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Past studies to predict optimal image resolution required for generating spatial information for 
savannah ecosystems have yielded different outcomes, hence providing a knowledge gap that was 
investigated in the present study. The postulation, for the present study, was that by graphically solving 
two simultaneous equations of values of image noise index (INI) and degradation level Index (LDI), a 
robust technique for predicting optimal image resolution for the mapping of savannah ecosystems was 
developed. The technique involved simulating 0.5 m imagery to different spatial resolutions for two 
savannah test sites in Masaka district, Southern Uganda. By plotting INI and LDI values against the 
simulated image resolutions, it enabled the authors to objectively predict that image resolution at 2.25 
and 2.5 m were optimal for generating spatial information for savannah ecosystems represented by the 
two test sites. The new technique will enable vegetation ecologists to objectively determine optimal 
resolution(s) prior to the choice of imagery, offered by different high-resolution air- and space-borne 
sensors, for generating spatial information for savannah ecosystems. Future research should focus on 
using the new technique to determine what ranges of image resolutions are optimal for generating 
spatial information of different savannah ecosystems in different countries. 
 
Key words: Optimal resolution, savannah ecosystems, image noise index, land cover index, level of 
degradation index. 

 
 
INTRODUCTION 
 
For vegetation ecologists, there is uncertainty regarding 
which one of the several high-resolution multi-spectral 
data (such as GeoEye 1.65 m, QuickBird 2.44 m, 
IKONOS 4 m, ALOS 10 m) should be used for generating 
spatial information for savannah ecosystems in a country 
like Uganda. This uncertainty arises due to the trade-off 
needed for accuracy vis-à-vis unit cost of generating 
spatial information per unit area. Image resolution, also 
known as spatial image resolution, is the level of 
cartographic detail of an image (Wilkie and Finn, 1996) 
and is measured in terms of pixel size. The present study 
is premised on the fact that there have been few and un-
validated   empirical   studies  on  how  to  determine   the  
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optimal resolution of imagery required for automated 
generation of accurate and cost-effective spatial infor-
mation for savannah landscapes.  

Few of the past studies that investigated the optimal 
resolution for generating spatial information for savannah 
ecosystems yielded different outcomes. For example, 
Mugisha and Huising (2002) report that a resolution 
range of 1.5 – 2.5 m is optimal for large-scale automated 
mapping of Uganda’s savannahs. On the other hand, 
Menges et al. (2001) reported that the optimal image 
resolution for mapping savannah vegetation in Northern 
Australia ranges from 5 to 27 m. The two studies, by 
Mugisha and Huising (2002) and Menges et al. (2001), 
yielded different optimal resolutions of imagery required 
for mapping savannahs. The difference, in optimal 
resolutions for imagery for mapping savannahs, could be 
an indication that these ecosystems are probably 
different in Uganda  and  Australia. The  difference  could  
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Figure 1. Part of a savannah showing a fragmented ecosystem. 

 
 
 
also be attributed to the differences in the techniques 
used by the authors. The premise that savannah 
ecosystems, in Uganda and northern Australia, are 
different might be plausible because the major 
constituents of the ecosystems are grass/wood mixtures 
of different sizes and densities that vary across space 
and time. However, the scope of the present study is 
premised on the fact that past techniques used for the 
determination of the optimal resolution(s) for automated 
mapping of savannah ecosystems were not robust 
enough.  

The term savannah is of West Indies origin and refers 
to landscapes with a type of vegetation dominated by 
grasses with varying wood densities across space 
(Groombridge and Jenkins, 2002), hence making the 
ecosystems fragmented as illustrated in Figure 1. 
Savannahs owe their origin and maintenance to adverse 
soil and climatic conditions, competition between grass 
and woody vegetation, fire, and anthropogenic factors 
(Cloudsley-Thompson, 1979; Mahesh et al., 2004). The 
economic importance of savannahs, in terms of 
pastoralism and biodiversity conservation, is enormous 
and thus cost-effective and accurate spatial information is 
required for the management of these ecosystems. Yet, 
experience shows that spatial information generated from 
SPOT (20 m) and Landsat TM (30 m) imagery for 
Uganda’s savannah is very inaccurate (Mugisha, 2007). 
This observation is supported by Seyler et al. (2002) who 
point out that attempts to map land cover classes from 
imagery like Landsat TM for fragmented tropical regions 
have had limited success despite an advancement in the 
use of improved statistical image classification 
procedures. For savannahs, the varying canopy size and 
density of woody vegetation makes these ecosystems 
fragmented, hence requiring high-resolution imagery to 
accurately map the vegetation there in. However, the 
question that has not yet been answered, by previous 
studies,   is   what   minimum   parameters   need   to   be 

combined to objectively predict optimal image resolution 
for mapping vegetation categories of grass/wood 
mixtures of different densities within savannah 
ecosystems.  

The concept of optimal image resolution is based on 
the premise that unnecessarily high-resolution imagery is 
not only costly to acquire, process, and analyse, it also 
has no added informational value for mapping pre-
determined set of geographic features (Townshend, 
1981). On the other hand, low/coarse imagery, whose 
pixel size is far less than the size of the smallest map-
able features, often yields spatial information whose 
geometric and class accuracies are unacceptably low 
(Foody, 2002; Seyler et al., 2002; Moody and Woodcock, 
1995). The subject of optimal image resolution is very 
relevant to mapping and has been studied in many 
different disciplines ranging from soil/geomorphology 
(Holden, 2001), agriculture (Coulter et al., 2000), biomass 
(Atkinson and Curran, 1997) to land cover surveys 
(Harvey and Hill, 2001). Yet, despite their economic and 
conservational importance, there has been little interest 
to develop a robust technique for an objective 
determination of the optimal image resolution required for 
mapping savannah ecosystems.   

Most techniques, including those employed by Mugisha 
and Huising (2002) and Menges et al. (2001), for the 
determination of optimal image resolutions are based on 
a measure of image spectral variance with changing 
image resolution (Bedward et al., 1992). However, other 
techniques (for example employed by Turner et al., 2002; 
Iron et al., 1985) are based on the image classification 
errors with varying image resolution when determining 
the optimal resolutions for mapping different landscapes. 
In our study, we took the view that a measure of internal 
spectral variance or image classification errors, with 
changing image resolution, alone has fundamental 
weaknesses when used for determining the optimal 
image resolution for mapping a given landscape.  Internal  
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Figure 2. Ageneralised variation of image spectral variance with 
image resolution. 

 
 
 
image spectral variance, an indicator of image ‘noise’ for 
a given landscape, is inversely proportional to image 
resolution as hypothetically shown in Figure 2. Menges et 
al. (2001) used the variation of internal spectral variance 
of high resolution video-captured imagery to predict that 
the optimal image resolution, for generating spatial 
information for savannahs in Northern Australia as 15 – 
27 m. Based on Figure 2, there is probable lack of 
objectivity in deciding whether the optimal resolution is 
reached when the internal image spectral variance starts 
levelling off significantly (point A), levels of (point B) or 
across the whole spatial resolution range when the 
internal spectral variance has levelled off that is between 
points B and C. 

Another weakness of internal image spectral variance 
and classification error-based techniques is that the 
geometric integrity (in terms of size/shape) of image 
objects is assumed to remain unaffected when a 
landscape is scanned by digital imaging sensors of 
different resolutions that is between points B and C in 
Figure 2. In other words, it is assumed that the 
size/shape of the numerous grass/wood mixtures, typical 
of savannah landscapes, do not influence their spectral 
characteristics for a given image. Yet, it is reasonable 
that the geometric integrity of image objects continues to 
be degraded with decreasing image resolution, that is 
between points B and C in Figure 2, hence affecting the 
spectral and geometric accuracies of spatial information 
generated from imagery with increasing pixels sizes. On 
the other hand, the use of high-resolution imagery, whose 
spectral variance is very high such as before point A in 
Figure 2, increases the cost of mapping without 
necessarily improving the accuracy of resultant 
vegetation maps. Consequently, the knowledge gap 
addressed in this paper is how to objectively predict an 
optimal image resolution that preserves both the spectral 
and   geometric   integrity  of  geographic  phenomena  of 

savannah ecosystems.  Therefore, the purpose of the 
study was to identify relevant parameters whose 
sensitivity with changes in image resolution improve the 
prediction of optimal resolution(s) for generating spatial 
information for fragmented savannah ecosystems.   
 
 
METHODS 
 
Overview 
 
Images used were acquired, for two tests sites in Southern Uganda, 
at a resolution of about 0.5 m by a multispectral Kodak Camera 
System (DCS560) mounted on a small winged aircraft. The 0.5 m 
imagery was simulated to 14 different resolutions to give a total of 
15 images (including the reference imagery that is 0.5 m) for each 
test site. The variation of three parameters (image classification 
errors, image noise, and degradational level) was determined for 
each of the 15 images for each test site. The image classification 
errors were measured as ‘Kappa’ values (Lu and Weng, 2007) for 
each of the land cover maps derived from the 15 images for each 
test site. The other two measured values (image noise and 
degradational level) were transformed into two indices namely 
Image noise index (INI) and degradation level index (DLI) and the 
outcomes used in to solve, graphically, two simultaneous equations 
in order to predict the optimal image resolution for generating 
spatial information for savannah ecosystems represented by the 
two test sites.. 
 
 
Image preparation and analysis 
 
The DCS560 Kodak Camera System captures small frames of 
multi-spectral composite image per scene. For the present study, 
each composite image frame was separated into constituent 
spectral bands that is green (0.5 – 0.68 µm), red (0.68 - 0.7 µm) 
and photo infrared (0.7 – 0.9 µm) before any image processing was 
carried out. For each test site, two adjacent image frames were 
geo-referenced, rectified and mosaicked using TNTmips Version 
6.8 image processing software. The rectified image mosaics, after 
trimming the unwanted edges and masking out non-savannah 
landscapes, covered a ground area of 172 and 296 ha for test site 1  
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and 2, respectively. 

The pixel size of each image mosaic (0.5 m) was increased to 
bigger pixel sizes using TNTmips’ Automatic Resampling 
Procedure. The process of increasing an image to bigger pixel 
sizes simulates imagery to the desired spatial resolution. Image 
simulation process, from existing data, was cheaper and more 
practical than acquiring actual data for an investigation carried out 
in the present study. In the past, other researchers (for example, 
Ringrose et al., 2003; Lass et al., 2000; Iron et al., 1985) have also 
used simulated images for a variety of analyses. The simulation of 
different image resolutions, by increasing an image’s pixel size, was 
each time carried out from each of the original image mosaics (0.5 
m resolution) using ‘cubic convolution’ resampling procedure. 
Resampling imagery using cubic convolution was used because it 
is recommended by Müller and Segl (1999) for studies where the 
preservation of image object shapes is the goal. In short, the 
simulation of the resolution of each image mosaic involved a 
systematic change of pixel size from 0.5 to 1.0, 1.5, 2.0, 2.5, 3.0, 
3.5, 4.0, 4.5 and 5.0 m.  

The authors assumed, based on a preliminary study by Mugisha 
and Huising (2002), that an optimal resolution of imagery for 
Uganda’s savannahs would be between 1.5 to 5 m and hence the 
nature of image simulation carried out. However, in case the 
authors’ assumption was wrong, the 0.5 m imagery was also 
simulated to 10 m resolution that is 0.5 to 6.0, 7.0, 8.0, 9.0 and 10.0 
m for each test site. The simulation of images beyond a spatial 
resolution of 10 m was deemed unnecessary since the geometric 
integrity of the smallest geographic phenomena (individual trees 
and small clumps of small of shrubs) are not preserved by sensors 
like ASTER, SPOT XS and Landsat TM. In any case, the findings of 
this study are intended to help vegetation ecologists to decide 
whether to purchase multi-spectral imagery acquired by GeoEye-2 
(1.65 m), QuickBird (2.44 m), IKONO (4 m) or SPOT (10 m) when 
generating categorical information, using automated image 
analysis, when mapping savannah ecosystems.  

Each of the 15 images was classified into 5 and 4 homogeneous 
land cover categories for test site 1 and 2, respectively using a non-
supervised classifier. For test site 1, the homogeneous land cover 
categories were short grass, tall grass, closed canopy woodland, 
herbaceous wetland and burnt grass/shadows. For test site 2, the 
homogeneous land cover categories were short grass, tall grass, 
closed canopy woodland, and burnt grass/shadows. After 
classification, each of the 15 land cover maps, for each test site, 
was used to determine the variation of ‘Kappa’ values, INI and DLI 
for each of the land cover maps derived from the 15 images for 
each test site.  
 
 
Determination of classification errors with changing image 
resolution  
 
Existing knowledge shows that image classification error is a 
function, among others, of image resolution (Townsend, 1981; Iron 
et al., 1985) and hence the use of this parameter in the present 
study. The image classification error was determined for each of the 
15 land cover maps (for each test site) using pixel-based reference 
information. The pixel-based reference information was collected 
during a ground-truthing exercise with the help of hand-held global 
position system (GPS). Only homogeneous parts of the land cover 
map, for each test site, were included in the pixel-based reference 
information as recommended by Lewis (1998). 

The level of image classification error, for each of the 15 land 
cover maps, was determined by comparing reference information 
and the land cover map whose accuracy was being determined for 
each test site. The process of comparing two co-registered maps, 
on a pixel-by-pixel basis, to generate a classification error matrix for 
all the land cover classes is recommended by Nusser and Klass 
(2002). Using a land cover map whose accuracy was  required  and  

 
 
 
 
the ground-truthed reference map, an error classification matrix was 
automatically generated by TNTmips Image Processing Software. 
The overall classification error (OCE) was determined by 
subtracting ‘Kappa’ value from 100% (that is 100 – ‘Kappa’ value) 
for each land cover map and for each of the two test sites. A plot of 
OCE against each of the 15 image resolutions enabled the authors 
to construe if image classification errors are sensitive predictors of 
optimal image resolutions for savannah ecosystems.   
 
 
Determination of image noise with changing spatial resolution   
 
Each of the 30 land cover maps (for the two rest sites) was 
converted from raster to a vector data format in order to enable the 
targeted geographic phenomena (e.g. individual trees, clumps of 
bushlands and grasslands of different sizes) to be treated as 
individual mapping units (polygons).  The total number of the 
individual geographic phenomenon (that is polygons) of short grass, 
tall grass, dense wood, herbaceous wetland, and burnt 
grass/shadows was counted for each of the 15 land cover maps for 
each test site. The use of polygons, as an indicator for image noise, 
was based on the premise that a land cover map, generated using 
automated image classification techniques, has both unwanted 
polygons (terrain noise such as openings in tree canopies) and 
wanted polygons representing real geographic features. The 
unwanted polygons were deemed geometrically unwanted (intra 
image noise) but numerically far greater than the polygons that 
represent actual geographic phenomena (individual trees, clumps 
of bushlands and grassland) of different sizes. Hence the removal 
of the polygons representing image noise, through increasing an 
image pixel size, should not in a significant manner affect the 
geometric integrity of geographic features composed of individual 
trees, clumps of bushlands and grassland. However, beyond a 
certain pixel size, degradation of the geometric integrity of 
geographic features sets in hence making the image unsuitable for 
automated mapping of individual trees, clumps of bushlands and 
grassland. It is postulated that the land cover polygons would 
decrease in a predictable manner to enable the investigators obtain 
approximately the same curve, for each test site, shown in Figure 2. 
The recorded number of land cover polygons, for each test site, 
was transformed into an image noise index (INI) using the following 
expression: 
 
INI = (Ps/P0.5)100 
 
where P0.5 represents the number of land cover polygons recorded 
for spatial information derived from Kodak imagery at a spatial 
resolution of 0.5 m (reference data) for each of the two test sites; Ps 
represents the number of land cover polygons recorded for spatial 
information derived from Kodak imagery whose spatial resolution 
was simulated from 0.5 m for each of the two test sites.  
 
 
Determination of geometric integrity of image objects at 
varying spatial resolutions   
 
A third index, the land cover index (LCI), was determined through a 
raster GIS overlay process between each of the reference maps 
(derived from 0.5 m) and all other land cover maps generated from 
imagery whose image resolutions were simulated. The LCI was 
developed during the present investigation as a robust technique 
for tracking any spatial changes in shape/size (or geometric 
integrity) of image objects whose spatial resolutions were 
simulated. By selecting all pixels belonging to a particular land 
cover type from reference information (0.5 m) “and” pixels of the 
same land cover type generated from an image whose resolution 
would have been simulated, it was possible to track any changes in 
shape/size of  image  objects  with  changing  image resolution. The  
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Figure 3. Plot of image classification errors (100-Kappa) against image resolution. 

 
 
 
output pixels were transformed into area coverage (in hectares) and 
summed up for each test site. Area was used as a surrogate for 
shape/size of image objects as recommended by Comber et al. 
(2003). The area, for each land cover category, was transformed 
into LCI using the following expression: 
 
LCI = (As/A0.5)100 
 
where: A0.5 represents the total area of land cover recorded for 
spatial information derived from Kodak imagery at a spatial 
resolution of 0.5 m (reference data) for each of the two test sites; As 
represents the total area of land cover recorded for spatial 
information derived from Kodak imagery whose spatial resolution 
was simulated from 0.5 m for each of the two test sites. 
 
Finally, the LCI was transformed into the level of degradation index 
(LDI) for each of the 15 land cover maps for each test site. LDI, for 
each land cover map, was determined by subtracting the value of 
LCI from 100 (that is LDI = 100% – LCI).   
 
 
Data analysis 
 
Given the nature of the research problem, it was important that the 
variation of each of three parameters (OCE, INI and LDI) with 
changing image resolution be determined. Since all the three 
parameters were converted into values using the same scale (that 
is 0 to 100%), it was possible to plot the derived values against 
image resolution on the same graph. The following indices were 
plotted against image resolution (image pixel size in m): 
 
1. Image noise index (INI) showing the relationship between image 
noise with changing image resolution;   
2. Level of degradation index (LDI) showing the relationship 
between image object shapes/sizes with changing spatial 
resolution, and  
3. Image classification errors expressed as a percentage. 

FINDINGS 
 
Overview 
 
By combining two conventional parameters (image noise 
and level of classification errors) with a new parameter 
(LDI), an objective and robust technique for the 
determination of optimal image resolution, for generating 
spatial information for savannah grass/wood mixtures of 
different densities was developed. Using the improved 
technique, it we estimated that an image resolution range 
of 2.25 and 2.5 m was optimal for automated image 
analysis for the savannah ecosystems represented by 
test sites 1 and 2, respectively.  
 
 
Variation of image classification errors with image 
resolution 
 
Image classification errors remained relatively stable at 
about 30% over 11 image resolutions ranging from 0.5 to 
6.0 m (Figure 3). The stability of image classification 
errors between image resolutions 0.5 to 6.0 m can be 
interpreted to imply that the spatial information content, in 
spectral terms, is the same over the defined range of 
image resolutions. However, from Figure 3, there is a 
moderate but noticeable increase in image classification 
errors to about 37 and 43% for test sites 1 and 2, 
respectively between image resolutions 6 – 10 m. In 
spectral terms, it can be concluded that an image 
resolution  of  0.5 m  results  into the same level of image 
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Figure 4a. Plot of LDI against resolutions for test site 1. 

 
 
 
classification accuracy as an image resolution of 6 m. 
Hence, the optimal image resolution for generating 
spatial information for savannah ecosystems, 
represented by the two test sites, would be about 6 m 
based on image classification accuracy curves. However, 
we also note that image classification errors are not very 
sensitive to changing image resolution. 
 
 
Variation of INI with image resolution 
 
There was an approximate and expected negative 
inverse relationship between image noise index (INI) with 
decreasing image resolution for each of the two test sites 
(Figures 4a and b).  

The two exponential equations that describe the 
relationship between INI (y-axis) and image resolution (x-
axis) was y = (115.34)-0.288x and y = (124.69)-0.271x for test 
site 1 and 2, respectively. Fore reference data (image 
resolution at 0.5 m), the INI is at its maximum of 100% for 
each land cover map (Figures 4a and b). From Figure 4, 
it is also observed that between 0.5 and 2.5 m there was 
a significant reduction in terrain noise by a factor of about 
77 and 70% for test sites 1 and 2, respectively.  

The image noise reduced by a factor of only about 10% 
for both test sites when the image resolution was 
decreased from 2.5 to 5.0 m. Furthermore, the image 
noise reduced by a factor of only about 6% for both test 
sites when the image resolution was decreased from 5.0 
to 10.0 m. It is difficult to use the two INI curves to predict 
an optimal image resolution for each of the two test sites 
because the two curves do not level of within the range of 
image resolutions considered that is 0.5 – 10.0 m.    

Variation of geometric integrity of object 
shapes/sizes with decreasing image resolution 
 
Fore reference data (at 0.5 m), the level of degradation 
index (LDI) with respect to the size/shape of geographic 
phenomena is 0% as shown in Figures 4a and b. 
However, from Figures 4a and b, it is observed that the 
LDI increases in a predictable manner between image 
pixel sizes 0.5 - 10 m. Indeed, the LDI increased by a 
factor of 43 and 51% for test site 1 and 2, respectively 
between image pixel sizes 0.5 – 10.0 m. From Figure 4, it 
is observed that INI and LDI are sensitive parameters, in 
a predictable manner, with changing image resolution. It 
is for this reason that we suggest that the optimal image 
resolution, for mapping savannah ecosystems 
represented by the two test sites, can be objectively 
defined at a point where INI and LDI curves intersect in 
Figures 4a and b. For the two test sites, the optimal 
image resolution is given as 2.25 m (test site 1) and 2.5 
m (test site 2).  
 
 
DISCUSSION 
 
The continuous degradation of the geometric integrity of 
object shapes/sizes with decreasing image resolution is 
an indication that the geometric integrity of savannah 
features (within and at the boundaries) gets compromised 
with increasing image resolution as indicated in Figures 
4a and b. In Figure 5, it is observed that some level of 
degradation of the geographic features (associated with 
the removal of object intra-noise at pixel size 2 m) could 
be  acceptable  since it does not significantly compromise  
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Figure 4b. Plot of INI and LDI against image resolutions for test site 2. 

 
 
 

 
 
Figure 5. Visual changes in the geometric intergrity of a savannah shrub (dark pixels) with increasing pixel size. 

 
 
 
the geometric integrity of the target vegetation objects. 
However, the removal of object inter-noise (associated 
with the removal of object inter-noise at pixel 4 and 10 m) 
significantly degrades the integrity of target objects and 
may not be acceptable.  

Due to this observation, large pixel sizes of imagery do 
not represent the actual geometric shapes of target 
objects of savannah vegetation. It is also true that with 
very large image pixel sizes; most of the small savannah 
geographic features (like small clumps of wood) that 
define these ecosystems disappear completely as 
illustrated in Figure 6. From Figure 6, the  relatively  large 

clumps of wood that do not disappear on large image 
pixel sizes yield mixed spectra (mixed pixels) that do not 
represent woody or grass vegetation, hence resulting into 
image misclassifications that lower the accuracy of 
spatial information generated from Landsat TM for 
savannah ecosystems (Mugisha, 2007). Since the 
size/shape of the smallest savannah features may vary 
from savannah type/phase to another, it can be 
postulated that there could be different optimal image 
resolutions for these ecosystems.  

By combining INI and LDI, the optimal image resolution 
for  the  automated  generation  of  spatial  information for  
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Figure 6. The spectra of high-resolution imagery (0.5 m) represent shapes/sizes of small wood features (shades of red) 
characteristic of savannah ecosystems but low resolution imagery (30 m) does not. 

 
 
 
savannah ecosystems, represented by the two test sites, 
was predicted to be 2.25 – 2.5 m. The developed 
technique provides an objective way to predict optimal 
image resolution(s) for automated generation of spatial 
information for savannahs and probably for other 
fragmented ecosystems. This is because the technique is 
based on solving two simultaneous equations, graphically 
in this study, as shown in Figures 4a and b when 
determining the optimal image resolution for each test 
site. On the other hand, the techniques used by Mugisha 
and Huising (2002) and Menges et al. (2001) determined 
the optimal image resolution by subjectively locating the 
lowest point attained by spectral variance with changing 
image resolution. 

The development of a new parameter, that is LDI, to 
improve how optimal image resolutions are determined 
was based on Marceau and Hay’s (1999) observation 
that shape/size is a key attribute that should always be 
incorporated in image analyses like one conducted in the 
present study. The significant reduction of terrain noise 
(INI) with decreasing image resolution is desirable if it 
does not affect the quality of imagery (Townshend, 1981). 
What is not desirable is the degradation of the woodland 
patches with respect to shape/size. This is because the 
shape/sizes of individual trees, small patches of 
woodland or grassland that define the vegetation 
structure of savannahs should be preserved for an image 
resolution to be optimal. However, terrain noise that is 
represented   by  canopy   openings    is    not    desirable 

because it increases the costs of acquiring and analysing 
remotely sensed data. 

In conclusion, by combining image noise index (INI) 
and the level of degradation index (LDI) of geographic 
phenomena, it was possible to develop a robust 
technique for the determination of optimal resolution 
required for generating large-scale spatial information for 
savannah vegetation types. Subsequently, it was 
concluded that multi-spectral imagery acquired by 
QuickBird 2.44 m rather than GeoEye 1.65 m is optimally 
suited, both in terms of data quality and cost-
effectiveness, for generating spatial information for 
savannah ecosystems represented by each of the two 
test sites. However, future research should investigate, 
using the developed technique, to what extent different 
savannahs (or their evolutionary phases) hypothetically 
require different optimal image resolutions (Figure 7) for 
automated generation of detailed spatial information.  

Since the scope of the this study was limited to 
developing a technique for determining optimal resolution 
of imagery required for automated image analysis, further 
research may also be required to determine the optimal 
resolution of imagery when used visually for mapping 
savannah ecosystems. 
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Figure 7. The developed techniques should have the potential to determine to what extent different savannah 
ecosystems have different optimal resolutions.  
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