Ecohydrological characterization of the Nyando wetland, Lake Victoria, Kenya: A State of System (SoS) analysis

  • PS Khisa
  • S Uhlenbrook
  • AA van Dam
  • J Wenninger
  • A van Griensven
  • M Abira

Abstract

Lake Victoria floodplain wetlands have a complex hydrological setting characterized by transition from a terrestrial to an aquatic environment. A state-of-system (SoS) analysis was carried out in a papyrus dominated wetland in the Nyando River Delta, on the eastern shores of Lake Victoria, Kenya, to characterize and provide data for detailed ecohydrological studies. The objectives of the study were to: (1) determine the spatio- temporal changes in the wetland evolution and (2) analyze the main hydrological factors that have influenced wetland evolution. Multi-temporal dry-season Landsat MSS, Landsat TM and Landsat ETM+ imagery covering Nyando Wetland and its surrounding area were processed and analyzed to generate time series polygon and polyline maps of the wetland and river. Results show that the wetland increased in size from 5,925 ha in 1950 to 9,925 ha in 1973, and declined to 4,527 ha in 2008. In the last 60 years, Nyando River has migrated in a general eastward direction. Time series hydrological data (1950-2009) were statistically tested for homogeneity  using the Spearman’s rank test for linear trends, Pettit test and Standard Normal Homogeneity test (SNHT) for change point analysis, and split-record tests performed for variance (F-test) and mean (t-test). In addition, data were analyzed using descriptive statistics and frequency analyses. Statistical test results show that the hydrological data series were homogeneous. Results of change point analyses indicate that total annual rainfall in Nyando declined in 1979, while the mean annual discharge for Nyando River and Lake Victoria levels had significant upward shifts in 1961. The decadal mean discharges varied significantly over time and increased by 80% from 11.45 m3/s observed in the 1950-1961 subset, reducing by 11.4 and 21.9% in the next two decadal sub-sets, before rising by 35.0% in 1990s and dropping by 24.0% in the last decade. The decadal mean annual lake levels increased from 1134.0 to 1135.43 m in the 1951-1961 and 1962-1972 and remained above the longterm mean of 1135.0 m for 43 years since 1962 before dropping drastically by 1.4 m to an average of 1134 m/year in 2005-2009. The highest recorded lake level at Kisumu Station was 1136.2 m in 1964 after increasing by 2.5 m from 1961. Discharge data exhibit trimodal seasonal patterns, while the lake levels had two peaks. The lake levels are more sensitive to direct lake rainfall. Changes in the Nyando wetland area are linked to the seasonal and episodic flood and drought events coupled with anthropogenic activities (regulation of lake levels, modification of river including cut-off meanders, river training and construction of dykes, drainage of wetland for cultivation, settlement and livestock grazing, abstraction of water for irrigation). A combination of these hydrological and human factors is the main cause of the Nyando Wetland evolution. If the land use trend continues unabated, then the increase in papyrus losses will pose a big challenge to the ecological functioning of the wetland and its support to sustaining community livelihoods.

Key words: Nyando Wetland, River, ecohydrology, Lake Victoria.

Published
2013-09-09
Section
Articles

Journal Identifiers


eISSN: 1996-0786
print ISSN: 1996-0786