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The feasibility of using models to understand processes, predict and/or simulate, control, monitor and 
optimize WasteWater Treatment Plants (WWTPs) has been explored by a number of researchers. 
Mathematical modeling provides a powerful tool for design, operational assistance, forecast future 
behavior and control. A good model not only elucidates a better understanding of the complicated 
biological and chemical fundamentals but is also essential for process design, process start-up, 
dynamics predictions, process control and process optimization. This paper reviews developments and 
the application of different modeling approaches to wastewater treatment plants, especially activated 
sludge systems and processes therein in the last decade. In addition, we present an opinion on the 
wider wastewater treatment related research issues that need to be addressed through modeling. 
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INTRODUCTION 
 
Activated sludge systems encompass biodegradation and 
sedimentation processes which take place in the aeration 
and sedimentation tanks, respectively. The performance 
of the activated sludge process is, however, to a large 
extent dictated by the ability of the sedimentation tank to 
separate and concentrate the biomass from the treated 
effluent. Since the effluent from the secondary clarifier is 
most often not treated any further, a good separation in 
the settler is critical for the whole plant to meet the 
effluent standards. Mathematical models are increasingly 
being deployed to understand complex interactions and 
dynamics in the activated sludge system. As such a 
mathematical model can be defined as the mathematical 
representation of a real-life phenomenon or process. It is 
built for a specific reason, with a specific aim in mind, 
which could be: 
 
(i) To increase insight into physical processes; 
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(ii) To estimate non measurable quantities; 
(iii) To predict future events, or 
(iv) To control a process. 
 
In industrial practice, most knowledge is available in the 
form of heuristic rules gained from experience with 
various production processes, while crisp mechanistic 
descriptions in the form of mathematical models are 
available only for some parts or aspects of the processes 
under consideration. A good model not only elucidates a 
better understanding of the complicated biological funda-
mentals but is also essential for process design (Oles 
and Wilderer, 1991; Daigger and Nalosco, 1995), process 
start-up (Finnson, 1993), dynamics predictions (Novotny 
et al., 1990; Capodaglio et al., 1991; Cote et al., 1995; 
Marsili-Libelli and Giovannini, 1997; Premier et al., 1999; 
El-Din and Smith, 2001), process control (Lukasse et al., 
1998) and process optimization (Lesouef et al., 1992). 
This paper reviews developments and the application of 
different modeling approaches to wastewater treatment 
plants especially activated sludge systems and pro-
cesses therein in the last decade. In addition, we present 
an  opinion  on  the  wider  wastewater  treatment  related  
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Figure 1. Archetypal flow scheme of a conventional activated sludge plant. 

 
 
 
research issues that need to be addressed through 
modeling. 
 
 
DEVELOPMENT OF THE ACTIVATED SLUDGE 
PROCESS 
 
Although it is not the intention of this paper to present a 
chronology of the developments of activated sludge 
systems, some important ‘milestones’ on the subject will 
be highlighted. For more about the history and develop-
ments of activated sludge systems, readers are invited to 
consult reviews (Alleman, 1983; Albertson, 1987; 
Alleman and Prakasam, 1983; Casey et al., 1995). In 
order to understand the impact that the activated sludge 
process had on wastewater treatment technology, one 
must first appreciate the relative infancy of the ‘sanitation 
engineering’ which existed in the developed world during 
the mid-to late- 1800's. Lacking any means of collecting 
wastewaters, at that time, the convenient solution was 
either one of direct discharge from chamber pots to 
streets or, for those more affluent homes, to rely on fill-
and-draw systems where the wastewater was aerated. 

In England, the experiments with wastewater aeration 
did not provide expected results until May, 1914 when 
Ardern and Lockett introduced a re-use of the ‘suspen-
sion’ formed during the aeration period; hence paving a 
way for continuous-flow systems (Metcalf and Eddy, 
1979; Alleman, 1983). The suspension, known as ‘activa-
ted sludge’ was in fact an active biomass responsible for 
improvement of treatment efficiency and process 
intensity. As it is known now, the activated sludge system 
is a unique biotechnological process which consists of an 
aerated suspension of mixed bacterial cultures which 
carries out the biological conversion of the contaminants 
in wastewater. At this point in time, the activated sludge 
process has proven itself to be a durable technology in 
an era where most engineering methods lapse into 
obsolescence only decades, if not years, after their 
original development. The process' supremacy to this day  

is supported by not only its flexibility and robustness but 
also its capability to fulfill the most stringent effluent 
criteria, if bad operating strategies or poorly designed 
clarifiers are avoided. 

A typical activated sludge process configuration as 
depicted in Figure 1, encompasses biodegradation and 
sedimentation processes which take place in the aeration 
and sedimentation tanks, respectively. The aeration tank, 
while having many possible configurations, basically 
retains well mixed aerated wastewater for a number of 
hours (or days) thereby providing an environment for 
biological conversion of dissolved and colloidal organic 
compounds into stabilized, low-energy compounds and 
new cells of biomass. This biodegradation is performed 
by a much diversified group of microorganisms in the 
presence of oxygen. The influent wastewater provides 
the basic food source for the microorganisms in the 
aeration tank. If the removal of nutrients that is nitrogen 
and phosphorus components is contemplated, anoxic 
and anaerobic zones must be provided in addition to the 
aerated zones. 
 
 

APPLICATION OF MODELING TECHNIQUES IN 
UNDERSTANDING COMPLEX WASTEWATER 
TREATMENT SYSTEMS 
 

Process control modeling 
 

Three decades ago, it was shown that coexistence of two 
species, competing for one substrate, is generically not 
possible for Monod- and Haldane-type kinetics (Aris and 
Humphrey, 1977). Monod-type kinetics is defined by 
Equation (1). 

 

  (1)  

      
with µ equal to the specific growth rate, µmax equal  to  the 



 
 
 
 
maximum specific growth rate, Cs the substrate concen-
tration and Ks the affinity constant. 
   Essentially, filamentous microorganisms are slow 
growing microorganisms that can be characterized as 
having maximum growth rates (µmax) and affinity con-
stants (Ks) lower than the floc-forming bacteria. The µmax 
is directly proportional to the maximum substrate uptake 
rate (qs

max
) times the yield of biomass on substrate 

(YX/S
max

). Since substrate uptake rate (qs) can be directly 
assessed from the experiments, this characteristic is 
preferred. The actual substrate uptake rate depends on 
the substrate concentration as shown in Equation (2). 
 

              (2)  

 
By performing an extensive stability analysis, the authors 
proved that the dilution rate and the substrate feed 
concentration determine which species will wash out. 
Models for the growth of one, two and multiple species 
were analyzed on one or multiple substrates (Smouse, 
1980). He showed with a rigorous stability analysis that, 
the coexistence of multiple species is only possible if 
there are as much growth-limiting substrates as there are 
different species. This confirms the earlier work of Taylor 
and Williams (1975). The first bulking sludge mathe-
matical model incorporating simultaneous diffusion of 
soluble organic substrate and Dissolved Oxygen (DO) 
through flocs with predetermined shape was developed 
by Lau et al. (1984). Parameters such as bulk liquid 
soluble organic substrate and DO concentration and floc 
shapes and sizes were used to predict the volume-
averaged growth rate of filamentous bacteria 
(Sphaerotilus natans) and non-filamentous bacteria 
(Citrobacter sp.). The kinetic parameters, which were 
experimentally measured, had values according to the 
kinetic selection theory. The results of this model cannot 
be extrapolated because either the kinetic parameters do 
not apply to other filamentous or non-filamentous bacteria 
(Seviour and Blackall, 1999), or the representativeness of 
the model microorganisms in activated sludge systems 
can be questioned. In spite of these limitations, the model 
illustrates some aspects that may match reality.  

Furthermore, the study warned that the one-dimen-
sional (unidirectional) growth of filamentous bacteria 
might lead to a floc geometry that is better for substrate 
diffusion. The Activated Sludge model No.1 (ASM1: 
[Henze et al., 1987]) can be considered as the reference 
model, since this model triggered the general acceptance 
of Wastewater Treatment Plant (WWTP) modeling, first in 
the research community and later in industry (Gernaey et 
al., 2004). The model also aims at yielding a good 
description of the sludge production. Chemical Oxygen 
Demand (COD) was adopted as the measure of the con-
centration of organic matter. Many of the basic concepts 
of ASM1 are adapted from the activated sludge model 
defined by Dold and colleagues (Dold et al., 1980). Even  
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today, the ASM1 model is in many cases still the state of 
the art for modeling activated sludge systems (Dircks et 
al., 2001; Roeleveld and van Loosdrecht, 2002). An 
alternative modeling strategy for the simplification of the 
ASM1 that yields computationally efficient models with 
reasonable prediction capabilities have been described 
(Anderson et al., 2000). Copp (Copp, 2002) reports on 
experiences with ASM1 implementations on different 
software platforms. For a full description of the ASM1 
model, as well as a detailed explanation on the matrix 
format used to represent activated sludge models, the 
original publication (Henze et al., 1987) should be 
consulted. 

In 1995, an updated version (ASM2) was introduced to 
incorporate biological phosphorous removal (Henze et 
al., 1995). The ASM2 publication points out that, this 
model allows description of bio-P processes, but does not 
yet include all observed phenomena. In 1999, further 
revisions were presented by building on the ASM2 model 
to introduce the ASM2d model (Henze et al., 1999). A 
model developed at Delft University of Technology, 
TUDP (van Veldhuizen et al., 1999; Brdjanovic et al., 
2000) combines the metabolic model for denitrifying and 
non-denitrifying bio-P of (Murnleitner et al., 1997) with the 
ASM1 model (autotrophic and heterotrophic reactions). 
Contrary to ASM2/ASM2d, the TUDP model fully 
considers the metabolism of phosphorus accumulating 
organisms and models all organic storage components 
explicitly (Gernaey et al., 2004). The TUDP model was 
validated in enriched bio-P sequencing batch reactor 
(SBR) laboratory systems over a range of sludge 
retention time (SRT) values (Smolders et al., 1995), for 
different anaerobic and aerobic phase lengths (Kuba et 
al., 1997), and for oxygen and nitrate as electron 
acceptor (Murnleitner et al., 1997). 

Another version of ASM1 called the ASM3 model 
(Gujer et al., 1999) has also been introduced which cor-
rects a number of known defects present in the original 
model. A common trait among the versions of these 
models is that each is high-dimensional and possesses a 
large number of kinetic and stoichiometric parameters. 
For example, ASM3 comprises 12 process rate equations 
involving 7 dissolved and 6 particulate components, 21 
kinetics parameters, and 13 stoichiometric and compo-
sition parameters. Though this level of model complexity 
is necessary to describe and relate dynamics over a wide 
range of operating conditions, it can present a significant 
computational burden for performing simulations and 
analysis and calibration is hard (Vanrolleghem et al., 
1999). 
 
 
Process dynamic modeling 
 

Traditional time series analysis models have been 
applied to the wastewater treatment plants (Berthouex 
and Box, 1996; Geselbracht et al., 1988; Oles and 
Wilderer, 1991; Capodaglio et al., 1991;  Banadda  et  al., 
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2005). Beyond this, literature survey indicates that a 
number of authors (Beun et al., 2000; Pandit and Wu, 
1983; Smets et al., 2006; Van Dongen and Geuens, 
1998) have postulated that, in most cases time series 
analysis is an ideal tool to identify models of dynamic 
systems such as activated sludge. Actually, time series 
models can be developed from input and output moni-
toring data, in contrast to common deterministic dynamic 
mathematical models which require knowledge of a large 
number of coefficients. 

Linear regression analysis, the statistical methodology 
for predicting values of model outputs from a collection of 
model inputs values is used to exemplify the static 
approach. Linear models have a simple structure, which 
makes them easily learnable, and also enables them to 
be easily extended and generalized. Linear models take 
weighted sums of known values to produce a value of an 
unknown quantity. In general, a linear regression model 
to vector u and vector y is a function p of the form 
(Equation 3). 
 

   (3) 

 
with n the model order, d = n+1 the number of model 
parameters and C1, C2, ··· , Cn the model parameters 
determined by solving a system of simultaneous linear 
equations. 
 

The persistence of the filamentous bulking problem 
coupled with the need for an easy to use predictive tool 
has led to a number of researchers (Banadda et al., 
2004; Banadda et al., 2005; Novotny et al., 1990; 
Capodaglio et al., 1991; Sotomayor et al., 2001; 
Sotomayor and Garcia, 2002a; Sotomayor and Garcia, 
2002b; Smets et al., 2006) to turn to time series models. 
Artificial Neural Networks ANNs have been applied in 
capturing the non-linear relationship that exists between 
variables in complex systems (Capodaglio et al., 1991; 
Pu and Hung, 1995; Zhao et al., 1999). Other modeling 
techniques such as hybrid modeling offer possible 
avenues for creating simplified representation of 
complicated systems such as activated sludge. Also 
modeling approach, individual-based modeling (IbM) was 
developed and implemented for biofilm systems (Kreft et 
al., 1998; Kreft et al., 2001; Picioreanu et al., 2003; 
Picioreanu et al., 2004). IbM allows individual variability 
and treats bacterial cells as single units. 

Furthermore, the IbM approach can make a distinction 
between spreading mechanisms adopted by different 
bacteria (Picioreanu et al., 2003). Ward and colleagues 
(Ward et al., 1996) combined the Activated Sludge Model 
No.1 (Henze et al., 1987) with time series models to 
establish a hybrid model of the activated sludge process 
and to enable prediction of suspended solids in the 
effluent. Authors (Zhao et al., 1999) compared the 
Activated Sludge Model No.2 (Henze et al., 1995) with a 
simplified model and a neural net model, while 
researchers (Pu and  Hung,  1995)  established  a  neural  

 
 
 
 
network model for a trickling filter plant.  

In (Grijspeerdt et al., 1995) both steady state and dyna-
mic properties of the examined models are compared. It 
was found that the Tak'acs model (Tak´acs et al., 1991) 
is the most reliable. Statistical modeling methods form 
another framework in which the black-box approach is 
used for monitoring wastewater settleability as reported in 
(Capodaglio et al., 1991; da Motta et al., 2002). However, 
researchers (Naghdy and Helliwell, 1989) point out that, 
univariate statistical modeling can be used to charac-
terize properties of time series data but only for short-
term forecasting and control. One of the disadvantages of 
a univariate monitoring scheme is that for a single 
process, many variables may be monitored and even 
controlled. This disadvantage has been overcome by 
multivariate statistical modeling, where more variables 
are monitored simultaneously and later on incorporated 
to improve the applicability for forecasting and control 
(Marsili-Libelli and Giovannini, 1997; Van Dongen and 
Geuens, 1998; Eriksson et al., 2001). 

In another development, multivariate statistical 
modeling tools such as Principal Component Analysis 
(PCA) has been exploited in monitoring settleability in 
lab-scale set-ups (Amaral and Ferreira, 2005) and in 
many industrial applications for process monitoring, fault 
detection and isolation (Gregersen and Jorgensen, 
1999). Also, researchers (Miyanaga et al., 2000) adopted 
a multivariate statistical modeling tool, namely Partial 
Least Squares (PLS), to predict the deterioration of 
sludge sedimentation properties, and indicated that it was 
usually able to predict deterioration of sludge sedimen-
tation properties 2 to 4 days in advance. Generally, 
multivariate statistical models are able to cope with the 
following: 
 

(i) Noisy data sets; 
(ii) Missing data in the data sets; 
(iii) Correlated variables within the data sets; 
(iv) Data sets with many variables and a small number of 
observations and 
(v) Data sets with many observations and a small number 
of variables. 
 
In brief, PCA utilizes directly the information from the 
data, compacted in the form of a covariance matrix, to 
extract more relevant information and to generate new 
variables known as principal components. Researchers 
(Pan et al., 2004) proposed to use a combination of PCA 
with a subspace identification method to obtain a model, 
that describes the period-to-period multivariate behavior 
of all the samples collected during each period of time in 
a WWTP. In their works, (Van Niekerk et al., 1988) 
developed a mathematical model to predict the behavior  
of floc-forming and filamentous bacteria under carbon-
limited conditions in low F/M activated sludge. A 
biokinetic model which includes a floc-forming and three 
common filamentous microorganisms (S. natans, Type 
021N, Type 0961)  was  proposed  (Kappeler  and  Gujer,  



 
 
 
 
1992). With this competitive model, which accords with a 
variety of experimental observations, different bulking 
phenomena were explained. Researchers (Gujer and 
Kappeler, 1992) introduced a similar model, a biokinetic 
model, which allows the prediction of the development of 
floc-forming, filamentous and Nocardia type microorga-
nisms in aerobic activated sludge systems with a variety 
of different flow schemes and operating conditions.  

Also, researchers (Kappeler and Gujer, 1994a) 
proposed a mathematical model which describes the 
behavior of facultative aerobic floc-forming, obligate 
aerobic filamentous and nitrifying microorganisms in the 
case of aerobic bulking. This model is verified by 
experiments in a full-scale and pilot-scale plant (Kappeler 
and Gujer, 1994b). Authors (Kappeler and Brodmann, 
1995) formulated a mathematical simulation model for 
low Food to Microbe (F/M) bulking among other problems 
encountered in activated sludge systems. To date, most 
of the work in black-box modeling has been aimed at 
static model types. Researchers (Capodaglio et al., 1991) 
developed predictive models namely, time series analysis 
(as a function of F/M) and artificial neural networks 
(models inputs: Biological Oxygen Demand/Nitrogen 
(BOD/N), Nitrogen/Phosphorus (N/P), DO, Temperature 
(T), F/M) to model filamentous bulking sludge volume 
index. 

The neural network models employed by researchers 
(Oles and Wilderer, 1991) analyzed the levels of sludge 
bulking organisms using the F/M, the BOD load, the N 
and P, BOD/P ratio, DO, temperature and sludge age as 
inputs. Authors (Mujunen et al., 1998) used Partial Least 
Squares (PLS) Regression models to predict dete-
rioration of sludge sedimentation properties as a function 
of process parameters, namely, soluble N, soluble P, DO, 
BOD, pH, temperature, and indicated that the PLS model 
was usually able to predict deterioration of sludge sedi-
mentation properties 2 to 4 days in advance. PCA/PLS 
analysis relies on static models, which assume that the 
activated sludge process operates at a predefined 
steady-state condition. This is often not the case as the 
process undergoes changes, which results in dynamic 
process variables (Treasure et al., 2004). However, 
researchers (Amaral and Ferreira, 2005) sought relation-
ships between biomass parameters including filamentous 
bulking scenarios and operating parameters, such as the 
Total Suspended Solids (TSS) and SVI by exploiting 
another static multivariate statistical technique: PLS 
regression. 
 
 

Biomass morphology based modeling 
 
Later studies took into account both the micromorphology 
of the floc and the oriented growth characteristics of the 
filamentous bacteria (Tak´acs and Fleit, 1995). This study 
was the first attempt to combine the morphological 
characteristics with the physiology of filamentous and 
non-filamentous bacteria.  However,  similar  to  Lau  and  
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co-workers (Lau et al., 1984), researchers Tak´acs and 
Fleit (1995) attributed different kinetic parameters to the 
two different bacterial morphotypes (filaments and floc-
formers). Some authors proposed a mathematical model 
based on the kinetic selection and filamentous backbone 
theory (Sezgin et al., 1978; Cenens et al., 2000a; Cenens 
et al., 2000b; Cenens et al., 2002a) that predicts the 
coexistence of both Food to Microbe ratio and floc-
forming bacteria for a wide range of dilution rates; this 
model considers that FMs are incorporated to the flocs 
decreasing its concentration. 

Similarly, authors (Cenens et al., 2002a) demonstrated 
that the coexistence of filamentous and floc forming 
bacteria for a single substrate growing in a continuous 
stirred tank reactor (CSTR) or in CSTR with an ideal 
settler and biomass recycling is generically not possible. 
Other factors (that is, storage and decay rates) were later 
added to model the competition (Liao et al., 2004). Over 
the past two decades, biosensor technology has evolved 
rapidly; however, the benefits of its application are still to 
be realized in preventing filamentous bulking episodes. 
Lack of biosensor reliability and more importantly the 
financial consequences of sensor failure in its widest 
sense have served to maintain the prevalence of off-line 
sample analysis for bioprocess monitoring and 
supervision (Spinosa, 2001). A potential solution to this 
problem is to develop model-based sensors exploiting 
Image Analysis Information (IAI) for on-line estimation 
rather than reliance on off-line and time-consuming 
measurements to provide fast inferences of variables 
during the off-line analysis intervals (Novotny et al., 1990; 
Capodaglio et al., 1991). IA has indeed received special 
attention from many researchers in all kind of applications 
due to the decrease in the price/quality ratio of the IA 
systems (Russ, 1990; Glasbey and Horgan, 1995). 
Figure 2 depicts the principle of image analysis in 
wastewater treatment process control. The commonly 
used shape parameters used in monitoring wastewater 
systems are: 

 
1. The Form Factor (FF) is particularly sensitive to the 
roughness of the boundaries. It is defined by the ratio of 
the object area to the area of a circle with a perimeter 
equal to that of the object (Equation 4). A circle has an 
FF value equal to one, for irregular shapes the value 
becomes much smaller: 0 < FF ≤ 1. 
 

  (4) 

     
2. The Aspect Ratio (AR) is mainly influenced by the 
elongation of an object. It encompasses the ratio of the 
measured object length to its breadth (Equation 5). It 
varies between 1 and infinity. A circle has an AR value 
equal to one, the more extended an object is, the larger is 
the perimeter value implying: 1 ≤ AR < ∞. 



402         Afr. J. Environ. Sci. Technol. 
 
 
 

 
 
Figure 2. Principle of image analysis. 

 
 
 

              (5) 

 
3. The Roundness (R) is also mainly influenced by the 
elongation of an object. It is a ratio of the object area to 
the area of a circle, with a diameter equal to the object 
length (Equation 6). It varies between 0 and 1. A circle 
has an R value equal to one, for irregular shapes the 
values become much smaller: 0 < R ≤1. 
 

    (6) 

 

Besides the size based shape descriptors that measure 
the deviation from a circle, another set of shape 
parameters deals with how convex the object is. This can 
be described based on either the perimeter or the area. 
 

4. The Convexity (C) is the ratio of the perimeter of the 
convex object to the net (exterior) perimeter of the object 
(Equation 7). This parameter is one for an object that has 
no concavities or indentations around its periphery, for all  
other objects it is smaller: 0 < C ≤1. 
 

                               (7) 

5. The Solidity (S) is the ratio of the (net) object area to 
the convex area (Equation 8), and again this descriptor is 
one if the object is fully convex, so that: 0 < S ≤ 1. 
 

                       (8) 

 

The Reduced radius of Gyration (RG) is also influenced 
by the elongation of an object. It is actually the average 
distance between the object pixels and its centroid. It is 
determined by dividing this average distance by half of 
the equivalent circle diameter (Deq) (Equation 9). A more 
elongated floc will have a larger RG. A circle has an RG 

value equal to  as such:  ≤ RG < ∞. 

 

                                          (9) 

 
M2x and M2y are second order moments. Research contri-
butions of interest on IA applications on filamentous 
bulking phenomena are due and promising, among 
others (Li and Ganczarczyk, 1990; Albertson, 1991; Pons 
et al., 1993; Drouin et al., 1997; Grijspeerdt and 
Verstraete, 1997; Mauss et al., 1997; Condron et al., 
1999; Miyanaga et al., 2000; da Motta et al., 2000,  2001;  



 
 
 
 
Cenens et al., 2002a; Heine et al., 2002; Jenn´e et al., 
2002, 2003; Jin et al., 2003; Jenn´e et al., 2004; Banadda 
et al., 2004a, b, c; Smets et al., 2006; Jenn´e et al., 2006, 
2007). Promising research contributions on IA applica-
tions in the context of filamentous bulking are discussed 
(Debelak and Sims, 1981; Grijspeerdt and Verstraete, 
1997; Pons and Vivier, 2000; da Motta et al., 2000, 2001; 
Heine et al., 2002; Jenn´e et al., 2003; Contreras et al., 
2004; Jenn´e et al., 2004a, b). 

Interested readers are invited to read more about other 
IA applications, that span from quantifying different bac-
terial properties in both suspended and immobilized pure 
cultures (Pons et al., 1993; Drouin et al., 1997; Mauss et 
al., 1997; Condron et al., 1999), studying competition bet-
ween filamentous and non-filamentous bacteria 
(Contreras et al., 2004), quantifying pigments in vegetal 
cells (Miyanaga et al., 2000) to enumerating marine 
viruses in various types of sample (Cheng et al., 1999) 
among others. There has been an attempt to utilize 
biomass parameters generated by IA techniques (input 
data) into various forms of models with an objective of 
predicting settling characteristics. da Motta and co-
workers (da Motta et al., 2002) have proposed static 
models that exploit IA, in order to detect altered operation 
conditions or threatening or existing operation problems 
at an early phase. Available literature (Jenn´e, 2004; Gins 
et al., 2005), indicates the application of a static Multi-
variate Statistical (MVS) method, Principal Component 
Analysis (PCA), to monitor settleability in lab-scale set-
ups.  
 
 
Secondary clarifier modeling 
 
Modeling of secondary clarifiers is treated by Ekama et 
al. (1997) which include a description of the Vesilind mo-
del (Vesilind, 1968) for hindered sludge settling velocity. 
Researchers (Hartel and Popel, 1992) re-parameterized 
the original Vesilind model to include the dependency of 
Sludge Volume Index on the settling velocity. Authors 
(Dupont and Dahl, 1995) suggested a model that is 
adequate for both free and hindered settling. Comparison 
of different one-dimensional sedimentation models is 
carried out by researchers (Grijspeerdt et al., 1995) and 
(Koehne et al., 1995).  
 
 
MODELING APPROACHES 
 
Many different classifications have been produced for the 
different model types which are available (Murthy et al., 
1990). It is possible to distinguish mathematical models 
based on the philosophy of the approach and with regard 
to the mathematical form of the model (at times also 
depending on the application area of the model). The 
following sections deal with some of the common 
philosophies in the modeling of WWTPs. 
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Mechanistic models 
 
Historically, mechanistic models describe the 
mechanisms behind the coupling of variables and may 
consequently, be used for almost any operating 
condition. The idea is that, a realistic description of the 
system can be obtained by identifying and describing all 
the physical, chemical and biological laws that govern the 
system concerned. Due to the large number of para-
meters, it is, however, often impossible to estimate the 
parameters uniquely from available measurements. 
Probably one of the most recognized mechanistic model 
is the Activated Sludge model No.1 (ASM1: Henze et al., 
1987) as it triggered the general acceptance of WWTP 
modeling, first in the research community and later on 
also in industry (Gernaey et al., 2004). ASM1 was pri-
marily developed for municipal activated sludge WWTPs 
to describe the removal of organic carbon compounds 
and nitrogen, with simultaneous consumption of oxygen 
and nitrate as electron acceptors. The model furthermore 
aims at providing a good description of the sludge 
production. Chemical Oxygen Demand (COD) is adopted 
as the measure of the concentration of organic matter. 
Many of the basic concepts of ASM1 are adapted from 
the activated sludge model defined by researchers (Dold 
et al., 1980). 

Even today, the ASM1 model is in many cases still the 
state of the art for modeling activated sludge systems 
(Roeleveld and van Loosdrecht, 2002). Copp (2002) 
reported on experiences with ASM1 implementations on 
different software platforms. For a full description of the 
ASM1 model, as well as a detailed explanation of the 
matrix format used to represent activated sludge models, 
the original publication (Henze et al., 1987) should be 
consulted. In 1995, an updated version (ASM2) was 
introduced to incorporate biological phosphorous removal 
(Henze et al., 1995). The ASM2 publication points out 
that, this model allows description of bio-P processes, but 
does not yet include all observed phenomena. In 1999, 
further revisions were presented by building on the ASM2 
model to introduce the ASM2d model (Henze et al., 
1999). A model developed at Delft University of Techno-
logy, (TUDP) (Vanrolleghem et al., 1999; Brdjanovic et 
al., 2000) combines the metabolic model for denitrifying 
and non-denitrifying bio-P (Muhirwa et al., 2010) with the 
ASM1 model (autotrophic and heterotrophic reactions). 
Contrary to ASM2/ASM2d, the TUDP model fully considers 
the metabolism of phosphorus accumulating organisms, 
modeling all organic storage components explicitly 
(Gernaey et al., 2004). The TUDP model was validated in 
enriched bio-P Sequencing Batch Reactor (SBR) 
laboratory systems over a range of Sludge Retention 
Time (SRT) values (Smolders et al., 1995), for different 
anaerobic and aerobic phase lengths (Kuba et al., 1997), 
and for oxygen and nitrate as electron acceptor 
(Murnleitner et al., 1997). Another version of ASM1 called 
the  ASM3  model  (Gujer  et  al.,  1999)  has  also   been 
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Figure 3. ARX model prototype for modeling settleability dynamics. 

 
 
 

introduced which corrects a number of known defects 
present in the original model. A common trait among the 
versions of these models is that each is high-dimensional 
and possesses a large number of kinetic and 
stoichiometric parameters (Smets, 2002; Vanrolleghem et 
al., 1999). However, the complexity of the activated 
sludge processes casts doubt on a number of 
mechanistic modeling approaches. 
 
 
Black-box models  
 
On the other extreme, black-box models (Ljung, 1995; 
Sjoberg et al., 1995; Ljung 1999) have been proposed 
when analytical equations are unavailable or difficult to 
develop. These models are developed following a data-
based approach. The objective is to describe the input-
output relations by equations that do not reflect physical, 
chemical or biological considerations. Examples of black-
box models are Auto Regressive (AR), Auto Regressive 
Moving Average (ARMA), AR with eXternal input (ARX), 
ARMA with eXternal input (ARMAX), Box-Jenkins and 
state space models (Box and Jenkins, 1976; Box et al., 
1994; Ljung, 1995, 1999). The basic input-output 
configuration (ARX model structure) is shown in Figure 3. 
Basically, ARX models as shown in Equation (10) relate 
the current output y(t) to a finite number of past outputs 
y(t − k) and inputs u(t − k). 
 
y(t) + a1y(t − 1) + (· · ·) + anay(t − na) = b1u(t − nk)+ b2u(t –  
nk − 1) + (· · ·) + bnbu(t − nk − nb + 1) + e(t)  
       (10) 
 
with y(t) equal to the output response at discrete time t, 
u(t) the input at discrete time t, na the number of poles, 
nb the number of zeros, nk the pure time-delay (the 
dead-time) in the system and e(t) a white noise signal. ai 
and bj are model parameters, with i = 1 ... na and j = 1 ... 

nb. The model structure is entirely defined by the three 
integers na, nb, and nk. 

These models are mostly formulated in discrete time, 
that is, the dynamics of the phenomena concerned are 
described by difference equations. As the models do not 
incorporate any prior knowledge, the parameters have to 
be estimated. Also, because of the high degree of 
nonlinearity of activated sludge processes and extending 
a basic linear modeling scheme to take all possibilities, it 
may not be a realistic proposition. A more realistic way of 
tackling this is to employ a black-box modeling framework 
that caters for these nonlinearities. Examples of nonlinear 
black-box type of models include Artificial Neural net-
works (ANNs), Nonlinear AR with eXternal input (NARX) 
and Nonlinear ARMA with eXternal input (NARMAX). 

Standard MultiVariate Statistical (MVS) methods such 
as Principal Component Analysis (PCA) and Partial Least 
Squares (PLS) have been used in many industrial 
applications for process monitoring, fault detection and 
isolation (Gregersen and Jorgensen, 1999). A number of 
attempts have been made to implement MVS modeling 
methodologies on WWTPs. Several applications are 
focusing on predictions of quality parameters of the 
WWTP influent or effluent. Eriksson et al. (2001) applied 
MVS methods to predict the influent COD load to a 
newsprint mill WWTP. Advanced MVS tools, such as 
adaptive PCA and multi-scale PCA, have been used for 
WWTP monitoring by Rosen and Lennox, 2001; Russ, 
1990. 

On the other hand, motivated by the population 
dynamism characteristic of activated sludge, a number of 
researchers (Box and Jenkins, 1976; Pandit and Wu, 
1983; Novotny et al., 1990; Capodaglio et al., 1992; 
Berthouex and Box, 1996; Sotomayor and Garcia, 2001, 
2002a, b; Van Dongen and Geuens, 1998; Banadda, 
2006; Nkurunziza et al., 2009; Banadda et al., 2009; 
Muhirwa et al., 2010) have proposed dynamic black-box 
models (such as ARX, ARMA, ARMAX, Box-Jenkins, 
discrete state  space  models)  to  describe  a  number  of  



 
 
 
 
process parameters including, Mixed Liquor Suspended 
Solids (MLSS), effluent flow rate, effluent total suspended 
solids (TSS), effluent BOD, effluent COD, carbon 
removal, Sludge Volume Index (SVI) just to name but a 
few. Researchers (Berthouex et al., 1976, 1978) modeled 
effluent BOD data of a full-scale plant using the influent 
BOD as explanatory variable. 

They found the correlation between influent and 
effluent BOD to be insignificant. Debelak and Sims 
(1981) arrived at a similar conclusion for influent and 
effluent COD data from a full-scale plant. Novotny et al. 
(1990) developed both ARMA time series model and 
neural network models. The ARMA models proposed are 
for the MLSS concentration derived partly from causal 
relationships, with influent Biological Oxygen Demand 
(BOD) and suspended solids as explanatory variables. 
They can be made consistent and identical in concept 
with mechanistic mass balance models (avoid a pure 
black-box approach) but are restricted to linear(ized) 
processes. In addition, the model structure must be 
known beforehand. Capodaglio et al. (1992) presented 
and discussed both univariate and multivariate ARMAX 
applications to WWTP modeling, and the results are 
compared to those of conventional mechanistic models. 
The independent variables are rainfall, flow to the clari-
fiers, BOD load and F/M ratio. The observed variables 
are the influent flow, primary clarifiers' effluent suspended 
solids concentration, MLSS concentration, SVI and 
recycle suspended solids concentration. Belanche et al. 
(1999) availed black-box models characterizing the time 
variation of outgoing variables in WWTP via a soft 
computing technique, in particular, by experimenting with 
fuzzy heterogeneous time-delay neural networks. The 
models inputs considered are the influent flow rate, return 
sludge flow rate, waste sludge flow rate, influent COD 
and Total Suspended Solids, while the model outputs are 
effluent BOD and COD. Researchers (Sotomayor, 2001) 
identified a Linear Time-Invariant dynamical model (LTI) 
of activated sludge process based on simulation data 
obtained by combining the ASM1 model and the Tak'acs 
settler model. 
 
 
Grey-box models 
 
In practice, models are often a mixture of mechanistic 
and black box models, that is the so called grey-box 
modeling. Grey-box models are based on the most 
important physical, chemical and biological relations and 
with stochastic terms to count in uncertainties in model 
formulation as well as in observations. The objective is to 
have physically interpretable parameters that are 
possible to estimate by means of statistical methods. 

In other words, the advantages of mechanistic and 
black-box modeling can be combined in such a modeling 
scheme. Alternative modeling strategies for the 
complexity reduction of ASM1 that  yield  computationally  
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efficient models with reasonable prediction capabilities 
have been described (Anderson et al., 2000; Smets, 
2002). Ward et al. (1996) combined the Activated Sludge 
Model No.1 (Henze et al., 1987) with time series models 
to establish a hybrid model of the activated sludge 
process and to enable prediction of suspended solids in 
the effluent. Zhao et al. (1999) compared the Activated 
Sludge Model No.2 (Henze et al., 1995) with a simplified 
model and a neural net model. 
 
 
POTENTIAL APPLICATION OF MODELING TOOLS 
 
The future of wastewater treatment modeling, especially 
activated sludge modeling is not limited to the following 
issues: 
 
1. Maximum uptake capacities of different plant species 
in wetlands; 
2. Maximum nutrient uptake capacities of wetlands; 
3. Distribution of microbial cells and microbial activity in 
WWTPs; 
4. Correlation of microbial dynamics in activated sludge 
modeling to socio-economic indicators; 
5. Settleability and separation of microbial cells from 
effluents; 
6. Understanding the chemical breakdown in industrial 
WWTPs especially activated sludge systems; 
7. Pollutant reduction and attenuation in receiving waters 
after wastewater treatment effluent discharge. 
 
 
CONCLUSION 
 
In this paper, the general activated sludge process was 
introduced and discussed. A general overview of the 
mathematical approaches (ranging from white over grey 
to black-box) in the context of activated sludge modeling 
was presented and discussed. The distinct developments 
in modeling wastewater treatment process(es) were 
presented. It can be concluded that most of the previous 
modeling efforts have focused on municipal wastewater 
systems; although such models can be adapted to 
industrial wastewater systems. 

On one hand, most of the modeling attempts that seek 
to use black box models have little practical relevance to 
process control practitioners. On the other hand, white 
box models require a good knowledge of system 
dynamics which are very difficult to predict in complex 
systems like activated sludge. Grey-box models seem to 
address the pitfalls of black and white box models.  
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