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The spatial soil fertility status of a 2.5 ha experimental plot was generated by mapping the soil nutrient 
concentration and fertility status using GIS kriging technique. The research was conducted in Mukono 
Zonal Agricultural Research and Development Institute, Mukono, Uganda in October 2013. Soil samples 
across the experimental plot were randomly taken for laboratory analysis of nitrogen (N), phosphorus 
(P), potassium (K), calcium (Ca), magnesium (Mg) and the organic matter content. The mean values of 
N, P, K, Ca, Mg and the organic matter content were 0.16%, 13.7 ppm, 0.44 cmol/kg, 5.35 cmol/kg, 4.83 
cmol/kg and 2.78% respectively. The spatial concentration of each element and the organic matter was 
carried out by the interpolation technique using the 3D Analyst/Raster Interpolation/Kriging Tools while 
the overlay operations to generate the soil fertility map was carried out using the 3D Analyst/Raster 
Math Tools in ArcMap. The autocorrelation analysis was carried out using the Spatial Statistics/Spatial 
Autocorrelation Tools. The autocorrelation analysis indicated N, Ca, Mg and organic matter to be 
somewhat clustered each with the Moran’s 1 Index of 0.37, P was clustered with Moran’s 1 Index of 0.5 
while potassium pattern was neither clustered nor dispersed. The spatial soil fertility pattern reflected 
the distribution of nutrient concentration.  
 
Key words: Nutrient variability mapping, Kriging technique, fertility mapping. 

 
 
INTRODUCTION 
 
The   mapping   of   nutrient distribution in soils had been  reported in previous investigations (Jobbagy and 
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Jackson, 2001; She and Shao, 2009; Craine and 
Dybzinski, 2013; Laiho et al., 2004; Salehi et al., 2013). 
The five major factors influencing soil formation and 
nutrient distribution were climate, organisms, relief, 
parent materials and time (Gebrelibanos and Assen, 
2013). The effects of climate and organisms were 
explained in Jobbagy and Jackson (2000) on the 
distribution of soil organic carbon in the soil profile where 
it was observed that at a given climate, the percentage 
soil organic carbon in the soil was deepest in the 
shrublands, intermediate in grassland and shallowest in 
forests. The effects of parent rock and parent materials 
on soil chemical properties and nutrient distribution was 
discussed in the relationship among the six main rock 
types identified in south west Nigeria and the corres-
ponding soil associations (Smyth and Montgomery, 1962; 
Periaswamy and Ashaye, 1982). In the report, the soils of 
Iwo soil association, were related to the coarse grained 
granite and gneisses, Ondo soil association related to the 
medium grained granites and gneisses, Egbeda soil 
association related to the fine grained biotite gneisses 
and schists, Itagunmodi soil association related to the 
amphibolites, Okemessi soil association related to quartz 
gneisses and schists, Mamu soil association related to 
sericite schists. 

The spatial distribution pattern of soil nutrients and their 
relationships with topographic factors were reported in a 
research conducted by Song et al. (2011) in the 
Huangshui River drainage basin, China where slope 
curvature was observed to have significant effects on 
spatial distribution of nutrients and the generated digital 
mapping of the soil nutrients provided data support for 
the precise management of soil resources in the study 
area.  

The use of remotely sensed imagery in assessing soil 
nutrient concentration was demonstrated by Chen et al. 
(2000) in the determination of soil organic carbon 
concentration using aerial photograph of a bare soil of a 
115-ha field, located in Crisp County, Georgia. The use of 
geostatistical technique in mapping soil nutrient content 
was also demonstrated in the research by Ismail and 
Junusi (2009) in a Durian Orchard at Beudang, Malaysia 
using the Geostatistic Plus (GS++) tool to quantify the 
spatial nutrient content to predict nutrient values at 
unsampled location. 

The spatial variability of soil nutrients could be 
conducted by either the grid-cell or grid point methods. 
The grid-cell method involved dividing fields into square 
cells and composting soil cores to give one sample per 
cell while the grid point method involved soil sampling at 
grid intersection points spaced on a square grid. Soil 
nutrient maps could then be generated by such methods 
as  Delaunay  triangulation,  polynomial  trend   surface,  
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inverse distance squared gridding, point kriging and block 
kriging (Wollenhaupt et al., 2013).  

The spatial distribution of nutrient which employed 
interpolation methods were demonstrated in the spatial 
interpolation of soil pH across the Loess Plateau, China 
using the inverse distance weighted (IDW), splines, 
ordinary kriging and cokriging methods (Liu et al., 2013). 
The several other investigations conducted to assess 
spatial variability of nutrients had been previously 
reported (Sadeghi et al., 2006; Shah et al., 2013).  

The objective of the research was to use the GIS 
kriging technique to produce precision soil nutrient 
concentration and fertility maps of a 2.5-ha experimental 
land in Mukono Agricultural Research and Development 
Institute Mukono, Uganda. 
 
 
MATERIALS AND METHODS 

 
Soil sampling and laboratory analysis 
 
Soil samples to a depth of 25 cm from randomly selected locations 
across the 2.5 hectare experimental area were taken for laboratory 
analysis. Soil samples were air-dried and sieved through a 2 mm 
sieve and analysed for N, P, K, Ca, Mg and organic matter content 
following the laboratory procedures described by Carter (1993). 

Organic carbon was determined by oxidising soil sample with 
dichromate solution and later titrated with ferrous sulphate solution. 
The total nitrogen was determined using micro-kjeldahl method and 
the available P determined by the Bray P-1 method. The 
exchangeable cations of K, Ca and Mg were extracted by leaching 
5 g of soil with 100 ml ammonium acetate at pH 7 and the 
potassium in the leachate determined with a flame 
spectrophotometer while Ca and Mg were determined with atomic 
absorption spectrophotometer. 

 
 
Interpolation technique for spatial distribution of nitrogen, 
phosphorus, potassium and the organic matter content and 
overlay operations for production of soil fertility map  

 
The values of the nutrients input in Microsoft Excel and saved in 

coma delimited (csv) file format was added as a layer on the map in 
ArcMap in the Projected Coordinate Systems WGS 1984 UTM zone 
31N. It was added as a layer and exported to Shape file through the 
Data/Export Data pathway. The spatial distribution of N, P, K, Ca, 
Mg concentration and the organic matter content was carried out 
separately for each element with the 3D Analyst/Raster 
Interpolation/Kriging Tools while the overlay operations to generate 
the soil fertility map was carried out using the 3D Analyst/Raster 
Math/Plus Tools in ArcMap. The autocorrelation analysis was 
carried out using the Spatial Statistics/Analyzing Patterns/Spatial 
Autocorrelation Tools. 

 
 
RESULTS 
 
Table 1 shows the coordinates of the perimeter and the



 

 

 

368          Afr. J. Environ. Sci. Technol. 
 
 
 

Table 1. Coordinates of the perimeter and the soil sampling locations. 
 

Coordinates of the experimental land perimeter Coordinates of the soil sampling locations  

Easting Northing Easting Northing 

470299 42304 470320 42292 

470435 42326 470363 42301 

470481 42242 470420 42312 

470316 42214 470324 42267 

470299 42304 470329 42228 

 

470354 42241 

470390 42238 

470381 42259 

470439 42252 

470431 42284 

470362 42271 

470339 42280 

470400 42285 

470410 42262 

 
 
 
soil sampling locations of the 2.5 ha experimental plot 
while Figure 1 shows the spatial representation of soil 
sampling locations. The sampling locations were 
randomly selected across the experimental land with 
each representing an area within 10 m radius. On the 
map part of the administrative block and the major road 
from the main gate are shown. 

Table 2 shows the values of nutrient elements with the 
mean values and the organic matter content as 0.16%, 
13.7 ppm, 0.44 cmol/kg, 5.35 cmol/kg, 4.83 cmol/kg and 
2.78%, respectively. 

Figures 2, 3, 4, 5, 6 and 7 show the spatial 
concentration of nitrogen, phosphorus, potassium, cal-
cium, magnesium and the organic matter content, 
respectively, while Figure 8 showed the soil fertility map. 
The autocorrelation analysis indicated N, Ca, Mg and 
organic matter to be somewhat clustered with the 
Moran’s 1 Index of 0.37, phosphorus was clustered with 
Moran’s 1 Index of 0.5 while potassium was neither 
clustered nor dispersed with Moran’s 1Index of 0.28. The 
soil fertility classes I, II and III on the soil fertility map 
indicated low, medium and high fertility status 
respectively.  
 
 
DISCUSSION 
 
The attribute data which indicated the coordinates of the 
perimeter and soil sampling locations in Table 1 was 
used to generate the spatial data in Figure 1. This 
corroborated the previous study by Murray and Shyy 

(2000) on the integration of attribute and spatial data for 
identifying patterns in spatial information. The previous 
investigation by Andrienko and Andrienko (2001) also 
reported on the technique of analysis of numerical data 
associated with area geographical objects. The attribute 
data had been described to contain information about the 
features on a map that was linked to the map and the 
linkage achieved by specifying variables in the attribute 
data set and composite association in the spatial 
definition that had the same values (GISTUTOR, 2001).  

The spatial concentration of each of N, P, K, Ca, Mg 
and the organic matter content in Figures 2 to 7 was 
generated through interpolation method of kriging. The 
interpolation technique enabled predicted values to be 
assigned to all other locations to create continuous 
surface representation of the nutrient concentration. This 
corroborated with the research findings of Oliver and 
Webster (1999) in the stochastic models of spatial 
variation in the mapping of soil salinity in the Jordan 
Valley of Israel and also the herbaceous cover in semi-
arid Botswana. The geostatistical interpolation technique 
of kriging was also used to prepare the landslide 
susceptibility analysis map of Kota Kinabalu in Malaysia 
to locate areas prone to landslides (Roslee et al., 2012). 
The degree of accuracy of kriging technique in the 
prediction of soil properties was explained in the report of 
Omran (2012) in the descriptive tools of semivariograms 
to characterize the spatial patterns of continuous and 
categorical soil attributes. The application of kriging 
technique had been premised on the principle that soil 
properties closer together would tend to be more alike
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Figure 1. Experimental site with soil sampling locations.  

 
 
 

Table 2. The values of N, P, K, Ca, Mg and the organic matter content at each sample location. 
 

Easting Northing 
Nitrogen 

(%) 
Phosphorus 

(ppm) 
Potassium 
(cmol/kg) 

Calcium 
(cmol/kg) 

Magnesium 
(cmol/kg) 

Organic 
matter (%) 

470320 42292 0.16 13.4 0.36 4.48 4.88 2.78 

470363 42301 0.12 11.8 0.28 3.68 4.22 2.12 

470420 42312 0.14 11.2 0.21 3.24 3.86 2.12 

470324 42267 0.19 15.7 0.70 8.17 5.56 3.60 

470329 42228 0.18 14.8 0.65 7.49 5.48 3.46 

470354 42241 0.19 15.6 0.54 6.56 5.42 3.24 

470390 42238 0.18 14.9 0.71 6.52 5.52 3.42 

470381 42259 0.14 13.9 0.43 5.52 4.86 2.86 

470439 42252 0.13 13.2 0.34 3.86 4.14 2.26 

470431 42284 0.14 11.6 0.24 4.42 4.64 2.88 

470362 42271 0.15 13.8 0.42 5.58 5.24 2.88 

470339 42280 0.17 14.1 0.51 6.51 5.38 2.86 

470400 42285 0.15 13.6 0.32 4.40 4.12 2.14 

470410 42262 0.14 13.6 0.41 4.42 4.32 2.24 

 
 
 
than the distant points and the interpolation was a 
prediction made within the spatial extent of the measured 
locations. 

The spatial concentration of the nutrient elements from 
the autocorrelation analysis which indicated N, Ca, Mg 
and organic matter to be somewhat clustered each with
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Figure 2. Nitrogen spatial concentration.  

 
 
 

 
 
Figure 3. Phosphorus spatial concentration. 
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Figure 4. Potassium spatial concentration. 

 
 

 

 
 
Figure 5. Calcium spatial concentration. 
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Figure 6. Magnessium spatial concentration. 

 
 
 

 
 

Figure 7. Organic matter spatial distribution. 
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Figure 8. Soil fertility map. 

 
 
 
the Moran’s 1 Index of 0.37, P with clustered pattern with 
Moran’s Index of 0.5 and K which was neither clustered 
nor dispersed with Moran’s Index of 0.28 corroborated 
earlier observation of Huo et al. (2010, 2011) on the 
improvement of spatial interpolation accuracy of heavy 
metals concentration in soils and also in the 
autocorrelation analysis of soil pollution data on soils in 
Taiwan (Chu and Chang, 2011). 

The spatial nutrient concentration maps integrated in 
an overlay operation to generate the soil fertility map 
corroborated the overlay procedure adopted by 
Onunkwo-Akunne et al. (2012) for the production of 
industrial, residential and waste disposal maps that were 
further superimposed to produce a composite land use 
map useful for regional and urban planning.  

The spatial distribution of the soil fertility status of the 
experimental land as shown in Figure 8 reflected the 
spatial concentration of nutrients in Figures 2 to 7 which 
corroborated the previous observation of Salehi et al. 

(2013) on the determination of soil fertility status from the 
nutrient concentration. 
 
 
Conclusion 
 
The somewhat clustered nutrient concentration pattern 
observed could be adduced to past fertilizer application 
and cropping pattern on the experimental land. The high 
mean values of 0.44 and 5.35 cmol/kg for K and Ca, 
respectively could be attributed to past continuous 
application of CAN and NPK. A situation map of nutrient 
distribution was generated with the use of GIS Kriging 
technique.  
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