainfed fallows 11410.77 39.9 
9 Rainfed-MS-mixed crops 1712.45 6.0 

10 Rainfed-LS-mixed crops 2515.59 8.8 
11 Irrigated-shallow groundwater-vegetables 387.23 1.4 
12 Short shrubs, trees 64.42 0.2 
13 Savannah, trees, short shrubs 1578.62 5.5 
14 Savannah, forest (Trees) 1891.07 6.6 

   28632.62 100.0 
 
 

Table 3. Accuracy assessment based on field-plots. 
 

Lulc # Samples # Total correct Absolute 
correct 

Mostly 
correct Correct Incorrect Mostly 

incorrect 
Absolute 
correct 

Total 
incorrect 

01. Water bodies 0 100 1.0 0.0 0.0 0.0 0.0 0.0 0 
02. Riverbed and bare soils 1 100 1.0 0.0 0.0 0.0 0.0 0.0 0 
03. Settlements 0 100 1.0 0.0 0.0 0.0 0.0 0.0 1 
04. Barrenlands lands 18 61 0.2 0.0 0.4 0.4 0.0 0.0 39 
05. Barrenlands mix with Rangelands 10 80 0.6 0.0 0.2 0.2 0.0 0.0 20 
06. Rangelands Mix with Barren lands 4 81 0.3 0.0 0.6 0.2 0.0 0.0 19 
07. Rangelands  mix with fallows, Short shrubs 11 88 0.8 0.0 0.1 0.1 0.0 0.0 13 
08. Rangelands-rainfed fallows 35 100 1.0 0.0 0.0 0.0 0.0 0.0 0 
09. Rainfed-MS-mixed crops 14 100 1.0 0.0 0.0 0.0 0.0 0.0 0 
10.Rainfed-LS-mixed crops 12 92 0.8 0.0 0.1 0.1 0.0 0.0 8 
11.Irrigated-shallow groundwater-vegetables 70 94 0.9 0.0 0.0 0.0 0.0 0.0 6 
12. Short shrubs, trees 5 100 1.0 0.0 0.0 0.0 0.0 0.0 0 
13. Savannah, trees, short shrubs 6 94 0.9 0.0 0.0 0.0 0.0 0.0 6 
14. Savannah, forest (Trees) 4 100 1.0 0.0 0.0 0.0 0.0 0.0 0 
  190 92 0.8 0.0 0.1 0.1 0.0 0.0 8 

 

Absolutely correct: 100% correct; Mostly correct: 75% or more correct; Correct: 50% or more correct; Incorrect: 50% or more incorrect; Mostly incorrect: 75% or more incorrect; and absolutely 
incorrect: 100% incorrect. 
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in assessing the extent of SGI in the White Volta Basin.  
 
 
Conclusion 
 
The paper demonstrated the strength of using very high 
spatial resolution (VHSR) Quickbird imagery of 0.61 - 
2.44 m spatial resolution to highlight, delineate, and map 
shallow ground water irrigated areas (SGI). The method 
was demonstrated for Atankwidi Watershed (Northern 
Ghana) which has very small sub-acre plots of irrigated 
areas from dug-wells and dug-outs. However, these small 
dug-outs irrigating sub-acre plots are numerous and 
contiguous all along the stream bank. Similarly, the dug-
outs are numerous small water bodies all along the dry 
stream beds. The quickbird 0.61 to 2.44 m imagery was 
fused to highlight and delineate these contiguous areas 
of dug-wells and dug outs. Once the areas are 
delineated, classification techniques were used on the 
delineated areas using quickbird imagery to identify and 
map SGI and other LULC areas. 
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