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In a context of climate disruption due to uncontrolled human activities, the classical models of rainfall-
runoff modeling are almost unusable. In addition on the Lobo River (Southwest of Côte d’Ivoire), no 
simulation study has been carried out yet despite that, this river has flooded fields and villages causing 
huge losses in September 2007. Neural networks appear in this case as a solution for simulating flows 
in the context of non-linearity between rainfall and flow of this river. Climatic data (rainfall, temperature 
and PET) and land use will be phased in neural models to simulate monthly flows of the river Lobo. 
Four (4) neuronal model variants were constructed from three (3) hydro-climatic parameters (rainfall, 
potential evapotranspiration and flow) and the land acquired from Landsat ETM + 1990 and ETM + 2000. 
Two types of models have been created: the unguided model and the guided model. The simulation 
with the unguided model did not provide a satisfactory result. In effect, the value of Nash is only 
22.90%. However, the NASH value of the guided model is much better than the previous one (85.01, 
83.38 and 84.05%). These results help to highlight the importance of land use on the performance of 
neural networks. This study also demonstrated the ability of artificial neural networks to simulate the 
nongauged river flows in the context of climate disruption. 
 
Key words: Côte d’Ivoire, Lobo, multilayer perception, remote sensing, simulation, hydrology, model, neuron,  
flow. 

 
 
INTRODUCTION 
 
The South-western region of Côte d'Ivoire has become 
over the last two decades, the new place where coffee 
and cocoa flourishes. This has fostered many economic 
activities in this area. These agricultural activities have 
led to an increased use of water resources. According to 
the works of Tahoux (1993), the uncontrolled use of land 
in this region of  Côte d’Ivoire  has caused the damage of 
the forest which  led to a breakdown of the  rainfall 

balance and severely disrupted the flow of rivers. In the 
context of climate change due to uncontrolled human 
activities, the classical models of rainfall-runoff modeling 
are almost unusable. It should also be noted that the 
Lobo river has not been a subject of study despite of the 
catastrophic events of September 2007 where field and 
villages were flooded causing huge losses. Neural 
networks appear in this case as a solution for the flow 
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Figure 1. Localisation of the hydrological catchment. 
 

 
 

simulation in the context of non-linearity between rainfall 
and river flow. Other methods are linear ones but here we 
are in a non-linear context. Climatic data (rainfall, 
temperature and evapotranspiration) and land use will be 
gradually integrated  in artificial neural models to simulate 
monthly runoff of the Lobo river. 
 
 
MATERIALS AND METHODS 

 
Study area 

 
The river Lobo is one of the main tributaries of the river Sassandra 

(Figure 1). The hydrological catchment of this river has two 
hydrometric stations: the station of Nibéhibé in the center and the 
station of Loboville in the south. This hydrological catchment 
covered an area of 12,724 km

2
. It is the rainy region with lateritic 

soils (Adjanohoun et al., 1971). This hydrological catchment  is 
subjected to a transition equatorial attenuated regime. 
 
 
Data 

 
The monthly rainfall (from 1991 to 2011), the monthly Lobo river 
flows (from 1991 to 2011) and the land use of Lobo river catchment 

has been use in this study. These hydro-climatics data were 
provided by the Department of Human Hydraulics (DHH) and the 
Operating Company and Airport Development and Meteorology 
(SODEXAM). Regarding the land use of Lobo river catchment, it is 
obtained from the Landsat ETM + 1990 and Landsat ETM + 2000 
images. In this study, the input of artificial neural networks like the 

potential evapotranspiration (PET) was calculated by the method of 
Thornthwaite. This method although simple, gives very good results 
(Koffi, 2007; Kouassi, 2007). The general principle of the 
processing of Landsat ETM + 1990 and Landsat ETM + 2000 is 
based on the contrasts between the observed object and its 
environment (Kouassi, 2009). Thus, from all landscape units or 
objects identified by visual interpretation, we defined four classes of 
land in case, the habitats, water, crops and forests. Given the 
inevitable case of confusion, other landscape units were ignored as 
individual classes because they were part of other more important. 
This is the case in urban areas (roads, habitats), bare soil (rock 
outcrops, bare surfaces). 

The classification method used in this study is the maximum 
likelihood which is the subject of learning on a subset of the data for 
which the class is known. 
 
 
Modeling by artificial neural networks 

 
The neural network is defined as an assembly of identical structural
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Table 1. Artificial neural networks models. 
 

Neural network model Architecture Input Output 

Unguided model with input rain [1 10 1] Rain (t) Flow rate (t) 

Guided model with input rain an Flow rate  [2 3 1] Rain (t), Q(t-1),  Flow rate (t) 

Guided model with input rain, flow rate and land use  [3 7 1] Rain (t), Q(t-1) Land use  Flow rate (t) 

Guided model with rain, flow rate, PET and land use [4 4 1] Rain (t), ETP, Q(t-1), Land use  Flow rate (t) 

 
 
 
elements called cells (or neurons) interconnected like the cells of 

the vertebrate nervous system (Coulibaly et al., 1999; Schmitt et al., 
2001; Vazken et al., 2004). It comes from the early work by 
McCulloch and Pitts (1943) in the field of artificial intelligence for 
modeling the functioning of the human brain based primarily on the 
concept of neurons. The data used as input to build different neural 
networks are composed of: rain (t), the flow rate Q (t-1), potential 
evapotranspiration (PET) and the land use. These variants of 
models are reported in Table 1. 

 
 
Process for model calibration (model calibration and 
validation) 

 
Before the calibration process, the ANN database has been 
normalized. It is a process of normalized amplitude values accepted 
by the network. This allows the model to quickly converge to the 
desired values. The values of the input variables in the software are 

between (0 and 1). This database was divided into three groups: 
calibration, testing and validation with respectively the proportions 
50, 25 and 25%. Thus, the data from 1991 to 1998 were used to 
stall, very important phase of the modeling process by networks of 
neurons. During this process the parameters of neural models are 
adjusted using supervised learning.  

The values of the connection weights are first created at random 
and the system searches through successive iterations to obtain 
data modeling. This alteration of connections is obtained by 

Levenberg algorithm Marquartd (LM) (Dreyfus et al., 2004). The 
period 1999 to 2001 was used for the test to see if the network 
responds are good as desired and the period 2002 to 2004 was 
used for validation. 

 
 
Performance criteria 

 
There are several criteria to appreciate the performance of the 
models in hydrological sciences. Two criteria to measure the 
numerical error are often used. In this work the Nash Sutcliffe 
Efficiency (NSE) and the correlation coefficient (R

2
) are used. The 

Nash criterion (Nash and Sutcliffe, 1970) is used to measure the 
degree of fit between observed and simulated values for the 
calibration and validation. 

 

 
 

With: 
, 

flow observed; 
, 

simulated flow, 
, 

average flow 

observed; Nash: Nash criterion. 
The correlation coefficient or Pearson coefficient, R

2
, is simply 

the square root of the coefficient of determination, and its sign (±) 
gives the direction of the relationship. It allows studying the 
existence of relationship between two variables. 

 
 

With: 
, 

flow observed; 
, 

simulate flow, 
, 

average flow 

observed; 
, 

average rates simulated. 

By convention, we say that the relationship between observed 
flows (Xi) and simulated flow (Yi) is: perfect, if R = 1; very strong, if 

R> 0.8; strong, if R is between 0.5 and 0.8; average, when R is 
between 0.2 and 0.5; and low, if R is between 0 and 0.2 (Kachroo, 
1986; Koffi et al., 2007). 

 
 

RESULTS 
 
Land use in the catchment of Lobo river 
 
The statistics supervised classification performed with 
satellite imagery shows that forests occupy the largest 
area of the basin. However, results from the analysis 
show that area occupied by forests decreased by 7.74% 
from 1990 to 2000. However, water has the lowest per-
centage and cultivation areas have increased significantly 
from 30.27 to 32.28% for a period of 10 years. Overall, 
the proportions of each element decreased in 2000. 
Table 2 summarizes the proportions of each element 
used in this study. 
 
 

Simulations with neural models 
 

During calibration, the model [1 10 1] gives a poor 
correlation between simulated flows and observed flows 
(R = 0.70). Also in validation, the correlation is not high 
(R = 0.40). The poor correlation between the flows 
calculated by the model and flows observed is also 
reflected in the process of calibration and validation by 
the discrepancies between the different hydrographs (the 
value of Nash is equal to 22.90% (Table 3 and Figure 
2A).  

Regarding the model [1 3 1], it gives a good correlation 
between simulated flows and observed flows (R = 0.92) 
during calibration. This good correlation is also observed 
during the validation phase where R = 0.94, which is 
reflected in the evolution of hydrographs. Indeed, some 
overlap between these two hydrographs is observed 
(Table 3 and Figure 2B). But there is a difference 
between those hydrographs in November 2002 and
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Table 2. Proportion of land use. 
 

Theme Image ETM+ 1990 Image ETM+ 2000 

Percentage (%) 

% of spaced built 17.67 24.36 

% of Water 6.64 5.68 

% of crops 30.27 32.28 

% of Forest 45.42 37.68 

Total 100 100 

 

Area (km
2
) 

Spaced built 2.25 3.10 

Water 0.84 0.72 

Crops 3.85 4.11 

Forest 5.78 4.79 

Total 12.72 12.72 

 
 
 

Table 3. Statistical performances of artificial neural networks 
models. 
 

Calibration  Validation 

Model NNC Nash R  NNC Nash R 

[1 10 1]P 10 32.91 0.60  10 22.90 0.20 

[2 3 1] 3 73.53 0.92  3 85.01 0.84 

[3 7 1] 7 73.34 0.95  7 83.38 0.83 

[4 4 1] 4 75.24 0.97  4 84.05 0.84 

 
 
 
November 2003. The addition of a third element to the 
previous model slightly improves the performance of the 
model [3 7 1]. The results show a very good correlation 
between the observed flows and simulated flows during 
calibration (R = 0.95) and validation (R = 0.93). Simulated 
and observed hydrographs show a perfect harmony 
during the calibration, however, for validation, there is a 
slight discrepancy between the simulated and observed 
hydrographs (Table 3 and Figure 2C). For the last model 
[4 4 1] with four (4) hidden neurons, the correlation 
coefficients R during the calibration and validation move 
in the same order of magnitude as those of the model [3 
7 1] with seven (7) hidden neurons. The correlation 
coefficients of 0.94 were obtained with this model for 
calibration and validation. 

Hydrographs demonstrate the perfect correlation 
between the observed flows and simulated flows in both 
phases (calibration and validation). This model [4 4 1] 
gives a good difference between the simulated flow and 
observed flow (Table 3 and Figure 2D). Among the 
developed model, only the model [1 10 1] is an unguided 
model. Other models [2 3 1], [3 7 1] and [4 4 1] are 
guided models. Latter simulate better rates compared to 
unguided model. However, the model [4 4 1] simulates 
better compared to others. Value of the correlation 

coefficient R obtained with this model is 0.86. This 
reflects a perfect relationship between the observed flows 
and simulated flows (Koffi, 2007). But, this study showed 
an overestimation of low flows and under-estimation of 
flood flows. 
 
 
DISCUSSION 
 
This modeling involved two types of models (unguided 
model [1 10 1] and guided model [2 3 1], [3 7 1] and [4 4 
1]). Unguided model [1 10 1] gives a correlation 
coefficient R below 50%, while guided models  give 
correlation coefficients of 90%. Indeed, guided models 
are obtained by the use of the output flow (Q t-1) as an 
input, in contrast to unguided models where flow (Q t-1) 
is not used. The flow introduction as an input (Q t-1) 
allows the model to self-correct. According to Koffi 
(2007), this way of doing allows the network to be able to 
find the true results. Unguided model [1 10 1] gave a 
Nash coefficient of 32.91% in calibration and 22.90% in 
validation  values that are well below 50%. This poor 
unguided model achievement can be explained by the 
non-linearity between the rainfall and the river flow study. 
This result supports the works of Dechemi et al. (2003) 
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Figure 2. Hydrographs simulated and observed over the entire study period (A, B, C and D). 
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that show the complexity of the monthly rainfall-runoff 
relationship. Indeed, it is difficult to quantify some 
modeling parameters such as evapotranspiration. The 
performance of the model [4 4 1] show that land use 
influences the flow of water on a hydrology catchment. 
The vegetative activity and soil type are related and their 
combined actions greatly influence the flow surface. The 
cover holds a variable amount of atmospheric water 
(Musy, 2005). This idea is also supported by other 
authors such as Mouelhi (2003) and Brou et al. (1998) 
who say that human activities and land use also have an 
influence on the transformation of rainfall into runoff. 
However, the work of Tahoux (1993) and Brou (2005) 
have clearly shown that this area is strongly influenced by 
the migration of people in search of land. 

The model [4 4 1] is more representative of how the 
hydrological catchment of Lobo works. The difference of 
the architecture model, the quality and the quantity of 
data may also explain the differences in performance of 
the models studied. 
 
 
Conclusion 
 
The integration of physiographic and meteorological 
variables to the neural networks model was used to 
model the operation of Lobo hydrology catchment. Based 
on the ETM + satellite imagery geospatial database was 
created in order to represent the physiographic charac-
teristics of the Lobo hydrology catchment. The calibration 
of the model parameters and validations performed on 
spatio-temporal Lobo catchment shows synchronization 
between observed and simulated Lobo river flow. The 
Nash of unguided model is around 85% with a correlation 
coefficient R of 94%. These values suggest good 
performance of neural networks and their applicability in 
hydrology modeling process in a changing climate. 
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