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Bluetongue is a viral disease that primarily affects sheep, occasionally goats and deer and, very rarely, 
cattle. The disease is caused by an icosahedral, non-enveloped, double-stranded RNA (dsRNA) virus 
within the Orbivirus genus of the family Reoviridae. It is non-contagious and is only transmitted by 
insect vectors. BTV serotypes are known to occur in Africa, Asia, South America, North America, Middle 
East, India, and Australia generally between latitudes 35°S and 50°N. It occurs around the 
Mediterranean in summer, subsiding when temperatures drop in winter. The replication phase of the 
bluetongue virus (BTV) infection cycle is initiated when the virus core is delivered into the cytoplasm of 
a susceptible host cell. The 10 segments of the viral genome remain packaged within the core 
throughout the replication cycle, helping to prevent the activation of host defense mechanisms that 
would be caused by direct contact between the dsRNA and the host cell cytoplasm. This review 
presents comprehensive information on etiology, pathogenesis, prevention and control of the disease. 
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INTRODUCTION 
 
Bluetongue is an infectious noncontiguous virus disease 
of ruminants caused by bluetongue virus of genus 
orbivirus within the family reoviridae. It is transmitted by 
biting midges of the culicoides genus (Diptera: 
Ceratopogonidae). Among 1,400 species of midges only 
20 culicoid species are known to be involved in 
transmission of bluetongue disease (Figure 1). In addition 
to biting midges, BTV has been isolated from some 
arthropods, for example, sheep ked (Melophagus ovinus) 
(Luedke et al., 1965) or some species of ticks (Stott et al., 
1985; Bouwknegt et al., 2010) and mosquitoes (Brown et. 
al., 1992). However, these are mechanical vectors with 
only a negligible role in disease epidemiology (Radostits 
et al., 1994). It can  be directly transmitted from one 
animal to another through semen and transplacentally 

(Parsonson, 1990). Bluetongue can also be spread by 
live attenuated vaccines against BTV, or even by 
vaccines against other antigens contaminated with BTV 
(Wilbur et al., 1994; Evermann, 2008). To date 24 distinct 
internationally recognized serotypes (based on the lack of 
cross neutralization) of the virus have been identified. 
Cattle and goats are major hosts of the virus, but in these 
species infection is usually asymptomatic despite high 
virus levels, allowing the disease to circulate in the 
absence of any symptoms. Sheep and deer are usually 
the only species to exhibit symptoms of infection. The 
manifestations of bluetongue range from an unapparent 
to a fatal outcome depending on the serotype and strain 
of the virus, the species breed and age of the infected 
animal;  older  animals  are  generally  more   susceptible  
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Figure 1. Transmission and replication of bluetongue virus (Roy et al., 2009).   

 
 
 
(Elbers et al., 2008). Bluetongue typically occurs when 
susceptible animal species are introduced into areas with 
circulating virulent BTV strains, or when virulent BTV 
strains extend their range to previously unexposed 
populations of ruminants (Zientara et al., 2010). The 
worldwide economic losses due to bluetongue have not 
been expressed in exact numbers, but the estimate is 3 
billion US$ a year (Tabachnick, 1996). The losses are 
both direct (death, abortions, weight loss or reduced milk 
yield and meat efficiency) and, what is more important, 
indirect as a result of export restrictions for live animals, 
their semen and some products such as fetal bovine 
serum. The costs of preventive and control measures 

should also be taken into account. In cases of a wider 
spread of bluetongue, these measures could have a 
serious impact on the quantity of meat and animal 
products available for the consumer market; therefore, 
bluetongue is considered a potential biological weapon 
(Blancou and Pearson, 2003; Zendulkova and Pospisil, 
2007). 
 
 
Occurrence 
 
Bluetongue was first recognized when European fine 
wool    breeds   of   Merino   sheep  were   imported    into  
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Figure 2. The worldwide distribution of bluetongue virus (BTV) serotypes and the primary 
Culicoides vectors in different geographical regions denoting six predominant BTV episystems 
(Tabachnick, 2004). 

 
 
 
South Africa in 1900 (Spreull, 1905; Hutcheon, 1881). 
The disease spread rapidly throughout Africa and 
subsequently to many other countries beyond the African 
continent. BTV occurs wherever there are species of 
Culicoides capable of transmitting it to animals. 
Historically BTV serotypes occur in Africa, Asia, South 
America, North America, Middle East, India, and 
Australia, generally between latitudes 35°S and 50°N 
(Figure 2). It occurs around the Mediterranean in 
summer, subsiding when temperatures drop in winter.  
 
 
Symptoms 
 
Symptoms of bluetongue disease are largely the result of 
damage to small blood vessels, and include oral 
ulceration, facial and pulmonary edema, vascular 
thromboses and necrosis of infected tissues (Erasmus, 
1975) (Figure 1). In sheep, the onset of the disease is 
typically marked by fever that lasts approximately 5 to 7 
days, after which distinctive lesions appear in the mouth, 
accompanied by excessive salivation. The tongue can 
also be severely affected, occasionally turning blue. In 
contrast to sheep, infected cattle experience prolonged 

viraemia, and infection during pregnancy can often cause 
teratogenic defects in calves and abortion of the fetus 
(De Clercq et al., 2008; Menzies et al., 2008; Vercauteren 
et al., 2008; Waldvogel et al., 1992). 
 
 
STRUCTURE OF VIRUS 
 
Bluetongue virus (density 1.337 g/cm

3
) is a non 

enveloped virus with a genome of approximately 19,200 
base pairs composed of ten linear segments of double-
stranded RNA (dsRNA), containing 57% AU and 43% 
GC, with conserved 5

’ 
and 3

’ 
terminal sequences 

(GUUAAA at 5
’
, and ACUUAC at 3

’ 
ends of the positive 

strand (Mertans et al., 1987; Mertans and Sangar, 1985). 
The 10 dsRNA segments are packaged within a triple 
layered icosahedral protein capsid (approx 90 nm in 
diameter) (Grimes et al., 1998; Huismans and Erasmus, 
1981; Nason et al., 2004).The virus particle is composed 
of three shells (Figure 3). The inner shell is composed of 
120 copies of VP3 (100 kDa) (Grimes et al., 1998) and 
contains minor amounts of 3 enzymatic proteins involved 
in transcription and replication, namely the RNA-
dependent RNA  polymerase  VP1  (149  kDa),  the  RNA  
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Figure 3. Structure of BTV (Schwartz-Cornil et al., 2008). 

 
 
 
capping enzyme VP4 (76 kDa) and the dsRNA helicase 
VP6 (36 kDa) that are located at the five-fold symmetry 
axis of the particle (Nason et al., 2004). The middle shell 
is composed of 780 copies of VP7 (38 kDa) that are 
arranged as 260 trimers (Nason et al., 2004; Roy, 1992). 
The outer shell is composed of two structural proteins 
VP2 (111 kDa) and VP5 (59 kDa). A total of 180 
molecules of VP2 are arranged as 60 surface spikes 
which are responsible for attaching the virus to the cell 
surface, whereas 360 molecules of VP5 form 120 
globular-shaped structures that facilitate cell-membrane 
penetration (Roy and Noad, 2006; Forzan et al., 2007; 
Roy, 2008). Non-structural proteins (NS1, NS2, NS3 and 
NS3A) probably participate in the control of BTV 
replication, maturation and export from the infected cell. 
The NS1 protein was found to play role in viral 
morphogenesis (Brookes et al., 1993; Owens et al., 
2004). The NS2 protein is the major component of viral 
inclusion bodies (Brookes et al., 1993; Owens et al., 
2004; Lymperopoulos et al., 2006; Schwartz-Cornil et al., 
2008) and is also involved in recruitment of BTV mRNA 
for replication (Fukusho et al., 1989; Kar et al., 2007; 
Roy, 2008). The NS3 protein acts as a viroporin, which 
enhances permeability of the cytoplasmic membrane and 
thus facilitates virus release from mammalian or insect 
cells (Hyyat et al., 1991; Roy, 1992, 2008; Han and 
Harty, 2004). In addition, NS3 also allows BTV particles 
to leave host cells by a budding mechanism (Wirblich et 
al., 2006). This probably operates in insect cells where no 
cytopathic effect is induced  by  BTV  (Schwartz-Cornil  et 

al., 2008). 
The segmented nature of the BTV genome allows for 

reassortment of ds-RNA segments if the host cell is 
concurrently infected by several different serotypes or 
strains (Oberst et al., 1987; Samal et al., 1987; Stott et 
al., 1987; Belyaev and Roy, 1993; Batten et al., 2008). 
The reassortment event plays an important role in the 
development of viral diversity (Carpi et al., 2010) and 
gives rise to changes in virulence and serological 
characteristics of the virus (Cowley and Gorman, 1989; 
Mertens et al., 1989; Nuttall et al., 1992; O’Hara et al., 
1998; Batten et al., 2008). 

BTV remains stable in the presence of proteins and can 
survive for years, for instance, in blood stored at 20°C 
(Anonymous, 2009a). It is sensitive to 3% NaOH, organic 
iodine complex, phenol and β-propiolactone (Radostits et 
al., 1994; Anonymous, 2009a). 
 
 
BTV life cycle 
 
BTV interacts with the target cell surface via VP2 timers 
which is then internalized in endosomes via a clathrin-
dependent endocytosis pathway (Forzan et al., 2007). 
VP2 dissociates from the outer capsid layer in early 
endosomes. Acidification induces VP5 fusion with the 
endosomal membrane (Forzan et al., 2004), delivering 
the transcriptionally active core into the cytoplasm. BTV 
replicates in the cytoplasm of the infected cells. Within 
the core of BTV, the  VP1  molecules  transcribe  positive 
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Figure 4. Schematic diagram representing the lytic replication cycle of BTV (Mertens, 2002). 

 
 
 
sense ssRNA copies from each of the ten BTV genome 
segments (Boyee et al., 2004). These mRNA molecules 
are capped by the guanylyl-transferase and 
transmethylase activities of VP4 (Sutton et al., 2007) and 
leave the particles via channels situated at the fivefold 
axes of the core particle (Mertens and Diprose, 2004). 
The viral mRNA serve as templates for translation in viral 
proteins (Diprose et al., 2001). Viral positive RNA are 
directed to viral inclusion body (VIB) where the correct 
encapsidation of the different segments (nature and 
number) within the VP3 shell may involve interactions 
with the helicase VP6 (Stauber et al., 1997), the ssRNA 
binding NS2 protein (Kar et al., 2007), and the VP1 and 
VP4 proteins. VP1 then synthesizes the negative strand 
RNA to produce dsRNA (Boyee et al., 2004). Each 
dsRNA segment independently associates with a 
different transcription complex (VP1, VP4 and VP6) 
located at the inner side of VP3 along a fivefold axis 
(Nason et al., 2004). The VP3 subcores which are 
relatively fragile (Roy, 1992) serve as a scaffold for the 
addition of VP7 trimers, giving rise to more rigid and 
stable cores. The outer capsid proteins VP2 and VP5 
appear to be added to the progeny core particle surface 
at the periphery of the VIB as they enter the host cell 
cytoplasm. Mature progeny virus particles are transported 
within the cytoplasm on microtubules involving 
VP2/vimentin interactions (Bhattacharya et al., 2007). 

Release of virions from the infected cell occurs via cell 
membrane destabilization mediated by the NS3 
viroprotein activity (Han and Harty, 2004), in some cases 
via budding, or as a result of cell death and lysis (Figure 
4).  
 
 
Overwintering 
 
The survival of virus from one “vector season” to the next 
is called “overwintering”, but the mechanism involved is 
still poorly understood. However, BTV can survive in the 
absence of adult vectors for nine to 12 months of cold 
weather in an infected host with no detectable viraemia, 
disease or sero-conversion (Taylor and Mellor, 1994; 
Takamatsu et al., 2003; Osmani et al., 2006; Wilson et 
al., 2007). One way in which overwintering may be 
achieved is by the infection of adult vectors (Wilson et al., 
2008). Although the average life span of these is usually 
ten to 20 days (Mellor et al., 2000), they can occasionally 
live for up to three months (Lysyk and Danyk, 2007). This 
suggests that under favourable conditions some biting 
midges can live long enough to survive the period 
between two vector seasons (Wilson et al., 2008). 
Possibilities for BTV to survive at different stages of the 
Culicoides life cycle have also been investigated. In some 
instances, the virus  could  overwinter  in  cattle  owing  to  



  
 
 
 
 

 
 
 
 
prolonged BTV viraemia, which can occasionally last up 
to 100 days (Sellers and Taylor, 1980), or due to latent 
BTV infection (Luedke et al., 1977). Another mechanism 
suggested for BTV overwintering is transplacental 
infection (De Clercq et al., 2008; Menzies et al., 2008; 
Backx et al., 2009; Darpel et al., 2009; Lewerin et al., 
2010; Santman-Berends et al., 2010). Pregnancy in cattle 
is long enough for BTV to survive during a period free of 
competent insect vectors (Wilson et al., 2008). 
Mechanical vectors may also be involved in virus 
overwintering; BTV has been isolated from the sheep ked 
(Luedke et al., 1965) and some tick species (Stott et al., 
1985; Bouwknegt et al., 2010), which are arthropod spe-
cies living much longer than Culicoides midges. In 
addition, the trans-stadial passage found in hard ticks 
and trans-ovarial passage in soft ticks suggests their role 
in virus transmission (Bouwknegt et al., 2010). 
Mechanical vectors should therefore be regarded as 
potential reservoirs for BTV (Wilson et al., 2008; 
Bouwknegt et al., 2010). 
 
 
BTV pathogenesis 
 
After introduction through the bite of an infected midge, 
the virus is transported by the host dendritic cells from 
the skin to the local lymph nodes (Hemati et al., 2009), 
the sites of initial virus replication (MacLachlan, 2004). 
Subsequently, it spreads to the blood circulation inducing 
a primary viraemia which seeds secondary organs, that 
is, lymph nodes, spleen and lungs (Barratt-Boyes and 
MacLachlan, 1994; Sanchez-Cordon et al., 2010). The 
virus replicates in vascular endothelial cells, 
macrophages and lymphocytes (MacLachlan et al., 1990, 
2009; Barratt-Boyes and MacLachlan, 1994; MacLachlan, 
2004; Drew et al., 2010a). In early viraemia virus is 
associated with all blood elements, while at later stages 
of viraemia it exclusively associates with erythrocytes 
(MacLachlan et al., 1990, 2009; MacLachlan, 2004). 
Virus particles appear to be sequestered in invaginations 
of the erythrocyte membrane (Brewer and MacLachlan, 
1994; MacLachlan, 2004), allowing prolonged viraemia in 
the presence of neutralizing antibodies (Richards et al., 
1988; Brewer and MacLachlan, 1994). Free virus in low 
titres is found in blood plasma only at the initial stages of 
infection (MacLachlan et al., 1990; MacLachlan, 1994; 
Barratt-Boyes and MacLachlan, 1994). 

Infection with BTV results in cell necrosis and apoptosis 
(Barratt-Boyes et al., 1992; DeMaula et al., 2001; Mortola 
et al., 2004) and, by activating the p38MAP kinase, the 
virus increases vascular permeability (Chiang et al., 
2006; Drew et al., 2010a). In addition, it induces the 
production   of   TNFα,    IL-1,    IL-8,    IL-6,    IFN-I    and  
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cyclooxygenase-2, and enhances plasma concentration 
of prostacyclin and thromboxane, which frequently leads 
to an excessive inflammatory response and subsequent 
damage to the cells and tissues of the infected animal 
(MacLachlan and Thompson, 1985; DeMaula et al., 2001, 
2002; Schwartz-Cornil et al., 2008; Drew et al., 2010a). 
The pathogenesis of bluetongue is characterised by 
injury to small blood vessels in target tissue, resulting in 
vascular occlusion and tissue infarction. Virus-induced 
vasoactive mediators produced by thrombocytes, 
dendritic cells, macrophages and BTV-infected 
endothelial cells increase damage to the endothelium, 
interfere with its function and increase vascular 
permeability; this leads to the development of oedema 
and effusions (MacLachlan et al., 2009; Drew et al., 
2010a). 
 
 
Viraemia and immune response 
 
Viraemia in infected animals has a prolonged course, but 
is not persistent (Barratt-Boyes and MacLachlan, 1994; 
Bonneau et al., 2002; Melville et al., 2004). Its duration 
depends on the longevity of erythrocytes to which virus is 
bound, in contrast to the other blood cells, even at the 
late stage of infection (MacLachlan et al., 2009). It is also 
related to the species and breed of the infected animal. 
Viraemia lasts 14 to 54 days in sheep and 19 to 54 days 
in goats (Barzilai and Tadmor, 1971; Luedke and 
Anakwenze, 1972; Koumbati et al., 1999). In cattle, 
viraemia may last as long as 60 or, even 100 days 
(Sellers and Taylor, 1980), which makes this animal an 
important host, from the epidemiological point of view. 

The infected animals react to BTV with interferon 
production and humoral and cell-mediated immune 
responses (MacLachlan and Thomson, 1985; 
MacLachlan, 1994). Serotype-specific neutralising 
antibodies against the VP2 protein confer protection 
against homologous strain reinfection (Cowley and 
Gorman, 1987; Hassan and Roy, 1999; Roy, 1992; 
Schwartz-Cornil et al., 2008). Neutralising antibodies are 
also induced, to a lesser degree, by the VP5 protein 
(Roy, 1992; Lobato et al., 1997). The sera of infected 
ruminants also contain serogroup-specific antibodies 
induced by the VP7 protein, as well as antibodies against 
other structural and non-structural proteins (MacLachlan 
et al., 1987; Richards et al., 1988; MacLachlan, 2004). 
The cell-mediated immune response to BTV can probably 
reduce the spread of virus in the organism early after 
infection, but cannot eliminate the virus completely 
(MacLachlan, 1994; Barratt-Boyes et al., 1995). By 
producing a cytotoxic effect in infected cells, CD8+ T-
lymphocytes play the most  important  role  (MacLachlan,  
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1994; Barratt-Boyes et al., 1995; Schwartz-Cornil et al., 
2008). 
 
 
PREVENTION AND CONTROL 
 
Symptomatic therapy includes gentle handling of affected 
animals, their stabling and, if indicated, administration of 
non-steroidal antiphlogistic drugs (Radostits et al., 1994; 
Tweedle and Mellor, 2002). An immediate ban on animal 
import from countries with bluetongue is the priority 
measure, followed by the monitoring of farms raising 
domestic ruminants which include clinical examination 
and serological and virological testing, and a monitoring 
of insect vectors. Prophylactic immunisation and the 
removal of vectors or prevention of vector attacks can 
also be used.  
 
 
Prophylactic immunisation 
 
Vaccination can prevent clinical bluetongue or at least 
mitigate its course by interrupting the BTV cycle in the 
environment; it thus reduces the economic losses due to 
animal infection and makes transfer and trading of 
animals from BTV enzootic regions possible (Savini et al., 
2008; Bhanuprakash et al., 2009; Caporale and 
Giovannini, 2010). Bluetongue vaccines are serotype-
specific (Bhanuprakash et al., 2009) and therefore, 
before use in a given area, the serotypes present in the 
environment should be taken into account. 
 
 
Vaccination 
 
The most widely discussed vaccine options for the control 
of bluetongue are live attenuated, inactivated and 
recombinant vaccines. 
 
 
Attenuated viral vaccine 
 
Attenuated virus vaccines are cheap, easy to produce 
and are administered in a single dose. They are very 
effective in controlling clinical outbreaks of bluetongue in 
areas of endemic disease and in the face of outbreaks. 
They replicate in sheep without causing significant clinical 
effects and provide protection against challenge with 
virulent virus of the same serotype. Animals vaccinated 
with the attenuated vaccine produce a long lived humoral 
antibody response, possibly lasting for the life of the 
animal. 

An early report of live attenuated  bluetongue  vaccines 

 
 
 
 
came from South Africa (Theiler, 1906). Subsequently, 
South African scientists developed the first egg-adapted 
attenuated strains. This work led to the availability of 
attenuated virus vaccines for 15 different serotypes, 
which played a major part in control of the disease not 
only in South Africa but also in many other countries 
(Alexander and Haig, 1951). However, similar, live 
attenuated vaccines have also been developed in various 
countries in response to endemic serotypes or a 
particular outbreak (Alexander and Haig, 1951; Hunter 
and Modumo, 2001; Lacetera and Ronchi, 2004; 
Veronesi et al., 2005; Savini et al., 2008). 

However, the disadvantages of attenuated BTV 
vaccines (Schultz and Delay, 1995; Young and Cordy, 
1964; Osburn et al., 1971; Ferrari et al., 2005; Stott et al., 
1987) are: 
 
1) Risk of reassortment with virulent wild viruses which 
potentially could give rise to new virulent strains. 
2) Potential for reversion to virulence both in the 
vertebrate host and in vector insects. 
3) Attenuated BTV can cross the placenta and pregnant 
ruminants vaccinated with attenuated vaccines may 
suffer fetal loss. 
4) Existing vaccines are designed for sheep; there is little 
data on their safety and effectiveness in other species. 
 
 
Inactivated whole virus vaccine 
 
They offer significant advantages over attenuated 
vaccines because absence of replicating virus eliminates 
concerns about virarmia, vector transmission and 
reversion to virulence. It also eliminates the danger of 
fetal infection, often reported for attenuated bluetongue 
vaccines, and eliminates the possibility of viral 
reassortment. The use of inactivated vaccines also allows 
a rapid response to newly emerging serotypes. Once a 
new serotype has been isolated from the field, it can be 
rapidly propagated to produce a homologous approaches 
which would take much longer to sequence, clone and 
produce a suitable treating BTV with β-propialactone 
(Parker et al., 1975; Savini et al, 2007), gamma radiation 
(Campbell, 1982) or binary ethylenimine (Schultz and 
Delay, 1995; Berry et al., 1982; Ramakrishnan et al., 
2006). Inactivated vaccines based on these experiments 
are commercially available and have demonstrated good 
immunogenicity and safety (Savini et al., 2008). However, 
inactivated vaccines are more expensive to produce than 
attenuated vaccines and also require at least two doses 
with an adjuvant to generate a protective immune 
response. Antibodies to inactivated vaccines are short 
lived, giving short term protection. 
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Figure 5. Virus – like particles (Roy et al., 2009). 
 
 
 

Recombinant vaccines 
 
Recombinant vaccines such as recombinant virus-like 
particles (VLP) or single BTV antigens are safe and have 
been shown to be efficacious (Noad and Roy, 2003; Roy 
and Noad, 2008; Harper et al., 2006; Barr and Tamms, 
2007; Franco and Harper, 2005; Harper et al., 2004). 
VLP vaccines are the only vaccines that have been 
subjected to a number of clinical trials in different 
countries. They require two inoculations of low doses for 
long lasting protection. Due to recent advances in the 
manufacturing of insect cell cultures, VLP vaccines could 
be very cost effective. 
 
 
New – generation vaccines 
 
Vaccination has been a successful methodology to 
combat diseases in man and livestock. Most of the 
current viral vaccines are prepared using attenuated or 
inactivated virus. Control of Bluetongue (the disease) is 
particularly difficult due to the multiple serotypes of the 
virus. In addition, the viral genome is made up of 10 
segments allowing exchanging the genes randomly 
between different viruses. This may cause generation of 
infectious virus with mixed gene. Recent recombinant 
DNA technology has provided novel approaches to 
developing intrinsically safe vaccines, these vaccines are 

not yet commercially available. This technology offers 
substantial advantages both in terms of safety and the 
potential of developing a marker vaccine. The latter could 
be used as a prophylaxis in areas at risk, without 
endangering the “free” status of the region. An 
accompanying serological test would allow the distinction 
between vaccinated and infected animals. DNA 
recombinant technology involves the synthesis of 
immunogenic proteins and particles that elicit highly 
protective immune responses. Successful vaccine 
development requires systems where the engineered 
products mimic the authentic proteins, not just in terms of 
their primary amino acid sequences but specifically in 
terms of their three dimensional structures, that is, the 
products must be as authentic as possible. 

In recent years insect (caterpillar) specific 
baculoviruses have received considerable attention as 
vectors for the high-level synthesis of foreign proteins. 
Protein engineering systems were utilized to synthesize 
individual bluetongue virus proteins and core-(single 
coat) and viral-like (double coat) multiprotein structures 
(CLPs, VLPs). These 16 engineered particles essentially 
mimic the virus particles, but do not contain any genetic 
materials (French et al., 1990; Possee et al., 1999; 
French and Roy, 1990; Hewat et al., 1992; Hewat et al., 
1994; Loudon et al., 1991) (Figure 5).  

VIPs afford long-lasting, type-specific protection from 
virulent BTV challenge. In addition, mixtures  of  VIPs  for 



  
 
 
 
 

76          Afr. J. Environ. Sci. Technol. 
 
 
 

 
 

Figure 6. Proposed DISC vaccine for bluetongue virus (Roy et al., 2009).
 

 
 
 
two different serotypes confer complete protection 
against both vaccine serotypes and partial protection 
against a related (based on the amino-acid sequence of 
VP2) non-vaccine serotype. Therefore, VIPs represent a 
valid approach for BTV vaccination. 
 
 

Reverse genetics and future vaccines 
 

Traditional live vaccines for BTV rely on the attenuation 
of virus by passage in eggs or sheep. The recent 
development of a reverse genetics system for BTV 
makes possible the rational design of attenuated 
vaccines. Infectious BTV is produced entirely from DNA 
clones by generating one transcript in vitro for each 
genome segment, and using these transcripts to transfect 
permissive cells (Harper et al., 2006). This system allows 
the introduction of any mutation into the genome of BTV, 
as long as the resulting virus is viable. The ability to test 
the virulence of BTV mutants in the ruminant host will 

allow the identification of the pathogenicity determinants 
of BTV, and these results can be used to inform the 
design of vaccine strains with multiple attenuating 
mutations. Reverse genetics data and the formation of 
BTV VIPs have confirmed that outer capsid proteins from 
phylogenetically diverse serotypes can assemble on the 
conserved core proteins to create viable BTV strains 
(Loudon et al., 1991; Boyce et al., 2008). This 
observation suggests that it will be possible to use a 
defined attenuated genetic background and introduce the 
antigenitically important outer capsid proteins from the 
serotypes of interest. Reverse genetics also provides a 
basis for the development of disabled infectious single 
cycle (DISC) vaccines for BTV (Figure 6), which allows 
the virus to infect the vaccinated animal, but stops it from 
completing a replication cycle. The resulting aborted 
infection allows the expression of viral proteins at natural 
sites of infection without the production of infectious virus 
or disease in the animal, and can be considered to be  an 



  
 
 
 
 

  
 
 
 
extreme form of attenuation. A DISC vaccines strain 
would exhibit many of the safety features of inactivated 
vaccines, while preserving the expression of viral proteins 
at the natural sites of infection, as observed with live 
vaccines. DISC vaccines and colon bias (Roner and 
Joklik, 2001; Coleman et al., 2008) vaccines for BTV 
represent an exciting future possibility, as they should 
allow increased safety with even better immunogenicity. 
 
 

CONCLUDING REMARKS 
 

The epidemiological map of BTV infections in Europe 
illustrates the risk to the entire world of emerging 
microbial diseases that were previously confined to 
specific geographic areas, spreading due to global 
warming and increased trade. It also reveals that many 
questions remain regarding the physio-pathological 
mechanisms of the BTV induced thrombo-haemorrhagic 
disease, the species/breeds/individual genetic bases of 
sensitivity to BT disease, the molecular basis of BTV 
virulence, the insect and mammalian reservoirs, and the 
immune effectors involved in cross protective immunity. 
The control of bluetongue disease through timely and 
relevant vaccination is feasible. However, although 
current vaccines are effective, they have significant 
drawbacks that are likely to increase as the demand for 
vaccination grows. The speed of scale up to a newly 
emerged serotype, the uncertain nature of natural 
attenuation and the safety issues associated with virus 
inactivation all suggest that newer approaches are 
needed. The new generation of vaccines described 
above offers a rapid route from DNA to vaccine as well as 
a safe product without loss of a robust immune response. 
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